Delivered Edition 4 ADMs and the ADM methodology paper is published!

www.atmos-meas-tech.net/8/611/2015/
doi:10.5194/amt-8-611-2015
© Author(s) 2015. CC Attribution 3.0 License.

Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: methodology

W. Su¹, J. Corbett², Z. Eitzen², and L. Liang²
¹MS420, NASA Langley Research Center, Hampton, Virginia, USA
²Science Systems & Applications, Inc., Hampton, Virginia, USA

Correspondence to: W. Su (wenying.su-1@nasa.gov)

Received: 20 June 2014 – Published in Atmos. Meas. Tech. Discuss.: 27 August 2014
Revised: 22 December 2014 – Accepted: 7 January 2015 – Published: 5 February 2015

Abstract. The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth’s radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and the Earth’s Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation ADMs that are developed for broadband TOA irradiances available CERES data and window (WN) ADMs are developed by combining surface and cloud-top temperature, surface and cloud emissivity, cloud fraction, and precipitable water. Compared to the existing ADMs, the new ADMs change the monthly mean instantaneous fluxes by up to 5 W m⁻² on a regional scale of 1° latitude × 1° longitude, but the flux changes are less than 0.5 W m⁻² on a global scale.
Uncertainties of the monthly regional mean TOA fluxes: direct integration

<table>
<thead>
<tr>
<th></th>
<th>Terra 2002</th>
<th></th>
<th>Aqua 2004</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias (Wm(^{-2}))</td>
<td>RMS (Wm(^{-2}))</td>
<td>Bias (Wm(^{-2}))</td>
<td>RMS (Wm(^{-2}))</td>
</tr>
<tr>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>0.04</td>
<td>0.97</td>
<td>0.11</td>
<td>1.00</td>
</tr>
<tr>
<td>April</td>
<td>0.08</td>
<td>0.79</td>
<td>-0.16</td>
<td>0.75</td>
</tr>
<tr>
<td>July</td>
<td>-0.20</td>
<td>1.08</td>
<td>0.11</td>
<td>0.90</td>
</tr>
<tr>
<td>October</td>
<td>0.02</td>
<td>0.65</td>
<td>0.15</td>
<td>0.78</td>
</tr>
<tr>
<td>LW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>0.37</td>
<td>0.72</td>
<td>0.29</td>
<td>0.64</td>
</tr>
<tr>
<td>April</td>
<td>0.47</td>
<td>0.76</td>
<td>0.37</td>
<td>0.60</td>
</tr>
<tr>
<td>July</td>
<td>0.44</td>
<td>0.78</td>
<td>0.31</td>
<td>0.71</td>
</tr>
<tr>
<td>October</td>
<td>0.39</td>
<td>0.65</td>
<td>0.36</td>
<td>0.61</td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>0.19</td>
<td>0.30</td>
<td>0.18</td>
<td>0.29</td>
</tr>
<tr>
<td>April</td>
<td>0.24</td>
<td>0.34</td>
<td>0.21</td>
<td>0.29</td>
</tr>
<tr>
<td>July</td>
<td>0.23</td>
<td>0.35</td>
<td>0.19</td>
<td>0.31</td>
</tr>
<tr>
<td>October</td>
<td>0.20</td>
<td>0.29</td>
<td>0.22</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Uncertainties of the instantaneous TOA fluxes

- Uncertainties are derived from consistency tests
- Relative consistency is converted to TOA flux error using theoretical relationship

<table>
<thead>
<tr>
<th></th>
<th>Ocean</th>
<th></th>
<th>Land</th>
<th></th>
<th>Snow/Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clear</td>
<td>All</td>
<td>Clear</td>
<td>All</td>
<td>Clear</td>
</tr>
<tr>
<td>SW</td>
<td>1.9</td>
<td>9.0</td>
<td>4.5</td>
<td>8.4</td>
<td>6.0</td>
</tr>
<tr>
<td>LW day</td>
<td>1.5</td>
<td>3.5</td>
<td>2.4</td>
<td>2.9</td>
<td>1.3</td>
</tr>
<tr>
<td>LW night</td>
<td>1.4</td>
<td>2.0</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>
ADM validation paper and sastrugi paper are submitted!

