a2 United States Patent

Ng et al.

US009354880B2

US 9,354,880 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

PROCESSING DEVICE FOR HIGH-SPEED
EXECUTION OF AN XRISC COMPUTER
PROGRAM

Applicant: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

Inventors: Tak-Kwong Ng, Yorktown, VA (US);

Carl S. Mills, Williamsburg, VA (US)

THE UNITED STATES OF
AMERICA AS REPRESENTED BY
THE ADMINISTRATOR OF THE
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION,
Washington, DC (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 580 days.

Appl. No.: 13/792,489

Filed: Mar. 11,2013
Prior Publication Data
US 2015/0254075 Al Sep. 10, 2015

Related U.S. Application Data

Provisional application No. 61/639,138, filed on Apr.
27,2012.

Int. Cl1.

GO6F 9/30 (2006.01)

GO6F 9/445 (2006.01)

GO6T 120 (2006.01)

U.S. CL

CPC GO6F 9/3012 (2013.01); GO6F 9/445

(2013.01); GO6T 1/20 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,969,722 A * 7/1976 Danco GOSB 19/05
700/83

5,206,940 A * 4/1993 Murakami GO6F 7/575
711/200

5,414,866 A * 5/1995 Ohmae GO6F 15/7814
712/33

6,519,695 B1* 2/2003 Kosticc.ccoovnnnnn HO4L 29/06
712/220

2009/0031104 Al* 1/2009 Vorbach GO6F 9/30014
712/18

2012/0033851 Al* 2/2012 Chenccccocee. GO6T 7/0002
382/100

OTHER PUBLICATIONS

Robert Hodson, et al., “Lidar Image Processing Acceleration via
FPGA Implementation,” ReSpace/MAPLD 2010 Conference, Nov.
1-4, 2010, pp. 1-20, Albuquerque, NM.

* cited by examiner

Primary Examiner — William B Partridge
(74) Attorney, Agent, or Firm — Andrea 7. Warmbier

(57) ABSTRACT

A processing device for high-speed execution of a computer
program is provided. A memory module may store one or
more computer programs. A sequencer may select one of the
computer programs and controls execution of the selected
program. A register module may store intermediate values
associated with a current calculation set, a set of output values
associated with a previous calculation set, and a set of input
values associated with a subsequent calculation set. An exter-
nal interface may receive the set of input values from a com-
puting device and provides the set of output values to the
computing device. A computation interface may provide a set
of operands for computation during processing of the current
calculation set. The set of input values are loaded into the
register and the set of output values are unloaded from the
register in parallel with processing of the current calculation
set.

20 Claims, 6 Drawing Sheets

[i st ot outguts or
calealacion se N1
w8
ore calculallon
<2

US 9,354,880 B2

Sheet 1 of 6

May 31, 2016

U.S. Patent

801

1 "5

O0%

33143
uoneInduwo)

BHASL]
Sunnduod

911 > 711
S5 AALAD d Sy e AN [BTy &noiuwi‘
YAV LNALNO
?E eacasssansnsssomsminrrnd
14300 AGVIY
3
o SHNGLNOONIS
4% 03y
Y »
o MTWWNOD RN
NCLLYINYIYD dY ey 1 LDV AN e
...m_.,hmwgmwmm
Buissa103g
ViV 1NN ,
S iy
aNIS DY
YTT
e GONYH IO %?s..Vaf . i
% 153
4 T3
SUNTU3IU e NOUDTTIS o
P E S SRS T— OOt
AIYIY 4
%, z,
POt b 7OE

U.S. Patent

May 31, 2016

Sheet 2 of 6

Start
202

I

Load set of inputs for first

caicuiation set

204

US 9,354,880 B2

200

First calcuiation /
3 K8

NG
3 ¥
Unload set of outputs for Execute program {0 process
caleulation set N-1 -+ calculation set N
268 208

_/
7 s

v
dore caloulation /
sefs?
211

NO
¥

Wait |

253

Unload set of outputs foriast
calculation set

Load set of inputs for caloulation
set N+1

Wait

3=
218
SN
B R N
TR, &

——

U.S. Patent

Wait for processing element
496

“7%

wene

&

L

May 31, 2016 Sheet 3 of 6 US 9,354,880 B2
Computing device asserts REQ o .
progessing element 300
i
¥
Processin 5 Processing element asseris REQ
rocessing / ‘ TO SEND INPUT DATA to
element ready? YES . .
203 / computing device
*T“ / e
NO v
& N N
Computing slement sends input
Wait for processing element data on INPUT data bus
o 304 208
¥
Pracessing element asserts ACK 10 / input loading /
computing device <« YES complets? foooreeeoeess
i
E
NG
&
Wait for processing element ||
3310
FiG. 3
Computing device asserts READY
TO ACCEPT QUTPUT DATA TS 400
processing eiement ’&/
482
/ Processing element /j Procassing element sends cutput
ready to unload? y e 3 data on QUTPUT data bus
433 ¢ 404
i — / —
|
NO
¥

U.S. Patent May 31, 2016 Sheet 4 of 6 US 9,354,880 B2

s stached processer read 7 Attached processor asserts AP
f cassor ready - o
J HOCHES Brotessor TEAdY ee i READY TO ACCEPT OPERANDS to
e FOr New procaessing e B T o)
// 501 pracessing element
/ - / 502
;
NO
. 3
. / Processing element ready ,’f
Wait for attached processor) ’
504 S— to send operands?
= 203 /
{
;
YES NG
&
Processing element sends
operands to attached processor onf Wait for processing element
AP OPERANDS data bus 508
306
Attached procasser precessas
operands
310
// Attached orocessar Attached processor asserts AP
T , CALCULATION COMPLETE to
o] done processing?y YES 3 .
511 processing efement
- 514
i
NO
¥
e o // Processing element /I
Wait for attached procsssor 7/ . .)
N ca e~ ready to receive results?
512 .
= 515
£ ; ¢
YES NO
: . - o ¥
Processing element assarts REQ AP
TO SEND QUTPUTS to the attached . .
ssing element

Wait for proce
LTOCRSSOr e
216

Attached processor sends resulls
to processing elemeant on AP X
QUTPUTS data bus \

520 500

US 9,354,880 B2

Sheet 5 of 6

May 31, 2016

U.S. Patent

95

o , L AE0HLS ¥
005 " s Y10
. T ANdIN0
YING LNdLNO
p— i 100y
5TE | | OL ACYT
g o Yy Fudn3 566 4 - e o FBCUIS B
W\ XD INOMYTY | RS e wwéx e LEEa BOT [VIVO NN
gzo-__ | 2off| G2 [Frmion €20 WA VIS GMINT T VLV LA
vy = Na - P Hi T
| _ i $ZIA0T, 2wl T AL L s (NS
w ; P) Ay (QOMXED) 1yg 21 D3
819 AR gLo oo XN gw\mwswmﬁﬁ, o »\.s AQ/WW.&Z 5 -
t & ! i Gia- Haty 76 a|geuy Om; ﬂmmmamnﬂ, » ALY
UOaUN A IORTUN IGHOUN S 100 | eiery - §.§<m cum,mm\, at S o T 18T
| = AR CTHRTAT Caove Seagas) e T Sc S SR
ST Sl ssa1pDYy /e i L I PR— L
3 WS g ;wﬂﬁ ST SR STAGTS
I 48 SR ANETT o O Y "SUIN
Yy Ld0y LOAA oany :
Z mw Buisssonid UB1s "
~N . 5
: P00 [sessaippy
SLONGON d¥ WOoMn 7 Bugdeng NOLLO3738
Py “ Wi d
SLONGON ,
NS OF 0¥ 05 ¢a1c 1887 ssoinpy
' T X101
AT TINOD — OIS 10N | O T
NOIYINO WO AV | T S0 Y BENE viY
JBOMIS® dv Spueledny Wesoy |
240 ¢ LUBTY Jy/8sned
SONYHIA0 dY oA o d y .
SONYH IO
v
SONVYIAO LdIDDY -
CLACYIA IY Lo

