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The linear form of parabolized linear stability equations (PSE) is used in a variational
approach to extend the previous body of results for the optimal, nonmodal disturbance
growth in boundary layer flows. This methodology includes the non-parallel effects associ-
ated with the spatial development of boundary layer flows. As noted in literature, the op-
timal initial disturbances correspond to steady counter-rotating streamwise vortices, which
subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a
lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach
number regime without any high enthalpy effects, and the effect of wall cooling is studied
with particular emphasis on the role of the initial disturbance location and the value of the
spanwise wavenumber that leads to the maximum energy growth up to a specified location.
Unlike previous predictions that used a basic state obtained from a self-similar solution to
the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS)
equations are used in select cases to help account for the viscous-inviscid interaction near
the leading edge of the plate and also for the weak shock wave emanating from that region.
These differences in the base flow lead to an increasing reduction with Mach number in
the magnitude of optimal growth relative to the predictions based on self-similar mean-
flow approximation. Finally, the maximum optimal energy gain for the favorable pressure
gradient boundary layer near a planar stagnation point is found to be substantially weaker
than that in a zero pressure gradient Blasius boundary layer.

Nomenclature

G energy gain
M Mach number
M energy weight matrix
(x, y, z) Cartesian coordinates
(ξ, η, ζ) streamwise, wall-normal and spanwise coordinates in body-fitted coordinate system
h1 streamwise metric factor
h3 spanwise metric factor
Nη number of discretization points along the wall-normal direction
ρ density
ν kinematic viscosity
γ heat capacity ratio
T temperature
Tw wall temperature
Tad adiabatic wall temperature
Re Reynolds number
R local Reynolds number
(u, v, w) streamwise, wall-normal and spanwise velocity components
q̄ vector of base flow variables
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q̃ vector of perturbation variables
q̂ vector of amplitude variables
α streamwise wavenumber
β spanwise wavenumber
L flate plate characteristic length
δ local similarity length scale of boundary layer
δ.995 0.995 boundary layer thickness
ω angular frequency
J objective function
K kinetic energy norm
E total energy norm
c normalization coefficient
Ω domain of integration
K bilinear concomitant
L Lagrangian function
A, B, C, D, L linear matrix operators

Subscript

ad adiabatic wall condition
r reference value
w wall condition
0 initial disturbance location
1 final optimization location

Superscripts

∗ dimensional value
† adjoint
T transpose
H conjugate transpose

Abbreviations

OSE Orr-Sommerfeld and Squire Equations
PSE Parabolized Stability Equations
FD-q non-uniform finite difference scheme
NS Navier-Stokes

I. Introduction

The most common approach to transition prediction in boundary layer flows relies on the exponential
or modal amplification of discrete modes. The classic linear stability theory is mainly concerned with the
evolution of individual sinusoidal waves propagating along the boundary layer. The quasi-parallel flow
approximation is often used in this context, and it helps reduce the linearized equations of fluid motion to an
algebraic eigenvalue problem. In the limit of incompressible flows, the latter problem can be expressed in the
form of the Orr-Sommerfeld and Squire equations (OSE).1,2 Effects of weak mean-flow non-parallelism can
be accounted for by using multiple scale theory (or other similar approaches),3 which yields the leading order
correction to the local amplification rate and phase speed predicted by the quasi-parallel theory. A more
useful extension to the non-parallel stability theory was proposed by Herbert,4 who introduced the concept
of Parabolized Stability Equations (PSE). Since then, the PSE technique has been applied to a variety of
problems, including the linear and nonlinear evolution of instability waves in 2D and 3D shear flows across
a broad range of speeds.

Besides the exponential growth characteristics of unstable eigenmodes in a boundary layer flow, the
external disturbances, e.g., freestream turbulence and surface roughness, can also have a large influence on the
transition process. An additional route to transition may involve nonmodal growth, which refers to situations
in which transient growth of disturbance energy is observed even when the flow is modally stable, i.e., all
eigenmodes are damped. Mathematically, the transient growth is associated with the non-orthogonality of
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the eigenvectors corresponding to the linear disturbance equations. Physically, the main growth mechanism
corresponds to the lift-up effect,5 which results from the conservation of horizontal momentum when the
fluid particles are displaced vertically, i.e., along the wall-normal direction.

