NASA Automated Fiber Placement Capabilities: Similar Systems, Complementary Purposes

K. Chauncey Wu
Structural Mechanics and Concepts Branch, RD
NASA Langley Research Center
Hampton, Virginia

Justin R. Jackson and Larry I. Pelham
Nonmetallic Materials and Processing Branch, ED
NASA Marshall Space Flight Center
Huntsville, Alabama

Brian K. Stewart
Structural Mechanics and Concepts Branch, RD
NASA Langley Research Center
Hampton, Virginia

Composite Materials and Manufacturing Technologies TIM
National Center for Advanced Manufacturing
New Orleans, Louisiana
6-7 May, 2015
Outline

• Why composites?
• Automated fiber placement (AFP)
• Composite Cryotank Technology Development (CCTD) Project
• LaRC and MSFC capabilities
• Composites for Exploration Upper Stage (C-EUS) Project
• Concluding Remarks
Composites Support NASA and the Nation

- All NASA Mission Directorates: Aeronautics Research, Human Exploration and Operations, Science, Space Technology
- Advanced Manufacturing National Initiative, and National Network for Manufacturing Innovation
- Other US Government Agencies: DOD, DARPA, DOE
- Identified in NASA Space Technology roadmap Technology Area 12 (Materials, Structures, Mechanical Systems & Manufacturing)
- Span multiple NASA Centers and disciplines
- Engage Industry and Research communities
AFP Overview

• Process developed in 1980’s
• Can process either thermosets or thermoplastics, using prepreg materials in slit tape or tow forms
• Can perform fast, precise, accurate lamination on tooling, following preprogrammed paths
• Gaps, laps, twisted tows, fuzzballs, etc. are all par for the course
• Robotic mobility platforms are game changers, reducing entry cost by at least a factor of 2
CCTD Project Composite Tanks

Design, build and test large prototype composite cryotanks for use on future launch vehicles

Two composite cryotanks (2.4-m and 5.5-m diam.) built using AFP, and tested at MSFC in 2014
AFP Capabilities at LaRC and MSFC

- Independently procured similar robotic AFP systems (both approx. 12 ft by 12 ft by 33 ft work envelopes)
- LaRC system delivered and installed Fall 2014, and commissioned January 2015
- MSFC system delivery and installation late Spring 2015
- LaRC has a small vertical rotator, MSFC has a large horizontal rotator (headstock/tailstock)
- LaRC planning cleanroom procurement for late 2015
LaRC Fiber Placement System

- Power/Data/Air
- Rotator
- AFP end effector
- Operator station
- 12-m track
- Transfer stands
- Layup table
- Modified industrial robot
- Safety fencing

Bldg. 1232A
MSFC Fiber Placement System

Bldg. 4707

Large headstock/tailstock rotator
Flexible AFP System Architecture

Robot-based system allows multiple end effectors for assessing new composite materials, processes, structural concepts, manufacturing, and inspection techniques.

Proposed end effectors include (clockwise from top): machining, grid-stiffening, and continuous tow shearing capabilities.

Initial operational capability
Integrated Capabilities Across TRL* Range

* TRL = Technology Readiness Level

TRL 1-3
- Develop New Resins and Fibers
- Pre-Pregging of New Composite Materials
- Develop Advanced In-Process, In-Situ NDE and Fabrication Technologies

TRL 4-6
- Design and Fabrication of Advanced Structural Concepts

TRL 7-9
- Manufacture Launch Vehicle Structures for NASA Missions
- Design, Build and Test Proto-flight Structures
- Post-Cure Characterization and NDE of Composites

LaRC (Basic Research)

MSFC (Applications)

Technology Maturation

* TRL = Technology Readiness Level

Design and Fabrication of Advanced Structural Concepts
C-EUS Project

Design, build and test prototype composite skirts for future Space Launch System (SLS) upgrade

LaRC planning to build flat and curved panels for concepts, technology development and testing of structural joints

MSFC planning to build large curved panels for fabrication and testing of full-scale structural test article(s)
Concluding Remarks

• New robotic AFP platforms provide state-of-the-art composites capabilities for NASA Centers

• Flexible AFP system architecture allows development and implementation of advanced-capability end effectors

• AFP systems can support the full TRL spectrum from basic research to flight hardware

• With these AFP capabilities, LaRC and MSFC are well-positioned to support many NASA projects and programs