The influence of sea ice on Arctic low cloud properties and radiative effects

Patrick C. Taylor
NASA Langley Research Center
Climate Science Branch
7 May 2015
patrick.c.taylor@nasa.gov

Acknowledgements: Seiji Kato, Kuan-Man Xu, Noel Baker, and Ming Cai

Picture Credit: NSIDC website
Arctic Sea Ice is Melting!

Slope: -13.7 (+/- 3.0) % per decade

Credit: Nat’l Snow and Ice Data Center (http://nsidc.org)
Arctic Low Cloud Processes

Science Questions:
How do clouds respond to changes in sea ice?
What is the surface radiative forcing due to sea ice-cloud interactions?

The influence of the surface type on the cloud properties implies an interaction between clouds and sea ice that may significantly influence Arctic climate change.

Morrison et al. (2012; Nature Geoscience)
Sea ice-Cloud Interaction: Some Modeling Evidence

Cloud base and LWC are higher in Cloud Resolving Model simulations with anomalously low sea ice.

Barton and Veron (2012)

Surface radiative forcing due to sea ice-cloud interactions is only important during Oct. because SW and LW CRF offset in Sept.
Sea ice-Cloud Interaction: Some Observational Evidence

Significant correlation between cloud fraction and the sea ice extent in AUTUMN: larger cloud fraction over open water and lower cloud fraction over ice.

Larger cloud fraction over ocean

Kay and Gettelman (2009)

Sept. 2008

Lower cloud fraction over sea ice

ICESat + CALIPSO

No relationship during summer because the atmosphere and surface tend to be decoupled.

Palm et al. (2010)
CALIPSO-CloudSAT-CERES MODIS (C3M) Merged Data Product (Kato et al. 2010)

Data contains footprint averaged
1. Merged CALIPSO-CloudSAT vertical cloud property profiles (cloud fraction, LWC, IWC)
2. Computed vertical radiative flux profiles computed with CALIPSO and CloudSat derived cloud properties
3. Sea ice concentration (SSM/I)

Data are available from the NASA Langley ASDC: http://eosweb.larc.nasa.gov/
Atmospheric state regimes determined using K-means cluster analysis.

High Stability (HS): 16 K < LTS < 24 K
Stable (S): LTS < 16 K
Very High Stability (VHS): LTS > 24 K
Uplift (UL): $\omega_{500} < -0.1$ Pa s$^{-1}$
(1) Determine the Atmospheric Regime of each satellite footprint using MERRA

(2) Determine the instantaneous sea ice concentration from SSM/I retrieval

A covariance between clouds and sea ice is said to occur if statistically significant differences are found in the average cloud properties between different sea ice concentration bins.
Arctic Clouds and Meteorological State

With increasing Lower Tropospheric Stability...

- Cloud fraction
- LWP
- IWP
- Maximum Cloud fraction altitude
- Maximum LWC altitude and
- Maximum IWC altitude
Cloud fraction decreases with increasing sea ice.

The magnitude of the cloud fraction change with sea ice varies with season and atmospheric regime.
Cloud TWP decreases with increasing sea ice.

The magnitude of the TWP change with sea ice varies with season and atmospheric regime.
Cloud fraction vertical profiles is found to...

increase below 500 m and increase above 500m,

be only sensitive to the presence of sea ice, and

increase at all levels

...with increasing sea ice concentration.
TWC vertical profiles is found to...

increase below 500 m and increase above 500m,

be only sensitive to the presence of sea ice, and

exhibit non-monotonic behavior

...with increasing sea ice concentration.
Boundary Layer Temperature Structure and Sea Ice Concentration

Higher LTS is associated with higher near surface stability.

Near surface stability increase with increased sea ice.
CRE vs. Sea ice Concentration

\[
\begin{align*}
 LW_CRE &= LW_{dn_all} - LW_{dn_clr} \\
 SW_CRE &= SW_{dn_all} - SW_{dn_clr}(1 - \alpha) \\
 Net_CRE &= SW_CRE + LW_CRE
\end{align*}
\]
LW CRE is positive in all seasons.

LW CRE tends to decrease with increased sea ice.
SW CRE is negative in all seasons. SW CRE tends to decrease with increased sea ice.
Net CRE vs. sea ice

“Negative” Feedback

(a) JJA
HS regime
S regime
VHs regime
UL regime

“Positive” Feedback

(b) SON

“Positive” Feedback

(c) DJF

“Positive” Feedback

(d) MAM

weak “Negative” Feedback

Net Cloud Radiative Forcing (W m⁻²)

Sea Ice Concentration (%)
Decomposition using independent column approx.:

$$\text{LW}_{\text{all}} = (1-N) \times F_{\text{clr}} + N \times F_{\text{cld}}$$

Both the clear-sky and cloudy sky fluxes decrease with increased sea ice.
Cloud Temperature vs. Sea Ice Concentration

- HS regime
- S regime
- V+H regime
- UL regime
Arctic low cloud properties are sensitive to the atmospheric conditions: Cloud fraction, LWP, and IWP decrease with increased stability.

A statistically significant covariance between Arctic cloud properties and sea ice concentration are found in each regime and season: Cloud fraction, LWP, and TWP decrease with increased sea ice concentration.

Covariance between Arctic low cloud properties and sea ice concentration are also found to significantly influence the surface energy budget. “Negative Feedback” in Summer (SW CRE dominates) “Positive Feedback” in Fall and Winter (LW CRE dominates)
Questions?
Intermodel spread in surface temperature warming is greatest in the Arctic.