The nonmodal, or equivally transient, growth mechanism has been extensively studied in a large variety
of flows. The algebraic growth associated with the inviscid lift-up mechanism was originally identified
by Ellingsen & Palm6 for a channel flow. In the 1990s, numerous temporal nonmodal growth studies of
incompressible, two-dimensional, parallel shear flows appeared, among others by Butler & Farrell,7 Reddy
& Henningson8 and Trefethen et al.9 Lately, Hanifi et al.10 included the compressibility effects in their
study of temporal, nonmodal transient growth in zero-pressure-gradient flat-plate boundary layers. The first
spatial analyses of nonmodal growth in a Blasius boundary layer were presented by Andersson et al.11 and
Luchini,12 who used the linearized boundary layer equations (or boundary region equations13–15), which
include the non-parallel effects associated with boundary layer development and the viscous diffusion of
the disturbance field in both wall-normal and spanwise directions. The nonmodal analysis of compressible
boundary layers was continued by Tumin & Reshotko,16 who reformulated the temporal analysis of Hanifi
et al.10 in a spatial framework, but still assuming the parallel flow approximation. The non-parallel effects
were included in their subsequent publications17–20 by solving a parabolic set of equations based on the
boundary layer approximation. These authors also addressed the effects of convex surface curvature by
studying optimal growth in the boundary layer over a sphere.18,19 They concluded that increasing convex
curvature reduces nonmodal growth. These studies also considered the effects of wall cooling and concluded
that reducing the wall temperature increases the nonmodal growth. Zuccher et al.20 studied transient growth
in the boundary layer over a sharp circular cone at zero angle of attack and freestream Mach number of 6.
The basic state was based on the self-similar solution to boundary layer equations. The edge Mach number
was still supersonic, i.e., M < 4.5, because of the selected half-angle of the cone. The inflow location was
selected far downstream from the cone tip (x0/x1 > 0.2) to avoid interaction with the shock wave. As might
be expected, the computed transient growth characteristics collapse onto those for the flat plate boundary
layer with the same edge Mach number as x0 → x1 and the azimuthal wavenumber becomes large (because
the effects of geometric divergence and surface curvature become small in these two limits). They reported
that the main effect of the flow divergence over the circular cone and sphere is the presence of an optimal
downstream location in which a maximum energy gain is reached for a fixed initial disturbance position.
Strong similarities between compressible and incompressible cases led to the conclusion that at least up to
supersonic Mach numbers, both speed regimes exhibit the same physical mechanism of nonmodal growth,
i.e., the lift-up effect.

Recently, transient growth has been suggested as a candidate mechanism for several cases of bypass
transition.21 The latter has been historically used to differentiate the transition phenomena that are not
fully understood on a theoretical basis from the well known paths to transition.22 Examples of transition
often classified as bypass transition include the subcritical transition observed in Poiseuille pipe flow exper-
iments,23,24 transition due to distributed surface roughness on flat plates25,26 or cones,27 and subcritical
transition observed on spherical forebodies.28–31 However, the existing work on transient growth is limited
to boundary layer flows with subsonic or supersonic values of the edge Mach number; and no studies of
optimal growth in hypersonic boundary layers are known to the authors.

This paper extends the previous body of results for the optimal, nonmodal disturbance growth in bound-
ary layer flows in several ways. Section II provides a summary of the optimal growth theory based on the
PSE. Validation of numerics against previous results for M = 0 and M = 3 is presented in Section III. The
existing results are extended to a realistic basic state that is based on the full Navier-Stokes (NS) equations
and, hence, accounts for both the viscous-inviscid interaction near the leading edge of the plate and the weak
shock wave emanating from that region. The basic states obtained in this manner are used to study optimal
transient growth at four specific flow conditions: M = 3 with adiabatic wall, M = 6 with Tw/Tad = 0.4 and
0.8, and M = 10 with Tw/Tad = 0.35. Effects of wall cooling and Mach number are also examined using both
self-similar and NS basic states. Additionally, the effect of non-zero pressure gradient is taken into account
by performing the transient growth analysis of the incompressible, planar stagnation point boundary layer
flow, i.e., the Hiemenz flow, in Section IV. Summary and conclusions are presented in Section V.