US 9,354,880 B2

ANOOvdd
.wammw\\px\xﬁ\www
2 /......f(N : NM

4
2 Ay
3y i3 i Jhit.u.....
)
2 PAETUE LI focen
i
2., A A VA A i
Lo fomr Ll ot VAN 4
P VA S S A4 ANy N
A A A A 4 Lo A WA AN 4
£ A AR A A A A
pavayi A FA AN A 2.7
A 07 200 S O 4 Lo N
odooe ool o e oo e B o VAN AV 4 QWN
A A AR 0 AR N N A S A
D00 SO0 A 0 S A A B A S ST S S 4

Sheet 6 of 6

indu; 871871 10888304 toller:)pligelie
’] UODOTBUODE payesban

)

(Wi} Aviry

1
&

May 31, 2016

U.S. Patent

_ 408580014 sBeu; 0pRaY GHEl B0
GLBL DBSBL-Y 4 _ , N
et 1Y) ~804 -G/,
Y
N 2000
FEEET IBnsugl] AN arBle
S . AHLSURL T

0o, " bl Ny

US 9,354,880 B2

1
PROCESSING DEVICE FOR HIGH-SPEED
EXECUTION OF AN XRISC COMPUTER
PROGRAM

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

This application is a nonprovisional of, and claims the
benefit of and priority to, U.S. Provisional Patent Application
No. 61/639,138, filed on Apr. 27, 2012, the contents of which
are hereby incorporated by reference in their entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The invention described herein was made by employees of
the United States Government and may be manufactured and
used by or for the Government of the United States of
America for governmental purposes.

TECHNICAL FIELD

Aspects of the invention generally relate to computer pro-
cessing and in particular relate to computer processing
devices for executing a computer program.

BACKGROUND OF THE INVENTION

Image processing algorithms are computationally inten-
sive. In this regard, many real-time image processing meth-
ods often require robust processors and memory resources.
Real-time or near real-time image processing systems may be
required in a closed-loop control environment, such as
autonomous landing and hazard avoidance. For astronomical
applications, it is advantageous to minimize power, mass, and
volume. Accordingly, a space-borne high-performance com-
puting platform having a small foot-print that processes
images in real time and consumes minimal power is desirable.
Development of image processing algorithms to meet these
specifications continues. Algorithm development is an itera-
tive process, and a short build and test time may help to reduce
algorithm development, customization, and qualification.

Space-borne environments may limit options for high-per-
formance computing components that can be operated with
acceptable reliability. Physical parameters such as mass, vol-
ume, and power, for example, may be constrained. Comput-
ing performance and physical parameters are often conflict-
ing constraints. Image processing algorithms can be complex,
and complexity may increase the hardware necessary to
implement the algorithm. The power consumption, the mass,
and/or the volume of the implementation may depend on the
amount and type of hardware utilized. Although pixel-based
image processing algorithm can be parallelized, multiple
copies of hardware may be necessary to achieve real-time or
near real-time image processing. Unfortunately, multiple
copies of hardware may drive up the power consumption, the
mass, and the volume of the implementation.

Moreover, even though image processing algorithms can
be prototyped, executed, and modified on general purpose
computing systems, this approach may not be sufficient for
development and implementation of space-borne image pro-
cessing algorithms. First, the net performance of a general
purpose computing system may not achieve real-time image
processing desired for space-borne applications. Second,
general purpose computer systems are often complex having
a relatively large physical foot print in terms of power, mass,
and volume. For space-borne applications, minimizing the

10

15

20

25

30

35

40

45

50

55

60

65

2

physical foot print is desirable. Direct implementation of
image processing algorithms on digital circuits may reduce
execution time to achieve real-time or near real-time image
processing. Commercially available software tools may be
employed to develop and implement image processing algo-
rithms using digital circuits. This approach, however, may
also not be sufficient for development and implementation of
space-borne image processing algorithms. Even utilizing the
software tools, translation effort is often non-trivial thereby
making it relatively difficult to quickly prototype, test, and
modify image processing algorithms under development.
Second, the implementation that results may be relatively
complex, requiring multiple field-programmable gate arrays
(FPGA) or application-specific integrated circuit (ASIC)
devices. Accordingly, this approach may result in implemen-
tations also having a relatively large physical footprint in
terms of power, mass, and volume.

Processor-based implementations as opposed to direct
implementations in logic circuits may have higher execution
times and may not achieve real-time or near real-time image
processing desired for space-borne applications. Prior solu-
tions have not resolved the need for an approach to real-time
image processing that is suited for space-borne applications
and that can accommodate relatively quick implementation,
testing, and modification of image-processing algorithms
during development. Therefore, there is a need for systems
and methods that address one or more of the deficiencies
described above.

BRIEF SUMMARY OF THE INVENTION

The following presents a general summary of aspects of
this invention in order to provide a basic understanding of at
least some aspects of the invention. This summary is not an
extensive overview of the invention. It is not intended to
identify key or critical elements of the invention or to delin-
eate the scope of the invention. The following summary
merely presents some concepts of the invention in a general
form as a prelude to the more detailed description provided
below.

Aspects relate to a processing device for high-speed execu-
tion of a computer program. In certain embodiments, the
processing device may be configured to process a plurality of
different algorithms relating to image processing. The device
may include a memory module configured to store one or
more computer programs (computer-executable instruc-
tions). A sequencer may select one of the computer programs
and control execution of the selected program. A register
module may store intermediate values associated with a cur-
rent calculation set, a set of output values associated with a
previous calculation set, and/or a set of input values associ-
ated with a subsequent calculation set. An external interface
may receive the set of input values from a computing device
and provide the set of output values to the computing device.
A computation interface may provide a set of operands for
computation during processing of the current calculation set.
The set of input values are loaded into the register and the set
of output values may be unloaded from the register in parallel
with processing of the current calculation set.

Further aspects relate to methods for high-speed execution
of' a computer program is also provided. In certain embodi-
ments, a computer program may be selected at a processing
device for execution. The computer-program may be one of a
plurality of algorithms configured to process image data. A
computation device attached to the processing element may
process a current calculation set. A set of input values asso-
ciated with a subsequent calculation set may be loaded into a

US 9,354,880 B2

3

register module, and a set of output values associated with a
previous calculation set may be unload from the register
module. Processing the current calculation set, loading the set
of input values, and unloading the set of output values are
performed in parallel in accordance with certain embodi-
ments.

