SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

Abstract
This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues.

The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for...
autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft).

The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

Keywords

ACM Classification Keywords
Interactive systems (I.5.5) Human safety (K.4.1), Reliability (D.2.4), User interfaces (D.2.2).

General Terms
Human Factors, Reliability.

Motivation and Background
One of the biggest challenges in the area of safety-critical systems is to automate functions within a more traditionally interactive command and control system. Projects like SESAR in Europe [www.eurocontrol.int/esar] and NextGen in the US [www.faa.gov/nextgen/] demonstrate the efforts to introduce and promote higher levels of automation in air traffic management systems. Autonomous behavior has been studied in detail during the last 20 years [1] in a multitude of areas and disciplines but the horizon for embedding them into operational systems is not more than 10 years. These studies and early adoption of automation have not always been entirely successful as demonstrated by many studies in various application domains [2] or [3]. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design and build autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. For example the representation of an unmanned aerial vehicle (UAV) where no direct interaction is possible, together with aircrafts (that have to be instructed to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). In addition to aeronautics we will consider automation in a variety of contexts.

Topic
In the design of user interfaces for safety-critical systems the current main challenges and goals for autonomous behavior are that the operator should identify a plan, input the plan into the system, trigger the supervisory system to execute the plan which includes some degrees of autonomy (i.e. that the supervisory system has some delegated authority), and monitor the plan execution. Work has been done and is still in progress on authority sharing [5], [6]. Of course, the operator being in charge of and responsible for the operations should always have the possibility of interfering with the current plan. As on the main challenges in automated driving this hand-over situations will a main challenge towards safety, acceptance and success.

One solution to that problem is to reduce the operator’s role to the one of automation overseer and thus only
acting at a high (and abstract) strategic level as proposed in the various levels of automation defined in [7]. Such solution makes it very difficult (and nearly impossible) for the operator to come back to a more low (and concrete) tactical level especially in case of degradation of the automation capabilities of the controlled system. Thus, other solutions have to be indentified and designed requiring scientific means to assess:

- How the operator will be able to identify (from the currently available information about the system) new plans or modification to current potential plans (or potential configurations),
- How the operator will be able to build new plans or configurations,
- How the operator will be able to assess the impact of a potential new plan or configuration,
- How the operator will be able to interact (both monitor and possibly interrupt) with the current configuration under “execution”. This interaction aspect can be particularly complex if, in a proactive system, the configurations are executed in an autonomous way by the supervision system.

Studies on advanced driver assistance systems show that the transfer of the driving task can be experienced as a loss of control and competency as well as a feeling of being at the mercy of technology. On the other hand, the relief from the driving task provides a unique opportunity for new types of activities during the piloted journey, amongst them new forms of in-situ entertainment and games grounded in the contextual specificity of the automotive, mobile situation.

Audience

One of the goals of this SIG is to gather people interested in the field of human-computer interaction for interactive critical systems, software engineers interested in the reliability and usability of interactive systems, as well as researchers interested in the issues raised by the design of automation for these systems. We expect participants from user interface design and engineering from various application fields that have been working on problems and solutions for integrating seamlessly autonomous objects in user interfaces. The audience would be approximately 50-100 practitioners and academics interested in how to integrate mainly unconnected research work to formulate a new research agenda.

Goal, Organization, Expected Outcome

Goal of the SIG is to connect communities currently not connected: the engineering community, the automotive community and the UX community. Goal would be to identify promising research lines for this area and to identify ways of bringing such knowledge in the domain of safety critical systems. We plan to produce a report to be presented at next ATACCS conference www.ataccs.org

SIG Organization

The activity plan for the 80-minute SIG is as follows:

- Introduction of the SIG goals and participants (10 minutes including clarification questions);
- Presentation by the organizers of issues in the various fields related to the topic of the SIG (5 minutes per topic) (total 20 minutes);
• Gathering from the audience (as well as presenting from the SIG organizers’ experience) examples and case studies (10 minutes);
• Interactive discussion with participants to list the issues related to autonomous behavior identifying a number of parameters that influence the display and integration of autonomous objects (15 minutes);
• Advantages and limitations of the various approaches and an understanding of what the various fields, communities and application areas can contribute the problem of representing autonomous objects in user interfaces (15 min);
• Wrap-up and next steps including the research problem report (10 min).

SIG Organizers
Michael Feary is a research scientist in the Human-Systems Integration division at NASA Ames Research Center. His research focuses on the development of tools to support design and Human-Computer Interaction analysis of complex, safety critical systems.

Philippe Palanque is Professor in Computer Science at the University Toulouse 3. He is working on formal methods for engineering interactive systems and the application of such techniques to Higher Automation Levels in the field of Air Traffic Management.

http://www.irit.fr/ICS/palanque

Célia Martinie is lecturer in Computer Science at the University Toulouse 3. She is working on notations and tools for operators activities description and applied those contributions to the field of satellite ground segments.

http://www.irit.fr/ICS/martinie

Manfred Tscheligi is professor in HCI and Usability Manfred at the University of Salzburg. He is very much involved in driving experience activities (e.g. as an national initiative on Car Interaction Safety) and has been shaping the discussion on automotive UIs, autonomous driving and human robot-interaction. https://hci.sbg.ac.at/person/tscheligi/

References