As pointed out by Choudhari and Fischer,32 it is important to model the transient growth phenomenon
as an inhomogeneous boundary value problem associated with a physically realizable forcing environment33

rather than via the optimal growth formulation alone. However, the issue of realizable transient growth must
be addressed on a case by case basis. The results presented in the present work provide a useful starting
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point for such investigations in the context of high Mach number flows.

II. Methodology

The variational formulation underlying optimal growth predictions based on the parabolized stability
equations is well explained in the literature.34–36 The method is outlined here for completeness. There are
strong similarities with the optimization approach based on the linearized boundary layer equations.11,12,17

The advantage of the PSE based formulation is that it may be used for more complex base flows where the
flow evolves slowly along the streamwise direction but the boundary layer approximation may not hold and
that it can be easily extended to unsteady disturbances. Ref. 37 provides a detailed comparison between both
formulations for incompressible flows. While infinite Reynolds number asymptotic results cannot be directly
computed using the PSE, good agreement is achieved between the two methodologies for incompressible and
compressible regimes as shown in Section III.

II.A. Governing Equations

In the linear PSE context, the perturbations have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η) exp

[
i

(∫ ξ

ξ0

α(ξ′) dξ′ + βζ − ωt

)]
+ c.c., (1)

where c.c. denotes complex conjugate. The suitably-nondimensionalized, orthogonal, curvilinear coordinate
system (ξ, η, ζ) denotes the steamwise, spanwise, and wall-normal coordinates, respectively, and (u, v, w)
represent the corresponding velocity components. The vector of perturbation fluid variables is denoted by
q̃(ξ, η, ζ, t) = (ρ̃, ũ, ṽ, w̃, T̃ )T , and the vector of respective amplitude functions is q̂(ξ, η) = (ρ̂, û, v̂, ŵ, T̂ )T .
The streamwise and spanwise wavenumbers are α and β, respectively; and ω is the angular frequency of the
perturbation.

Upon introduction of the perturbation form (1) into the linearized NS equations together with the as-
sumption of a slow streamwise dependence of the basic state and the amplitude functions, thus neglecting
the viscous derivatives in ξ, the PSE are recovered as follows(

A + B
∂

∂η
+ C

∂2

∂η2
+ D

1

h1

∂

∂ξ

)
q̂(ξ, η) = 0. (2)

The linear operators A, B, C and D are given by Pralits,38 and h1 is the metric factor associated with
the streamwise curvature. The system of equations (2) is not fully parabolic due to the term ∂p̂/∂ξ in the
streamwise momentum equation.39–43 However, for the purely stationary disturbances of interest in this
work, this term can be dropped from the equations as justified by Refs. 35 and 44, who found that the term,
∂p̂/∂ξ, is of higher order for transient growth problems, and can be neglected without any loss of accuracy.

II.B. Optimality System

The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at ξ0 that experiences
the maximum energy amplification up to a specified position, ξ1. To determine q̃0, the following objective
function needs to be maximized,

J(q̃) =
E(ξ1)

E(ξ0)
, (3)

where E denotes the energy norm of q̃,

E(ξ) =

∫
ζ

∫
η

q̃(ξ)HMq̃(ξ) dηdζ. (4)

Here, M is the energy weight matrix; and the superscript H denotes the conjugate transpose of a vector or
matrix quantity. The choice of the energy norm would have an effect on the results. Here, the energy norm
proposed by Mack,45 and Hanifi et al.10 is used and is defined by choosing

M = diag

[
T̄ (ξ)

γρ̄(ξ)M2
, ρ̄(ξ), ρ̄(ξ), ρ̄(ξ),

ρ̄(ξ)