An apparatus for high-speed execution of an image-pro-
cessing algorithm is further provided. A memory module may
store the image-processing algorithm and a sequencer may
control execution of the image-processing algorithm. A reg-
ister module may store intermediate values associated with a
current set of image-processing calculations as well as a setof
image-processing outputs associated with a previous set of
image-processing calculations and a set of image-processing
inputs associated with a subsequent set of image-processing
calculations. An external interface may receive the set of
image-processing inputs from a light detection and ranging
(LIDAR) system and provide the set of image-processing
outputs to the LIDAR system. The register module loads the
set of image-processing inputs and unloads the set of image-
processing outputs in parallel with processing the current set
of image-processing calculations at the processor.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 11is ablock diagram of an example implementation of
a processing element in accordance with one embodiment of
the invention.

FIG. 2 is a flowchart that may be implemented to process a
computer program in accordance with one embodiment of the
invention.

FIG. 3 is a flowchart that may be implemented for loading
inputs at a processing element.

FIG. 4 is a flowchart that may be implemented for unload-
ing outputs at a processing element.

FIG. 5 is a flowchart that may be implemented for process-
ing a current calculation set at a processor attached to a
processing element.

FIG. 6 is a schematic view of an example of an implemen-
tation of a processing element.

FIG. 7 is an example of an implementation of a 3D Flash
LIDAR system that may be utilized in accordance with cer-
tain embodiments.

DETAILED DESCRIPTION OF THE INVENTION

In the following description of various examples of the
invention, reference is made to the accompanying drawings
which show, by way of illustration, various example systems
and environments in which aspects of the present disclosure
may be practiced. It is to be understood that other specific
arrangements of parts, example systems, and environments
may be utilized and structural and functional modifications
may be made without departing from the scope of these
disclosures.

In addition, the present disclosure is described in connec-
tion with one or more embodiments. The descriptions set
forth below, however, are not intended to be limited only to
the embodiments described. To the contrary, it will be appre-
ciated that there are numerous equivalents and variations that
may be selectively employed that are consistent with and
encompassed by the disclosures below.

Referring to FIG. 1, an example implementation of a pro-
cessing device 100 is shown. The processing device 100 may
also be referred to as a processing element. The processing
device 100 may include a plurality of interfaces, such as for

10

15

20

25

30

35

40

45

50

55

60

65

4

example, an external interface 102 and a computation inter-
face 104. The external interface 102 of the processing element
100 may be configured to interface with a computing device
106 that is external relative to the processing element. The
external interface 102 is shown as being configured to: a)
receive inputs to the processing element 100 from an external
computing device (e.g., computing device 106); and b) pro-
vide outputs from the processing element 100 to the comput-
ing device 106. The computation interface 104 may be con-
figured to interface with a computation device 108 that is
attached to the processing element 100. Accordingly, the
computation interface 108 includes operands provided to the
computation device and outputs received from the computa-
tion device. The computation device 108 may be, for
example, a processor. In certain embodiments, computation
device 108 may support a plurality of processing units, such
as processing unit 100. As discussed below, the computation
device 108 may receive computations that pass a threshold of
complexity and/or usage off-loaded from the processing ele-
ment 100. For example, for computer-executable instructions
relating to image processing, in-line memory access and/or
tri-geometry functions may be off-loaded to the computation
device 108. It will be appreciated that the computation device
may be, for example, an arithmetic-logic unit (ALU), a pro-
cessor, and the like. It will also be appreciated that processing
element 100 may interface with multiple computation
devices that include an ALU, a processor, and combinations
thereof. The computation device will be discussed in further
detail below.

In accordance with one implementation, various control
signals are exchanged between the external computing device
106 and the processing element 100 as well as between the
computation device 108 and the processing element. Various
data busses may exchange data between the computing
device 106 and the processing element 100 as well as between
the processing element 100 and the computation device 108.
As seen in FIG. 1, an input data bus 110 may be configured to
provide inputs from the external computing device 106 to the
processing element 100, and an output data bus 112 may
provide outputs from the processing element 100 to the com-
puting device 106. The computing device 106 may be referred
to as a “consumer” in that it consumes the output data gener-
ated by the processing element 100. As also seen in FIG. 1, an
operand bus 114 provides operands from the processing ele-
ment 100 to the computation device 108, and an outputs bus
116 provides outputs from the computation device to the
processing element. The data busses may or may not include
a strobe. The external interface 102 and the computation
interface 104 may be understood as the respective control
signals, data busses, operands, inputs, outputs, and process-
ing results exchanged between the processing element 100,
the external computing device 106 and the computation
device 108 attached to the processing element.

In general, the approach to high-speed execution of com-
puter programs described via example embodiments in this
disclosure involves processing multiple sets of calculations
(“calculation sets”). In accordance with certain embodi-
ments, processing a calculation set may comprise three
aspects: 1) loading a set of input values (“inputs™) for the
calculation set, i.e., to initialize the variables used to carry out
the steps of the calculation set (but not calculated by the
selected program or algorithm itself); 2) executing a selected
computer program, i.e., performing the steps of the calcula-
tion set (which are stored as computer-executable instructions
on a computer-readable medium); and 3) unloading a set of
output values (“outputs”) obtained by executing the computer
program, i.e., returning the results obtained by carrying out

US 9,354,880 B2

5

the steps of the calculation set. As described further below,
loading the inputs and unloading the outputs may be over-
lapped with execution of the computer program. In other
words, execution of a selected computer program may be
carried out in parallel with loading the inputs and unloading
the outputs. In this way, net performance of the program
execution may be advantageously maximized.

Referring to FIG. 2, flowchart 200 shows an example
implementation for parallelized computer program execution
that may be utilized in accordance with certain embodiments.
In general, the approach described below in relation to flow-
chart 200 parallelizes program execution, loading inputs, and
unloading outputs such that—except for the first and last
calculation set—a current calculation set is processed in par-
allel with unloading a set outputs for a previous calculation
set and loading a inputs for a subsequent calculation set.

An external computing device, such as device 106, may
select a program to execute at a processing element, such as
element 100. Upon receipt of a program selection, the pro-
gram may start (e.g., block 202). The inputs for the first
calculation set may be loaded into the processing element
(such as shown by block 204). Except for the first calculation
set (block 205) and last calculation set, a calculation set N is
processed (block 206) in parallel with unloading the outputs
for a previous calculation set N-1 (block 208) and loading the
inputs for a subsequent calculation set N+1 (block 210).
Because the processing, loading, and unloading blocks occur
in parallel, the run time is the larger of the time for executing
the program (block 206) and the sum of the times for unload-
ing the outputs (block 208) and loading the inputs (block
210). If there are more calculation sets (block 211), the pro-
cessing element may process the remaining calculation sets
until all calculation sets have been processed. The processing
element may wait (block 212 and block 213) for the process-
ing, loading, and unloading blocks to complete before con-
tinuing. When the last calculation set has been processed, the
processing element may unload the outputs for the last cal-
culation set (block 214).