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from the CERES instruments: validation

W. Su1, J. Corbett2, Z. Eitzen2, and L. Liang2

Accounting for the effects of Sastrugi in the CERES Clear-Sky Antarctic shortwave ADMs

J. Corbett1 and W. Su2
From Aqua to S-NPP

- Footprint size for S-NPP is larger than that for Aqua
- Cloud properties retrieved from VIIRS can also be different from those retrieved from MODIS
- How these differences affect the S-NPP fluxes inverted using Aqua ADMs

<table>
<thead>
<tr>
<th></th>
<th>Aqua</th>
<th>S-NPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch date</td>
<td>May 4, 2002</td>
<td>Oct. 28, 2011</td>
</tr>
<tr>
<td>Altitude</td>
<td>705 km</td>
<td>824 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>98.14°</td>
<td>98.75°</td>
</tr>
<tr>
<td>Period</td>
<td>98.4 min</td>
<td>101.4 min</td>
</tr>
</tbody>
</table>
Anisotropic factors are sensitive to cloud properties

- For a footprint with cloud fraction of 20% and cloud optical depth of 4:
 - $\ln(f\tau) = 4.38 \rightarrow R = 0.68$
- If cloud fraction increase by 10%:
 - $\ln(f\tau) = 4.78 \rightarrow R = 0.71$
- This results in ~4.4% difference in inverted fluxes

Liquid cloud over ocean

- SZA = 54-56°
- VZA = 14-16°
- RAZ = 176-178°
Comparison between tropical flux inverted from TRMM ADMs and Ed4ADMs

Clear Ocean

Sample #: 249330
Ed4 = 80.86
TRM = 79.89
RMS = 3.63

Clear Land

Sample #: 860315
Ed4 = 228.65
TRM = 229.29
RMS = 6.61

Cloudy Ocean

Sample #: 8283683
Ed4 = 208.92
TRM = 208.56
RMS = 8.89

Cloudy Land

Sample #: 2142359
Ed4 = 313.78
TRM = 316.37
RMS = 13.09
Comparison between tropical flux inverted from Ed2ADMs and Ed4ADMs

- **Clear Ocean**
 - Ed2ADM vs Ed4ADM
 - Sample # = 344778
 - Ed4 = 81.63
 - Ed2 = 81.45
 - RMS = 3.35

- **Cloudy Ocean**
 - Ed2ADM vs Ed4ADM
 - Sample # = 8816761
 - Ed4 = 206.39
 - Ed2 = 204.27
 - RMS = 7.55

- **Clear Land**
 - Ed2ADM vs Ed4ADM
 - Sample # = 736366
 - Ed4 = 239.97
 - Ed2 = 240.80
 - RMS = 5.75

- **Cloudy Land**
 - Ed2ADM vs Ed4ADM
 - Sample # = 2344039
 - Ed4 = 319.15
 - Ed2 = 319.85
 - RMS = 8.52
Comparison between global flux inverted from Ed2ADMs and Ed4ADMs

- Clear Ocean
 - Sample #: 725627
 - Ed4 = 80.18
 - Ed2 = 80.25
 - RMS = 3.68

- Cloudy Ocean
 - Sample #: 19176108
 - Ed4 = 208.42
 - Ed2 = 206.75
 - RMS = 7.21

- Clear Land
 - Sample #: 1183914
 - Ed4 = 219.47
 - Ed2 = 220.54
 - RMS = 5.85

- Cloudy Land
 - Sample #: 7523333
 - Ed4 = 298.59
 - Ed2 = 298.61
 - RMS = 7.91
Does MISR radiance anisotropy change as footprint size changes?

- SSFM data provide radiance anisotropy of each CERES along-track footprint from nine spatially matched directions.
- CERES footprint size changes as viewing zenith angle changes:
 - At nadir: 16 by 32 km
 - At $\theta=31^\circ$: 18.5 by 37 km
- Examine MISR 0.56 μm radiance anisotropy from these two different size of footprints.
Radiance anisotropy from MISR for different footprint size

- For a CERES footprint, MISR provides spectral radiance measurements from nine angles.
- Separate the CERES footprints by cloud type and solar zenith angle.
- Calculate the mean radiance for each camera angle from the two different sizes of footprints.
- Compare the shape of the normalized radiances.
- Difference the normalized radiances, calculate the standard deviation.

<table>
<thead>
<tr>
<th>Cloud Type</th>
<th>CF Range</th>
<th>EP Range</th>
<th>MCL Range</th>
<th>Mid Range</th>
<th>OVC Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL</td>
<td>0.1-40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>EP < 440 hPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thin</td>
<td>τ < 3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCL</td>
<td>40-99%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid</td>
<td>EP = 440-680 hPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mod</td>
<td>τ = 3.35 - 22.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVC</td>
<td>99-100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>EP > 680 hPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thick</td>
<td>τ > 22.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standard deviation for different cloud type and solar zenith angle

![Heatmap showing standard deviation for different cloud types and solar zenith angles.](chart.png)
Simulate Aqua and NPP footprints to quantify flux error due to different footprint sizes