γ(γ − 1)T̄ (ξ)M2

]
. (5)
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The disturbance that maximizes the objective function J(q̃) is calculated using the Lagrange functional

L(q̃, q̃†) = J(q̃)− 〈q̃†,Lq̃〉, (6)

where the inner product is defined as

〈a, b〉 =

∫
Ω

aHbdΩ, (7)

Lq̃ represents the left-hand side of the stability equation (2), and q̃† = (ρ̃†, ũ†, ṽ†, w̃†, T̃ †)T is the Lagrange
multiplier, i.e., the vector of adjoint disturbance variables. The roots of the first variation of the Lagrange
functional (6) represent the optimal disturbance and its corresponding adjoint. Setting the gradient of L
with respect to q̃† to zero, i.e., ∇q̃†L = 0, leads to the linear stability equations, Lq̃ = 0. To set the second
gradient with respect to q̃ to zero, i.e., ∇q̃L = 0, the following identity is used,

〈q̃†,Lq̃〉 = 〈L†q̃†, q̃〉+

∫
Ω

∇ ·K(q̃, q̃†) dΩ, (8)

which is derived by expanding 〈q̃†,Lq̃〉 by using integration by parts. Here, the adjoint equations are defined
as L†q̃† = 0, and K is known as the bilinear concomitant, which represents the boundary terms in the three
directions. Then, to accomplish ∇q̃L = 0, the adjoint equations, L†q̃† = 0, must be satisfied, as well as the
optimality conditions at ξ0 and ξ1, which result from the streamwise boundary terms, Kξ, and the gradient
of the objective function, ∇q̃J , when the boundary conditions for the direct and adjoint variables are chosen
such that the wall-normal and spanwise boundary terms, Kη and Kζ , respectively, are zero. The optimality
conditions result

DH q̃†k − ckMq̃k = 0, (9)

where the subscript k is 0 or 1 denoting either ξ0 or ξ1, and ck denotes a normalization coefficient that adjusts
E0 = E(ξ0) = 1. Thus, the initial condition of the adjoint equations or backward marching integration at ξ1
can be written as

q̃†1 = (DH)−1c1M1q̃1; (10)

and the optimal initial condition for the direct equations or forward marching integration can be written as

q̃0 =
1

c0
(M0)−1DH q̃†0. (11)

Note that DH is singular at the wall and that the adjoint equations do not comprise boundary conditions
for ρ̃† at the wall. The value at the wall for ρ̃†1 is obtained from the wall-normal equation. Additional
assumptions need to be considered for the optimal initial condition, because the optimality condition for the
streamwise velocity becomes

ũ(ξ0) = ρ̃†(ξ0) + ū(ξ0)ũ†(ξ0). (12)

Because ρ̃†(ξ0) is non-zero at the wall, the equation (12) yields a non-zero value of ũ(ξ0) at the wall.
Tempelmann et al.36 found that neglecting ρ̃†(ξ0) is the best option to satisfy both equation (12) and the
no-slip boundary condition, and leads to results that are identical to other approaches.19

The optimality system is solved in an iterative manner, starting from a random solution at ξ0, which must
satisfy the boundary conditions. The PSE, Lq̃ = 0, are used to integrate q̃ up to ξ1, where the optimality
condition (12) is used to obtain the initial condition for the backward adjoint PSE integration, L†q̃† = 0.
At ξ0, the adjoint solution is used to calculate the new initial condition for the forward PSE integration by
using equation (11). The iterative procedure is terminated when the objective function, J = G, is converged
up a certain tolerance, which was set equal to 10−4 in the present computations.