In FIG. 3, a flowchart 300 of example implementation for
loading inputs for a calculation set is shown. Various control
signals may be utilized to facilitate interaction between the
processing element and the computing device providing the
inputs. The computing device 106 may assert a request signal
(REQ) to the processing element that indicates the computing
device would like to provide inputs to the processing element
(block 302). If the processing element is not ready (e.g., see
block 303), then the computing device 106 may wait until the
processing element is ready to accept a new inputs (block
304). When the processing element accepts new inputs (block
303), the processing element 100 may assert a request to send
signal (REQ TO SENT INPUT DATA) to the computing
device (block 306). Upon receipt of REQ TO SEND INPUT
DATA, the computing device may begin loading the inputs
via the INPUT data bus (block 308). The processing element
waits (block 310) for the computing device to finish loading
the inputs (block 308). If the computing device has completed
loading the inputs (block 311), the processing device may
assert an acknowledgement signal (ACK) to the computing
device indicating that the inputs were received (block 312).

In FIG. 4, a flowchart 400 of an example implementation
for unloading outputs for a calculation set is shown. Various
control signals may also be utilized to facilitate interaction
between the processing element and the computing device
receiving the outputs. When the computing device is ready to
receive the outputs from the processing element, the comput-
ing device may assert a ready signal (READY TO ACCEPT
OUTPUT DATA) to the processing element (block 402). If

40

45

6

the processing element 100 is ready to unload the outputs
(block 403), then the processing element may send the out-
puts to the computing device on the OUTPUT data bus (block
404). If the processing element is not ready to unload the
outputs, then the computing device may wait until the pro-
cessing element is ready to unload the outputs (block 406). In
the illustrated example, the external interface of the process-
ing element manages the handshaking and data transmission
involved in loading the inputs and unloading the outputs.

In FIG. 5, a flowchart 500 of an example implementation
for processing a calculation set is shown. In one embodiment,
processing a calculation set involves sending a set of operands
(“operands™) to the computation device 108 attached to the
processing element and receiving the results in response.
Various control signals may be utilized to facilitate the inter-
action between the processing element and the processor
attached to the processing element (“attached processor”,
which may be computation device 108 in certain embodi-
ments). When the attached processor is ready to start new
processing (block 501), the attached processor may assert a
ready signal (AP READY TO ACCEPT OPERANDS) to the
processing element (block 502). This may be transmitted via
interface 104 shown in FIG. 1. If the attached processor is not
ready to start new processing (block 501), the processing
element may wait until the attached processor is ready (block
504). If the processing element is ready to send the operands
to the attached processor (block 503), then the processing
element may send the operands to the attached processor on
the AP OPEARANDS data bus 114 (block 506). If the pro-
cessing element is not ready to send the operands (block 503),
then the attached processor may wait until the processing
element becomes ready to send the operands (block 508).
Upon receipt of the operands, the attached processor may
process the operands (block 510) according to the selected
computer program. The processing element continues to cal-
culate. The processing element may wait until the attached
processor has completed processing the operands (block
512). If the attached processor has completed processing the
operands (block 511), the attached processor may assert a
complete signal (AP CALCULATION COMPLETE) to the
processing element (block 514). If the processing element is
not yet ready to receive the results from the attached proces-
sor (block 515), the attached processor may wait until the
processing element is ready to receive the results (block 516).
When the processing element is ready to receive the results,
the processing element may assert a request signal (REQ AP
TO SEND OUTPUTS) to the attached process (block 518),
and the attached processor may send the processing results
(i.e., the outputs) to the processing element on the AP OUT-
PUTS data bus, such as bus 116 shown in FIG. 1 (see, e.g.,
block 520). The computation interface of the processing ele-
ment manages the handshaking and data transmission
involved in providing the operands to the attached processor
and receiving the outputs from the attached processor.

Referring now to FIG. 6, an example of an implementation
of a processing element 600 is shown. As seen in FIG. 6, the
processing element 600 may include: a memory module 602
configured to store one or more computer programs; a
sequencer 604 (SEQ) configured to selects and controls one
of the computer programs stored at the memory module; a
register module 606 (REGFILE) configured to store the
inputs and outputs respectively associated with subsequent
and previous calculation sets as well as sets of intermediate
values associated with calculation sets currently being pro-
cessed; an external interface 608 (EXT) configured to receive
inputs from external computing devices and provide outputs
to external computing devices; and a computation interface

US 9,354,880 B2

7

610 configured to provide operands to one or more computa-
tion units 612 and 614. The processing element 600 may also
include one or more data busses 616 that interconnect the
memory module 602, the sequencer 604, the register module
606, the external interface 608, the computation interface 610
and the computation units 612 and 614. Furthermore, the
processing element 600 employs various control signals to
control the operation of the memory module 602, sequencer
604, register module 606, and computation units.

The computation units 612 and 614 may be attached to the
processing element 600 as shown in FIG. 6. In some example
embodiments, the processing element 600 may be described
as including the computation units 612 and 614. As noted
above, one type of computation unit that may be attached to
the processing element is a processor 612, e.g., a central
processing unit (CPU), a graphics processing unit (GPU), and
so forth. Another type of computation unit that may be
attached to the processing element is an arithmetic-logic unit
(ALU 614). The ALU 614 may respectively implement mul-
tiple functions using one or more calculation units 616. The
register module may receive data output from the attached
processor 612 (AP DO) as well as data output from the ALU
614 (ALU DO). The attached processor 612 and ALU 614
will be discussed in further detail below.

The memory module 602 may be a memory with a single
port. The memory module may be a read-only or a read/write
memory. In some example implementations, the memory
may be electrically erasable programmable read-only
memory (EEPROM). The memory module 602 may be pre-
loaded to store one or more computer programs. The com-
puter programs may be written in microcode using an
extremely reduced instruction set (XRISC). In this regard, the
memory module 602 may be referred to as a microcode read-
only memory (UROM). In some example implementations,
the uROM 602 may be configured to store up to eight micro-
code computer programs. Accordingly, the uROM 602 may
reserve the last eight words to store the specifics of the micro-
code computer program. The specifics of a computer program
may include, for example, the starting address in the uROM
602 for the first calculation set of the computer program, the
number of inputs, and the number of outputs. The computer
program output may be a control store word (CSW) that
controls the various operations of the processing element 600.

The CSW may be organized into various fields. In this
example implementation, the CSW defines fields to control
the register module 606, the attached processor 612, the ALU
614, and the sequencer 604. Controls for the register module
606 include a read address for a first operand (OP RA1), a
read address for a second operand (OP RA2), a write address
for a computation result (RES WA), a write enable flag for the
computation result (RES WE), and a data output selector
(SEL. AP DO) for selecting either the AP DO or the ALU DO
for storage at the register module. Controls for the ALU 614
include a calculation result selector (OUTSEL) to select a
calculation result from one of the calculation units 618 of the
ALU. Controls for the attached processor 612 include a strobe
for the operands provided to the attached processor (AP
OPERANDS STROBE) and a request for the attached pro-
cessor to send its output (REQ AP TO SEND OUTPUTS).
Controls for the sequencer 604 include a pause signal indi-
cating the attached processor 612 cannot accept new operands
(Pause/ AP Cannot Accept Operands), a pause signal indicat-
ing that the attached processor has not completed processing
(Pause/AP Calculation Not Complete), and a last step signal
(Last Step) that indicates the last step of the selected computer
program.

