MACH CUTOFF ANALYSIS AND RESULTS FROM NASA’S FARFIELD INVESTIGATION OF NO-BOOM THRESHOLDS

22nd AIAA/CEAS Aeroacoustics Conference
Lyon, France
June 1, 2016

Presented by:
Larry J. Cliatt, II

Authors:
Larry J. Cliatt II, Michael A. Hill, Edward A. Haering, Jr.

\textit{NASA Armstrong Flight Research Center}
FARFIELD INVESTIGATION OF NO-BOOM THRESHOLDS (FAINT)
Aeronautics Flight Research

- Over 60 years of flight research (NACA Muroc Flight Test Unit)
- Edwards Air Force Base (EAFB)
- Remote Location
- 350 Testable Days Per Year
- Extensive Range Airspace
- Supersonic Corridor
TOPICS OF DISCUSSION

• Motivation & Objectives
• Test Setup
• Flight Profile Planning
• Analysis
 – Mach cutoff calculations
 – Metrics for Mach cutoff acoustics
 – Noise levels due to Mach cutoff
 – Sensitivity Analysis
• Summary & Considerations
Motivation & Background

• What is Mach Cutoff flight?
 – Supersonic flight when sonic boom rays do not reach the ground
 – Rays refract due mostly to temperature gradient

• Commercial implications
 – “Boomless” flight
 – Speeds up to Mach 1.3
 – Increase in operations by over 30%
• **Need:** Understanding of entire sonic boom envelope

 • Change in ICAO/FAA regulations

 • Notable noise due to Mach cutoff flight (M_{CO})

 • Inconclusive results from previous tests

 • Limitations to common numerical predictions:
 – Based on geometrical acoustics
 – No solutions in shadow zones
PRIMARY OBJECTIVES

• Study evanescent wave field
 – Finely spaced measurements
 – Attenuation and increase in signature length
 – Evanescent decay in shadow zone

• Design tools for flight planning and post-flight analysis

• Develop noise–M_{CO} relationship

• Build database
FLIGHT PROFILE PLANNING

• Goal: Produce a range of cutoff altitudes (Z_{CO}) between 2500 – 8000 ft (762.0 – 2438.4 m)
 – Assume initial flight altitude (Z) and heading
 – Calculate required Mach (M)

• Rays refract above ground when their propagation speed (V_p) exceeds the airplane ground speed (V_G):

$$\frac{V_p}{V_G} \geq 1.0$$

$$V_G = Ma_0 - u_{n0} \quad (1)$$

where

$$V_P = \{a(Z) - u_n(Z)\} \quad (2)$$

- a: speed of sound
- u_n: wind speed direction of propagation
- 0: subscript denotes at flight altitude

• Because V_p increases toward the ground:

$$Z_{CO} = Z \ @ \ \max \{V_P \geq V_G\} \quad (3)$$

• Use Eq. 1 to compute M that satisfies Eq. 3
TEST SETUP

• Flight Conditions
 – F-18B airplane
 – Mach 1.128 – 1.174 and 34400 – 39300 ft (10.5 – 12.0 km) pressure altitude

• 7375 ft (2.2 km), 125 ft (38 m) spaced linear microphone array at 2300 ft (0.7 km) mean sea level
 – 60 microphones

• PCBoom\(^1\) used for initial flight planning

\(^1\) PCBoom was developed by Wyle (El Segundo, California)
• Mach threshold \((M_T)\): Fastest Mach for \(M_{CO}\)
• \(M_T\) is independent of \(Z_{CO}\)
• Dependent only on atmospheric conditions, mostly \(V_{P,max}\)

\[
M_T = \frac{1}{a_0} \left[V_{P,max} + u_n \right]
\]
 Metrics for Mach Cutoff Acoustics

- Overpressure alone not sufficient for sonic boom analysis
- Familiar metrics less applicable for waveforms near lateral cutoff and beneath Mach cutoff altitude due to variable duration and impulsiveness
- **Perceived Sound Exposure Level (PL$_{SEL}$)**
 - 99% energy windowing
 - Sound Exposure Level (SEL) 1-second normalized integration (ISO 1996)
 - Stevens’ Mark VII Perceived Level weighting
- New parameter: \((M_T - M)\)
 - Relates \(Z_{CO}\) to Mach number
 - More natural to commercial piloting operations

- However, correlation between \((M_T - M)\) and noise on the ground \((PL_{SEL})\) is indistinct due to varying \(Z_{CO}\)
- Correlation between Z_{CO} and PL_{SEL} is also indistinct
- Possibly due to sonic boom shock strength (Mach number)
• “Normalize” by Z_{CO}

• First known empirical model for shadow zone acoustics:
 \[PL_{SEL} = f(M_T - M, Z_{CO}) \]

• Exponential decay fit \rightarrow evanescent wave field
SENSITIVITY ANALYSIS

- Monte Carlo simulation of 5000 M_{CO} cases
 - Constant Mach (1.135) and altitude 37000 ft (11277.6 m)
 - Random normal distribution of: wind speed ($\sigma = 3$ knots), wind direction ($\sigma = 10$ deg), and temperature ($\sigma = 3$ °C)
- “Banding” of Z_{CO} due to “effective V_p”

Red bars are as-flown values
SUMMARY & CONSIDERATIONS

- PL_{SEL} shown to be a more consistent and applicable metric Mach cutoff sonic boom acoustics
- First known empirical model of Mach cutoff shadow zone acoustics allows:
 - The ability to predict sonic boom noise levels in real-time
 - Capability to design supersonic commercial airplane mission profiles for entire flight regime
 - Fast analysis. Computational models require significant computer core hours
- M_{CO} is extremely sensitive to atmospheric changes
 - Commercial applications will require sophisticated flight planning tools
• Larger database to refine empirical model
• Verification of empirical model during flight
• Use model to validate computational codes, such as Gulfstream’s Lossy Nonlinear Tricomi Equation (LNTE)
• Beamforming analysis (Boeing)
THANK YOU.
MACH CUTOFF CALCULATIONS, cont.

- Importance of accurate windowing
SENSITIVITY ANALYSIS, cont.

• Changes in both atmosphere and flight parameters