• Derive broadband radiances for these simulated Aqua and NPP footprints

\[I_{sw}^{md} = d_0 + d_1 I_{0.65} + d_2 I_{0.86} + d_3 I_{1.63} \]

• Based upon the scene identifications of the simulated Aqua and NPP footprints to select the ADMs

• Compare gridded fluxes from these simulated Aqua and NPP footprints to quantify the effect of different footprint size on flux
Rotating Azimuth Plane (RAP) scan for RBI

• Do we need RAP scan mode for RBI?
• If so, how much do we need?
 – Build one set of ADMs with 2 years of RAP measurements: referred to as “2yrADMs”
 – Build another set of ADMs assuming only taking RAP measurements every third day during the 2-year period: referred to as “reduced 2yrADMs”
 – Only tested clear land and clear ocean

• Apply these two sets of ADMs to Aqua data
• Investigate instantaneous flux difference on footprint level and on grid box level
SW angular distribution model over clear land: Modified RossLi

- Collect clear-sky reflectance over 1°×1° regions for every calendar month;
- Stratify reflectance within each 1°×1° region by NDVI (0.1) and cosθ₀ (0.2), and by elevation variability over rough terrain;
- Apply modified RossLi fit to produce BRDF and ADM for each NDVI and cosθ₀ intervals within each 1°×1° region.

\[
\rho(\mu_0, \mu, \phi) = k_0 + k_1 \cdot B_1(\mu_0, \mu, \phi) + k_2 \cdot B_2(\mu_0, \mu, \phi)
\]

(from Maignan et al., 2004)
Number of clear land ADMs is reduced by 25-30%.

<table>
<thead>
<tr>
<th></th>
<th>No of clear land ADMs</th>
<th>2yr of RAP</th>
<th>RAP every third day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>28555</td>
<td>21303</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>48906</td>
<td>33457</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>48440</td>
<td>33337</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>44094</td>
<td>30562</td>
<td></td>
</tr>
</tbody>
</table>

Footprints with valid fluxes from both sets of ADMs:

| | Bias (Wm$^{-2}$) | RMS (Wm$^{-2}$) | % of FOVs | Bias$>|5$ | % of FOVs | Bias$>|10$ |
|-----|-----------------|-----------------|-----------|----------|-----------|-----------|
| Jan | -0.1 | 3.3 | 5.8 | 1.3 | | |
| Apr | -0.3 | 4.4 | 11.2 | 2.1 | | |
| Jul | -0.0 | 3.4 | 5.3 | 1.1 | | |
| Oct | -0.1 | 3.1 | 6.2 | 1.3 | | |
Gridded instantaneous flux differences from reduced RAP sampling

200404:Aqua-FM4 ClrLnd 2yrADM flux glbm=200.0Wm$^{-2}$

200407:Aqua-FM4 ClrLnd 2yrADM flux glbm=180.4Wm$^{-2}$

0404:Aqua-FM4 ClrLnd reduced2yrADM−2yrADM Dflux =0.065Wm$^{-2}$

0407:Aqua-FM4 ClrLnd reduced2yrADM−2yrADM Dflux =0.123Wm$^{-2}$

05/05/2015 CERES STM
Clear ocean: missing bin fraction increased by 5~10%

- Clear ocean: \(R(w, \theta_0, \theta, \phi, \text{AOD}, \text{aerosol type}) \);
- Build one set of clear ocean ADMs using 2 years of RAP measurements;
- Build another set of ADMs using a subset of the these RAP measurements (every third day);
Clear ocean flux difference from these two sets of ADMs

- Apply these two sets of ADMs to one year of cross track data
- The “reduced 2yrADMs” fail to produce fluxes for 2% of the footprints
- The bias and RMS error calculated using matched footprints are 0.0 and 1.2 Wm$^{-2}$, about 7.3% of the matched footprints with flux difference greater than 2 Wm$^{-2}$
- Global annual mean gridded instantaneous flux difference is about 0.1 Wm$^{-2}$, about 10% of the grid boxes have flux difference greater than 1 Wm$^{-2}$ and about 2% of the grid boxes have flux difference greater than 2 Wm$^{-2}$
Future plan

• Assess the effects of different footprint sizes and inconsistent cloud properties on NPP flux inverted using Aqua ADMs
 – MISR multi-angle measurements
 – Compare gridded fluxes derived from simulated Aqua and NPP footprints
 – Compare the radiance vs. $\ln(f\tau)$ relationship derived using CERES-Aqua with that derived using CERES-NPP. Any difference in this relationship indicates that footprint size affects the ADMs
 – Time series mix-and-match: study global/regional deseasonalized trend using CERES-Aqua, then replacing data after 2012 with CERES-NPP

• Extend the RBI rotating azimuth plane sampling study to cloudy land/ocean