10

15

20

25

30

35

40

45

50

55

60

65

8

As noted above, the SEQ 604 selects one of the computer
programs stored in the uUROM 602 and controls the execution
of the selected computer program. SEQ 604 generates the
read addresses for the uUROM 602 during execution of the
computer program. At power up, SEQ 604 reads the reserved
locations of the uROM 602 and stores in local registers the
starting addresses of the computer programs stored at the
uROM. The external interface 608 may provide a start signal
(Start Processing) to the SEQ 604. The SEQ 604 may also
receive a program selection signal (PROGRAM SELEC-
TION) that indicates which one of the computer programs
stored at the uROM 602 should be selected for execution.
When SEQ 604 receives the Start Processing signal, the SEQ
generates aread address corresponding to the starting address
of the selected computer program. The SEQ 604 increments
the read address by one after each clock cycle unless the SEQ
is paused. There are several conditions that will pause the
SEQ 604 such that it does not increment the read address. The
SEQ 604 may, for example, pause when: the Pause/ AP Can-
not Accept Operands field of the CSW is asserted and logical
AND the APREADY TO ACCEPT OPERANDS signal is not
asserted; the Pause/AP Calculation Not Completed field of
the CSW is asserted and logical AND AP CALCULATION
COMPLETED is not asserted; and the Last Step field of CSW
is asserted.

As also noted above the REGFILE 606 stores a set of
intermediate values associated with a calculation set cur-
rently being processed, a set of output values associated with
a previously processed calculation set, and a set of input
values associated with a subsequently processed calculation
set. In order to overlap processing the current calculation set,
loading the set of inputs, and unloading the set of outputs, the
REGFILE 606 includes two memory modules 620 and 622.
Each memory module 620 and 622 may be a three-port ran-
dom access memory (RAM) having two read ports and one
write port. Accordingly, the two memory modules 620 and
622 of the REGFILE 606 may be referred to as RAM-1 and
RAM-2. Inputs to RAM-1 620 include the data to write
(WD1), a write enable signal (WE1), a write address (WA1),
a first read address (RA11), and a second read address
(RA12). Likewise, inputs to RAM-2 622 include the data to
write (WD2), a write enable signal (WE2), a write address
(WA2), afirst read address (RA21), and a second read address
(RA22).

The REGFILE 606 may receive various inputs associated
with computing a current calculation set including the RES
WE, RES WA, OP RA1, OP RA2, and SEL AP DO. The
REGFILE 606 may also receive various inputs associated
with the EXT 608 including data to write to the REGFILE
(EXT WDO), a write enable signal (EXT WE), a write
address (EXT WA), a first read address (EXT RA1) and a
second read address (EXT RA2). The inputs associated with
the current calculation may be stored in one of the memory
modules 620 or 622 of the REGFILE and the inputs associ-
ated with the EXT 608 may be stored in a different memory
module 620 or 622 of the REGFILE. The REGFILE 606 may
also receive a running signal (RUNNING) from the EXT 608
indicating whether the processing element 600 is currently
running.

Accordingly, one of the memory modules 620 or 622 ofthe
REGFILE 606 may be associated with the current calculation
set while the other memory module 620 or 622 of the REG-
FILE may be associated with the previous calculation set and
the subsequent calculation set. In this regard, one of the
memory modules 620 or 622 of the REGFILE 606 may store
the intermediate values associated with the current calcula-
tion set while the other memory module 620 or 622 of the

US 9,354,880 B2

9

REGFILE may store the outputs associated with the precious
calculation set and the inputs associated with the subsequent
calculation set.

The computed results stored in the REGFILE 606 may
correspond to either the AP DO from the attached processor
612 or the ALU DO front the ALU 614. The RES WA may
specify the address to write the computed results to in RAM-1
620 or RAM-2 622. When SEL AP DO is asserted, the REG-
FILE stores the computed results from the AP DO at the RES
WA in RAM-1 or RAM-2. When SEE AP DO is not asserted,
the REGFILE stores the computed results from the ALU DO
at the RES WA in RAM-1 or RAM-2. The write enable
signals WE1 or WE2 may be derived from the logical AND of
the RUNNING signal from the EXT 608 and the RES WE
field in the CSW.

When a memory module is associated with the current
calculation set, the memory module may be referred to as the
RAM-C memory module. When a memory module is asso-
ciated with the inputs and outputs of the previous and subse-
quent calculations sets, the memory module may be referred
to as the RAM-E memory module. Furthermore, the REG-
FILE 606 may be configured to have a ping-pong configura-
tion in which RAM-1 620 and RAM-2 622 respectively
toggle between being the RAM-C and the RAM-E in
response to receipt of a PING signal from the EXT 608. As an
example, the REGFILE 606 may be in a first state where
RAM-1 620 is the RAM-C and RAM-2 622 is the RAM-E. In
response to receipt of a PING signal from the EXT 608, the
REGFILE 606 may toggle to a second state where RAM-1
620 is the RAM-E and RAM-2 622 is the RAM-C. Receipt of
another PING signal from the EXT 608 may toggle the REG-
FILE 606 back to the first state.

When the processing element 600 is running, the REG-
FILE 606 produces two operands (OP1 and OP2), and the
REGFILE stores the results computed by one of the compu-
tation units 612 or 614. The operand read addresses, OP RA1
and OP RA2, specify the location of the OP1 and OP2 oper-
ands stored in the memory modules 620 or 622 of the REG-
FILE 606. In this regard, the OP1 and OP2 operands may
correspond to the contents of RAM-1 620 or RAM-2 622
addressed by OP RA1 and OP RA2. The REGFILE 606 also
produces two data outputs (EXT DO1 and EXT DO2) corre-
sponding to the contents of RAM-1 620 or RAM-2 622
addressed by EXT RA1 and EXT RA2. The data outputs EXT
DO1 and EXT DO2 may be sent back to the external com-
puting device via the EXT 608.

As noted above, the REGFILE 606 may be configured in a
ping-pong configuration. Accordingly, the REGFILE 606, in
this example, includes an input multiplexer 624 configured to
select one of the memory modules 620 or 622 to store the
intermediate values associated with the current calculation
set and to select another one of the memory modules 620 or
622 to store the inputs and outputs respectively associated
with a subsequent calculation set and a previous calculation
set. As an example, when the EXT 608 asserts PING, the input
multiplexer 624 sets RAM-1 620 to be RAM-C and RAM-2
622 to be RAM-E, i.e, the input multiplexer respectively
associates WD1, WE1, WA1, RA11, and RA12 of RAM-1
with AP DO or ALU DO (depending on SEL. AP DO), RES
WE logic AND with RUNNING, RES WA, OP RA1, and OP
RA2 and respectively associates WD2, WE2, WA2, RA21,
and RA22 of RAM-2 with EXT WDO, EXT WE, EXT WA,
EXT RA1, and EXT RAZ2. In this example, when EXT 608
does not assert PING, the input multiplexer 624 sets RAM-1
620 to be RAM-E and RAM-2 622 to be RAM-C, i.e., the
input multiplexer respectively associates WD1, WE1, WA1,
RA11, and RA12 of RAM-1 with EXT WDO, EXT WE, EXT

10

15

20

25

30

35

40

45

50

55

60

65

10
WA, EXT RA1, and EXT RA2 and respectively associates
WD2, WE2, WA2, RA21, and RA22 of RAM-2 with AP DO
or AL U DO (depending on SEL. AP DO), RES WE logic AND
with RUNNING, RES WA, OP RA1, and OP RA2.

