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High Spectral Resolution Lidar, HSRL-2

NASA Langley B200

Flight altitude ~ 9 km

High Spectral Resolution Lidar 2 —

• measures profiles of aerosol optical 

properties at 3 wavelengths

• Flew on DAQ California, Houston, 

and Colorado

HSRL-2

nadir-

pointing 

lidar

DISCOVER-AQ Houston

September 4-27, 2013

26 science flights

101 flight hours

vertically resolved 

aerosol measurements



2 lidar ratios

HSRL-2 measurement products

Aerosol Backscatter

355, 532, 1064 nm

Aerosol Extinction

355, 532 nmExtensive 

variables

Intensive 

variables

Aerosol 

classification 

uses intensive 

variables to 

infer aerosol 

type

3 angstrom exponents

Aero Depolarization

355, 532, 1064 nm

September 11, 2013

Mixed layer heights inferred from backscatter



WRF-Chem Forecasting

2013-09-12 18Z 550nm AOD

WRF-Chem model run performed by Pablo 

Saide, U. Iowa, for the SEAC4RS 

campaign, to provide guidance for flight 

planning and evaluate model in near-real 

time

Domain includes the DISCOVER-AQ 

Houston campaign as well

• WRF-Chem v3.5 CBMZ, 4bin MOSAIC, 

12km dx, 52 vertical lvls, and WRF-

tracer for emission regions/sectors

• Emissions: anthropogenic, biomass 

burning (FINN, QFED2) with plume-

rise, MEGAN biogenics, dust & sea-

salt. MACC boundary conditions

• AOD assimilation (NRL product) every 

3 hours, 1 cycle a day (Saide et al., 

ACP 2013)

SEAC4RS domain

Houston



Day by day extinction comparison
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Extinction comparison, lidar vs. model
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Extinction comparison, lidar vs. model

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

A
lt

it
u
d
e
 (

k
m

)
A
lt

it
u
d
e
 (

k
m

)



Sept 13 AM Sept 13 PM

Extinction comparison, lidar vs. model
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Insights about aerosol source & type



agricultural smoke + 

anthropogenic mix

C

pure aged wildfire smoke

Sept 11 AM Sept 11 PM

Sept 12 AM Sept 13 AM

D

B

E
F

A

pure smoke

smoke-rich mix

smoke

anthropogenic

Aerosol source and type, 6 example layers



Anthropogenic vs. Smoke
A vs. C



C

pure aged wildfire smoke

Sept 11 AM Sept 11 PM

A

anthropogenic

C

pure aged wildfire smoke

A

anthropogenic

see Burton et al. 2012, AMT, for HSRL aerosol typing

smoke

anthro

HSRL-2 

provisional 

aerosol 

classification 

for DAQ-

Houston

Anthropogenic vs. Smoke: A vs. C
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HSRL2 EXT

MODEL EXT

MODEL CO FIRE

MODEL CO ANTHRO

CO Fire along back-trajectory

C

Sept 11 PM

WRF-Chem Backtrajectories



Mixtures of Agriculture Smoke and 
Anthropogenic 
D vs. F



agricultural smoke + 

anthropogenic mix

Sept 12 AM Sept 13 AM

D

F

smoke-rich mix

Mixtures of Agriculture Smoke and Anthropogenic: 
D vs. F



CO Fire 
along back-
trajectory

Sept 12 AM, residual layer

CO Anthro
along back-
trajectory
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agricultural smoke + 

anthropogenic mix

Sept 12 AM Sept 13 AM

D

F

smoke-rich mix

Lidar ratio, 532 nm Lidar ratio, 532 nmColor ratio, 355/532 nm Color ratio, 355/532 nm

HSRL-2 Intensive Properties



Effect of Relative Humidity on lidar intensive 
properties: setup and assumptions

 Diameter-independent growth factor:
𝐷𝑎𝑚𝑏 = 𝑔 ∗ 𝐷𝑑𝑟𝑦

the entire size distribution simply shifts to larger diameters as the particles grows.

 Correction is applied to both real and imaginary parts of refractive index following:

𝑚𝑎𝑚𝑏 =
𝑚𝑑𝑟𝑦 +𝑚𝐻2𝑂 𝑔3 − 1

𝑔3

 Growth factor function of RH from Petters and Kreidenweis (2007):

𝑔 = 1 + 𝜅
𝑅𝐻

100% − 𝑅𝐻

1
3

where 𝜅 is the effective hygroscopicity parameter which captures all solute properties.

Less hygroscopic  0 ≤ 𝜅 ≤ 1 More hygroscopic

Continental aerosols: 𝜅 = 0.27±0.21

Clean marine aerosols: 𝜅 = 0.72±0.24 (Pringle et al., 2010, ACP)

Agricultural smoke: 𝜅 = 0.2 (Rose et al., 2010, ACP)



Lidar intensive properties: effect of Relative Humidity

=0.1

=0.3 

reff=0.11um, mR=1.45, mI=0.005

reff=0.16um, mR=1.51, mI=0.010



Pure Smoke
B,C,E



C

pure aged wildfire smoke

Sept 11 AM Sept 11 PM

Sept 12 AM

B

E

pure smoke

smoke

Pure Smoke: B,C,E



Lidar intensive properties for 6 aerosol samples

• Lidar intensive variables vary both 

within and between types

• Extinction angstrom exponent varies 

monotonically with size but is noisy

• Lidar ratio related to absorption, 

but also varies with particle size, as 

much as angstrom exponent does

• Backscatter color ratios have 

complicated dependence on size and 

complex refractive index

Variations within a type due to

• mixing

• humidification

• composition differences due to 

different sources (for smoke: e.g. 

wildfire vs. agricultural)

• aging & processing, etc.

• ???



Summary

• HSRL-2 makes horizontally and vertically resolved observations of 
aerosol layering and diurnal and day-to-day evolution

• High information content in HSRL-2 observations provides the 
opportunity for model assessment 

• HSRL-2 measures a large set of intensive parameters that give 
information on aerosol type 

• Subtleties in HSRL-2 intensive parameters have the potential to give a 
more nuanced understanding of aerosols

• WRF-Chem model gives context on aerosol sources and transport that 
helps with interpretation of lidar data

• DISCOVER-AQ Houston case study 

o characterized by large variability in aerosol properties, vertically, 
temporally and in observed optical properties.

o included local anthropogenic pollution plus relatively fresh 
agricultural smoke and aged transported wildfire smoke



EXTRA: WHAT DOES IN SITU SAY?



B: UH Moody Tower, 20130911, 14.84-15.07 



C: Smith Point, 20130911, 19.75-19.97 



D: Smith Point, 20130912, 14.45-14.71 



E: West Houston, 20130912, 15.14-15.43 



F: Deer Park, 20130913, 16.05-16.33 



DISCUSSION OF VARIABILITY OF 
INTENSIVE PARAMETERS OF SMOKE









Effective radius

Single Scattering Albedo (532nm)

Total number concentration


