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Why Structural Nanomaterials?
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Highlights from Early Work: 1999 - 2008 Vhs
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Observed Differences in
Nanocomposite Solution Stability

Measured Electrical Conductivity Fast Fourier Transform of HRSEM Image

and Percolation Modeling

“Poly-transparent” Imaging




Potential System Weight Savings
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Two Stage to Orbit Launch Vehicle Concept
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Nanotechnology Project Spans Modeling tg_%

Component Demo
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Project has adopted a comprehensive approach involving modeling,
materials development, testing and characterization, and component level
demonstration to accelerate materials development and mission transition



Materials SOA
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Nano to Macro Challenge
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» Available materials have starting mechanical properties inferior to other SOA
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Computationally Guided Materials Developmentl@"ii’A
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Modeling CNT Based Structural Materialsu/‘@
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Calculated Mechanical Properties in Context
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CNT Composite Procedure

G A Ve b TR
i o o 5 Ko R
’ B R e

D ]

7]

o
2 3 R s & ot s W lal W

Cured while Clamped Coated with Resin Solution
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Influence of Post-Processing on CNT

Sheet Composite Properties
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CNT Yarn to CNT COPV

CNT Yarn Langley Research Center
CNT Yarn COPV

Solution Infiltration and Wet Winding

\of CNT Yarn
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Commercial Scale Winding

CNT Yarn Composite Wound Rings  Variable Temperature Mechanical Testing



Characterization of Wound CNT Composit@éj‘
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Status - End of FY 14
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How is Structural Nano Different?
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Accelerated Technology Maturation
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Technology Tipping Point
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CNT/Aerogel Wires and Cables

- OBJECTIVE: Reduce the mass and improve the fatigue Glenn Research Center
resistance of power and data cables

 APPROACH: Utilize carbon nanotube conductors and o @ 0
ultralightweight aerogel insulation to reduce cable
mass and improve fatigue resistance oflin

— Employ intercalation chemistries to enhance electrical
properties

— Develop processing methods to apply aerogel insulation

— Characterize electrical and thermal properties and cable

Polyimide
Aerogel
Insulation

durability
 IMPACT:
Use of carbon nanotube
>70% reduction in data cable mass conductors and ultralightwieght
polymer aerogel insulation could
>50% reduction in power cable mass reduce the mass of data cables by

>70%.

« FY2014 MAJOR ACCOMPLISHMENTS:
v" Improved electrical conductivity of CNT wires to 98 kS/cm
v Demonstrated dip coating of polyimide aerogels onto CNT wires
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Accelerate Technology Maturation

with Multidisciplinary Approach
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Thank You
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