The REGFILE 606 also includes an output multiplexer 626
configured to select one of the memory modules 620 or 622 to
provide the operands OP1 and OP2 to the computation inter-
face 610 and to select one of the memory modules 620 or 622
to provide the set of outputs EXT DO1 and EXT DO2 to the
external interface 608. As an example, when the EXT 608
asserts PING the operands OP1 and OP2 are sourced from the
data outputs DOUT11 and DOUT12 of RAM-1 620 and the
data outputs EXT DO1 and EXT DO2 are sourced from the
data outputs DOUT21 and DOUT22 of RAM-2 622. In this
example, when PING is not asserted, the data outputs EXT
DO1 and EXT DO2 are sourced from the data outputs
DOUT11 and DOUT12 of RAM-1 620 and the operands OP1
and OP2 are sourced from the data outputs DOUT21 and
DOUT22 of RAM-2 622.

As noted above, the REGFILE 606 may provide the oper-
ands OP1 and OP2 to multiple computation devices, e.g., a
processor 612 and an ALU 614. The processor 612 and the
ALU 614 may be configured to each provide a computation
result at the AP DO and the ALU DO respectively. The pro-
cessor 612 may be configured to process relatively complex
functions such as in-line memory accesses and trigonometric
functions while the ALU 614 may be configured to process
relatively simple arithmetic and logic functions. Offloading
seldom used, relatively complex functions to an attached
processor 612 may advantageously help to minimize the foot-
print of the processing element 600 since one attached pro-
cessor may support multiple processing elements. Relatively
simple arithmetic and logic functions may refer to two-oper-
and functions such as addition, subtraction, multiplication,
division, AND, OR, XOR, etc. as well as one-operand func-
tions such as square root, integer-to-floating point conver-
sion, floating point-to-integer conversion, etc. The ALU 614
may process functions requiring more than two operands
using the intermediate values obtained during a previous
cycle. For example, the ALU 614 may implement the greater
than function (MUXGT) using four operands (OP1, OP2,
OP3, OP4) where OP3 and OP4 are operands obtained during
a previous cycle, the computation result is OP1 when OP3 is
greater than OP4, and the computation result is OP2 when
OP3 is not greater than OP4. A greater than or equal function
(MUXGE) may be implemented in a similar fashion. It will
be appreciated that the number and type of calculation units
618 included in the ALU 614 may be selectively customized
according to the particular application in which the process-
ing element 600 is used.

The ALU 614 may also include a multiplexer 628 to select
one of the calculations units 618 such that the calculation
result ofthe selected calculation unit is the computation result
for the ALU. The multiplexer 628 of the ALU 614 may select
one of the calculation units 618 based on the OUTSEL signal.

The EXT 608 provides the handshaking for loading the
inputs prior to processing a calculation set and unloading the
outputs when processing the calculation set is complete.
Before processing begins, the inputs may be initialized by
writing the inputs to the assigned locations of the RAM-E.
The inputs may be assigned a priority to the first locations of
the RAM-E that correspond to the number of inputs (NINS).
As noted above the uROM 602 stores the NINS in an area
reserved for the specifics of the computer program, and the
NINS are read into local registers upon power up. An external
computing device may assert a REQ when the external com-
puting device is ready to supply a new set of inputs to the

US 9,354,880 B2

11

processing element 600. When REQ is asserted and EXT 608
is ready to load the inputs, the EXT 608 asserts REQ TO
SEND INPUT DATA thereby signaling the processing ele-
ment 600 that the EXT is ready accept a new set of inputs. If
FIRST is also asserted, the EXT 608 asserts PING and clears
EXT WA. The external computing device sends the inputs on
the INPUT DATA bus. In response to receipt of the inputs on
the INPUT DATA bus, the EXT 608 passes the inputs to EXT
WDO, asserts EXT WE, and increments EXT WA. After all
the inputs have been stored (i.e., NINS inputs) in the RAM-E,
the EXT 608 asserts ACK to the external computing device
indicating the inputs have been received. The external com-
puting device de-asserts REQ, and the processing element
600 de-asserts ACK.

When processing of a calculation set has completed, the
outputs resulting from the processing are unloaded from
RAM-E. The EXT 608 provides the outputs to the external
computing device. The outputs may be assigned a priority to
the last locations of RAM-E that correspond to the number of
outputs (NOUTS). Like NINS, the uROM 602 stores NOUTS
in an area reserved for the specifics of the computer program,
and the NOUTS are read into local registers upon power up.
The external computing device may assert READY TO
ACCEPT DATA when the external processing device is ready
to accept the outputs from the processing element 600. When
the processing element 600 is ready to unload the outputs, the
EXT 608 sets EXT RA1 to the address of the last word of
RAM-E. The EXT 608 sets EXT RA2 to the address of the
next-to-last word of RAM-E. The data outputs EXT DO1 and
EXT DO2 are the contents of RAM-E corresponding to
address EXT RA1 and EXT RA2. The data outputs EXT DO1
and EXT DO2 are passed to the external computing device
via the OUTPUT DATA bus. A strobe generated by the EXT
may also be provided to the external computing device on the
OUTPUT DATA bus. The EXT 608 then decrements by two
EXT RA1 and EXT RA2 and repeats the read process repeats
until all of the outputs (i.e., NOUTS) are unloaded.

As noted above the uROM 602 stores the sequence of
instructions, number of inputs, and number of outputs for a
computer program. It will thus be appreciated that, if the
number of inputs and outputs remain the same, then modifi-
cations to the underlining algorithm can be accomplished by
loading the modified computer program to the uROM 602
without impacting other aspects of the processing element
600, the external computing device 106 of FIG. 1, and the
attached computation device 108 of FIG. 1. Moreover, by
parallelizing program execution, loading inputs, and unload-
ing outputs throughput of the processing element 600 is
advantageously increased. Furthermore, an attached proces-
sor 612 may be capable of supporting multiple processing
elements, thus reducing the overall footprint of a computing
implementation having multiple processing elements. The
computation interface 610 may be generic in nature such that
the base embodiment of a computing system with processing
elements can remain fixed while an attached processor 612
can be customized to the based on the algorithm employed.
The functions provided by the AL U 614 may also be custom-
ized based on the processing algorithm employed advanta-
geously resulting in relatively greater performance and rela-
tively lower power, mass, and volume. Moreover, the
approach described in the present disclosure advantageously
allows for a relatively faster turnaround when implementing
minor changes to an algorithm compared to approaches
where each unit of the calculation is implemented in unique
hardware. A commercial-off-the-shelf (COTS) field pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

grammable gate array (FPGA) may be used to implement a
computing system that implements aspects of the present
disclosure.

In particular, embodiments of this disclosure may be uti-
lized within a real-time computing platform, such as for
space-borne applications relating to real-time or near real-
time image processing. One example application of a com-
puting system that may embody aspects of the present disclo-
sure relate to autonomous landing and hazard avoidance
technology (ALHAT), which may be employed, for example,
during lunar or planetary landing missions. Three-dimen-
sional (3D) LIDAR technology (Light Detection and Rang-
ing) is one exemplary sensor technology utilized to identify
surface features at a landing site. Landing craft may utilize 3D
LIDAR to identify surface features of the landing site includ-
ing hazardous terrain features (e.g., craters, slopes, rocks,
etc.), previously deployed assets, and other characteristics of
an area surrounding a landing site. During landing, a landing
craft may employ 3D Flash LIDAR in a terrain relative navi-
gation (TRN) mode to acquire low-resolution 3D terrain
images. The landing craft may also employ flash LIDAR in
order to acquire elevation maps utilized during a Hazard
Detection Avoidance mode (HAD) and a Hazard Relative
Navigation mode (HRN). Doppler LIDAR may also be
employed at different phases of a decent phase of a craft
approaching a surface. In this regard, different image process-
ing computer-programs may be utilized during different
phases of the craft approach and craft landing.

Referring to FIG. 7, example components of a 3D Flash
LIDAR system 700 include a transmitter laser 702, transmit/
receive optics 704, a focal plane array (FPA) 706, a readout
integrated circuit (ROIC) 708 and an image reconstruction
processor 710. As seen in FIG. 7, the ROIC 708 includes a
detector array 710 integrated with a readout signal processor
712. As one example implementation, system 700 may be
employed to obtain relatively low-resolution (e.g., 128x128
pixels) images 714 which may be captured at a relatively low
frame rate (e.g., a 30 Hz frame rate). One or more of the
above-described embodiments may be employed to process
the relatively low-resolution images in order to obtain a rela-
tively high-resolution (e.g., 1024x1024 pixels) image. As one
example, the memory module of the processing element may
store an image-processing algorithm. In certain embodi-
ments, a first image-processing algorithm may be selected
from a plurality of image-processing algorithms. Accord-
ingly, the calculation sets may be sets of image-processing
calculations. The set of inputs received from the computing
device, such as computing device 106 shown in FIG. 1, may
be a set of image-processing inputs received from a LIDAR
system (e.g., system 700 of FIG. 7). Likewise, the set of
outputs provided to the computing device 106 may be a set of
image-processing outputs provided to the LIDAR system.

In particular, the processing element described in this dis-
closure may be employed in a super-resolution approach
whereby the relatively high-resolution image is obtained
based on a set of overlapping relatively low-resolution images
714 captured at a 30 Hz frame rate. In this way, the super-
resolution approach advantageously generates an image hav-
ing a higher spatial resolution than the size of the pixel array
at the recording device. It will be appreciated that this
approach may be employed in additional or alternative appli-
cations where real-time or near real-time image processing
may be desired, i.e., applications other than those related to
sampling terrestrial or extraterrestrial terrains.

Additional or alternative applications may include guid-
ance, navigation, and control systems. As an example, the
disclosure provided in this description may be employed to

US 9,354,880 B2

13

assist craft to dock with one another, in which case “terrain”
may refer to a space dock. In other applications, the present
disclosures may be employed to assist robotic arms to locate
specific features on a device, e.g., where a robot is required to
locate or manipulate a bolt or some other object to manipulate
in accordance with the robotic programming. In this regard, it
will be appreciated that the term “vehicle” may also refer to a
robot, robotic arm, or other element, device, apparatus, or
system where guidance and control vis-a-vis the present dis-
closure may be advantageously achieved.

What is claimed is:

1. A processing device for high-speed execution of a com-

puter program comprising:

a memory module configured to store one or more com-
puter programs;

a sequencer configured to select one of the computer pro-
grams and control execution of the selected computer
program;

a register module including a first memory module and a
second memory module configured to store a set of
intermediate values associated with a current calculation
set, a set of output values associated with a previous
calculation set, and a set of input values associated with
a subsequent calculation set, wherein the register mod-
ule is configured to toggle between the first state and the
second state such that in the first state the first memory
module stores the set of intermediate values associated
with the current calculation set and the second memory
module stores the set of input values associated with the
subsequent calculation set and the set of output values
associated with the previous calculation set and in the
second state the second memory module stores the set of
intermediate values associated with the current calcula-
tion set and the first memory module stores the set of
input values associated with the subsequent calculation
set and the set of output values associated with the pre-
vious calculation set;

an external interface configured to receive the set of input
values associated with the subsequent calculation set
from a computing device and to provide the set of output
values associated with the previous calculation set to the
computing device;

a computation interface configured to provide a set of
operands for computation during processing of the cur-
rent calculation set; and

wherein the processing device is configured such that the
set of input values associated with the subsequent cal-
culation set are loaded into the register module and the
set of output values associated with the previous calcu-
lation set are unloaded from the register module in par-
allel with processing of the current calculation set.

2. The processing device of claim 1, further comprising:

at least one computation device attached to the computa-
tion interface and configured to receive the set of oper-
ands provided by the computation interface, to generate
a computation result based on the set of operands, and to
provide the computation result to the register module;
and

wherein the register module is further configured to store
the computation result as one of the intermediate values
of the set of intermediate values associated with the
current calculation set.

3. The processing device of claim 2, wherein:

the at least one computation device includes a first compu-
tation device configured to provide a first computation
result and a second computation device configured to
provide a second computation result; and

10

15

20

25

30

35

40

45

50

55

60

65

14

either the first computation result or the second computa-
tion result is selected as the computation result stored at
the register module as one of the intermediate values
associated with the current calculation set.

4. The processing device of claim 3, wherein:

the first computation device is a processor configured to

perform in-line memory access and one or more trigo-
nometric functions; and

the second computation device is an arithmetic-logic unit

that includes a plurality of calculation units that operate
on the set of operands in parallel.
5. The processing device of claim 4, wherein:
the arithmetic-logic unit further includes a multiplexer
configured to select one of the calculation units; and

the second computation result provided by the arithmetic-
logic unit is a calculation result generated by the calcu-
lation unit selected by the multiplexer.

6. The processing device of claim 1,

wherein each of the first memory module and the second

memory module is a random access memory module
having two read ports and one write port;

wherein the register module is configured to toggle

between the first state and the second state based on a
control signal received from the external interface.

7. The processing device of claim 6, wherein the register
module further includes:

an input multiplexer configured to select one of the

memory modules to store the set of intermediate values
associated with the current calculation set and to select
one of the memory modules to store the set of input
values associated with the subsequent calculation set
and the set of output values associated with the previous
calculation set; and

an output multiplexer configured to select one of the

memory modules to provide the set of operands to the
computation interlace and to select one of the memory
modules to provide the set of outputs to the external
interface.

8. The processing device of claim 1, wherein the memory
module is further configured to store a starting address for
each of the computer programs, a number of inputs to each of
the computer programs, and a number of outputs from each of
the computer programs.

9. A method for high-speed execution of a computer pro-
gram comprising:

selecting at a processing device a computer program to

execute;
processing a current calculation set at at least one compu-
tation device attached to the processing device;

loading a set of input values associated with a subsequent
calculation set into a register module of the processing
device;

unloading a set of output values associated with a previous

calculation set from the register module;

storing a set of intermediate values associated with the

current calculation set in the register module;

toggling the register module between a first state and a

second state such that in the first state a first memory
module stores the set of intermediate values associated
with the current calculation set and the second memory
module stores the set of input values associated with the
subsequent calculation set and the set of output values
associated with the previous calculation set and in the
second state the second memory module stores the set of
intermediate values associated with the current calcula-
tion set and the first memory module stores the set of

US 9,354,880 B2

15

input values associated with the subsequent calculation
set and the set of output values associated with the pre-
vious calculation set; and

wherein processing the current calculation set, loading the

set of input values associated with the subsequent cal-
culation set, and unloading the set of output values asso-
ciated with the previous calculation set are performed in
parallel.

10. The method of claim 9, further comprising:

selecting, using an input multiplexer, the first memory

module or the second memory module at the register
module to store the set of intermediate values associated
with the current calculation set; and

selecting, using the input multiplexer, a different one of the

first memory module or the second memory module at
the register module to store the set of input values asso-
ciated with the subsequent calculation set and the set of
output values associated with the previous calculation
set.

11. The method of claim 10, further comprising:

selecting, using an output multiplexer, the first memory

module or the second memory module that stores the set
of intermediate values associated with the current cal-
culation set to provide a set of operands at a computation
interface during processing of the current calculation;
and

selecting, using the output multiplexer, the different

memory module that stores the set output values associ-
ated with the previous calculation set to provide the set
of'output values associated with the previous calculation
set at an external interface when unloading the set of
output values associated with the previous calculation
set.

12. The method of claim 11, further comprising:

toggling the register module between the first state and the

second state based on a control signal received at the
register module from the external interface.

13. The method of claim 9, wherein the at least one com-
putation device includes a first computation device and a
second computation device and further comprising:

providing a set of operands to the first computation device

such that the first computation device generates a first
computation result based on the set of operands during
processing of the current calculation set;

providing the set of operands to the second computation

device such that the second computation device gener-
ates a second computation result based on the set of
operands during processing of the current calculation
set;

selecting either the first computation result or the second

computation result for storage at the register module;
and

storing the computation result that is selected at the register

module as an intermediate value of the set of intermedi-
ate values associated with the current calculation set.

14. The method of claim 13, wherein:

the first computation device is a processor configured to

perform in-line memory access and one or more trigo-
nometric functions; and

the second computation device is an arithmetic-logic unit

that includes a plurality of calculation units that operate
on the set of operands in parallel.

15. The method of claim 14, further comprising selecting,
using a multiplexer, one of the calculations units such that a
calculation result generated by the calculation unit selected
by the multiplexer is the second computation result provided
by the arithmetic-logic unit.

20

35

40

45

55

16

16. A apparatus for high-speed execution of an image-

processing program comprising:

a memory module configured to store the image-process-
ing program;

a sequencer configured to control execution of the image-
processing program;

a register module including a first memory module and a
second memory module configured to store a set of
intermediate values associated with a current set of
image-processing calculations, a set of image-process-
ing outputs associated with a previous set of image-
processing calculations, and a set of image-processing
inputs associated with a subsequent set of image-pro-
cessing calculations, wherein the register module is con-
figured to toggle between the first state and the second
state such that in the first state the first memory module
stores the set of intermediate values associated with the
current set of image-processing calculations and the sec-
ond memory module stores the set of image-processing
inputs associated with the subsequent set of image-pro-
cessing calculations and the set of image-processing
outputs associated with the previous set of image-pro-
cessing calculations and in the second state the second
memory module stores the set of intermediate values
associated with the current set of image-processing cal-
culations and the first memory module stores the set of
image-processing inputs associated with the subsequent
set of image-processing calculations and the set of
image-processing outputs associated with the previous
set of image-processing calculations;

an external interface configured to receive the set image-
processing inputs from a light detection and ranging
(LIDAR) system and provide the set of image-process-
ing outputs associated with the previous set of image-
processing calculations to the LIDAR system;

a computation interface configured to provide a set of
operands for computation during processing of the cur-
rent set of image-processing calculations;

aprocessor attached to the computation interface that oper-
ates on the set of operands to provide a computation
result for the current set of image-processing calcula-
tions; and

wherein the register module loads the set of image-pro-
cessing inputs associated with the subsequent set of
image-processing calculations and unloads the set of
image-processing outputs associated with the previous
set of image-processing calculations in parallel with
processing of the current set of image-processing calcu-
lations at the processor.

17. The apparatus of claim 16, wherein the computation

result provided by the processor is a first computation result
and further comprising:

an arithmetic-logic unit attached to the computation inter-
face that operates on the set of operands to provide a
second computation result; and

wherein either the first computation result or the second
computation result is selected for storage at the register
module as one of intermediate values associated with the
current set of image-processing calculations.

18. The apparatus of claim 17, wherein:

the processor is configured to perform in-line memory
access and one or more trigonometric functions;

the arithmetic-logic unit includes a plurality of calculation
units that operate on the set of operands in parallel; and

the arithmetic-logic unit selects one of the calculation units
such that a calculation result generated by the calcula-

US 9,354,880 B2
17

tion unit selected by the multiplexer is the second com-
putation provided by the arithmetic-logic unit.

19. The apparatus of claim 16,

wherein the register module is configured to toggle
between the first state and the second state basedona 5
control signal received from the external interface.

20. The apparatus of claim 19, wherein the register module

further includes:

an input multiplexer configured to select one of the
memory modules to store the set of intermediate values 10
associated with the current set of image-processing cal-
culations and to select one of the memory modules to
store the set of image-processing inputs associated with
the subsequent set of image-processing calculations and
the set of image processing outputs associated with the 15
previous set of image-processing calculations; and

an output multiplexer configured to select one of the
memory modules to provide the set of operands to the
processor and to select one of the memory modules to
provide the set of image-processing outputs associated 20
with the previous set of image-processing calculations
to the external interface for transmission to the LIDAR
system.

18

	9354880-p0001.pdf
	9354880-p0002.pdf
	9354880-p0003.pdf
	9354880-p0004.pdf
	9354880-p0005.pdf
	9354880-p0006.pdf
	9354880-p0007.pdf
	9354880-p0008.pdf
	9354880-p0009.pdf
	9354880-p0010.pdf
	9354880-p0011.pdf
	9354880-p0012.pdf
	9354880-p0013.pdf
	9354880-p0014.pdf
	9354880-p0015.pdf
	9354880-p0016.pdf