III. Optimal Gain in Zero-Pressure-Gradient Boundary Layers

Transient growth in zero-pressure-gradient flat plate boundary layer flow is studied first for selected Mach
numbers. For this problem, the computational and physical coordinates coincide, i.e., (ξ, η, ζ) ≡ (x, y, z).
The self-similar scale proportional to boundary layer thickness is δ =

√
ν∗x∗/u∗r , where subscript r denotes

the reference values and the superscript ∗ indicates dimensional values. Because the streamwise length scale
of the disturbance undergoing transient growth corresponds to the distance x∗1 − x∗0, which is assumed to be
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of O(x∗1), the streamwise coordinate x∗ is scaled by x∗1 = L; and the other two coordinates are scaled with
respect to the value of δ at x∗1 = L, i.e., the location selected to maximize the transient growth relative to
x∗0. Therefore, the Reynolds number introduced into the equations becomes Re =

√
ReL. The streamwise

location in terms of the local Reynolds number is R = Reδ =
√
x∗u∗r/ν

∗. Previous results11,12,17 using the
self-similar boundary layer solution as basic state have shown that in the limit of large Reynolds numbers
the optimal gain G scales with the body length Reynolds number ReL. However, similar results are also
found for lower ReL.11,17

Finite differences46,47 (FD-q) of eighth order are used for discretization of the PSE along the wall-normal
coordinate. The discretized PSE are integrated along the streamwise coordinate by using second-order
backward differentiation. The number of discretization points in both directions was varied in selected cases
to ensure convergence of the optimal gain predictions. The wall-normal direction was discretized using
Ny = 141 for M = 10−3 to as high as Ny = 401 for M = 10. The nodes are clustered towards the wall.47 A
non-constant step along the streamwise direction was used, corresponding to a constant increment of ∆R.
No-slip, isothermal boundary conditions are used at the wall, i.e., û = v̂ = ŵ = T̂ = 0. The isothermal
boundary conditions may not hold for all flow conditions. However, the results appear to be insensitive
to the thermal boundary condition at the surface. Therefore, a conjugate heat transfer analysis is deemed
unnecessary for the purpose of this paper. The amplitude functions are forced to decay at the farfield
boundary by imposing the Dirichlet conditions ρ̂ = û = ŵ = T̂ = 0. We choose not to constrain the inflow
perturbation profiles to be identically zero within the freestream region outside of the leading edge shock. If
the source of the inflow disturbance were to be at the surface, then a condition of this type would have been
appropriate. However, the physical origin of the inflow disturbance is left open in the present optimal growth
formulation, and we simply impose the condition that the inflow profiles become zero at infinity. Interaction
of the weak but nonzero freestream perturbation with the basic state shock is treated in the spirit of a shock
capturing calculation.

III.A. Code Validation

First, we compare the transient growth predictions based on the PSE formulation with those based on
the large Reynolds number asymptotic framework that leads to linearized boundary layer equations.11,17

To allow meaningful comparison with the asymptotic framework, a large value of the Reynolds number
parameter (ReL = 108) is used.

Incompressible results by Andersson et al.11 are reproduced by setting M = 10−3 and x0 = 0. Figure 1(a)
shows the optimal energy gain as a function of the spanwise wavenumber. Excellent agreement with the
results of Andersson et al.11 is observed. Results of Tumin & Reshotko17 at a supersonic Mach number of 3
are used for the next comparison. Figure 1(b) shows the optimal gain relative to x0 = 0 for three different
wall temperature ratios. Again an excellent agreement is noted in all cases.
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Figure 1. Comparison with optimal gain predictions by (a) Andersson et al.11 for an incompressible flat plate boundary

layer setting M = 10−3, and by (b) Tumin & Reshotko17 for a Mach 3 flat plate boundary layer for selected wall

temperature ratios (ReL = 108, Td
0 = 333 K).

6 of 20

American Institute of Aeronautics and Astronautics



III.B. Effect of Weak Leading-Edge Shock on Transient Growth

The previous analyses of transient growth in compressible boundary layers17,19 are extended by increasing
the Mach number up to 10 and by using a basic state definition based on the NS equations in lieu of the
self-similar solutions to boundary layer equations that were used in the previous studies at lower Mach
numbers.17,19 The NS mean flow accounts for both the viscous-inviscid interaction near the leading edge
and the weak shock wave emanating from that region.

The mean boundary layer flows over the flat plate configurations were computed on various grids with
a second-order accurate algorithm (based on the Low Diffusion Flux Splitting Scheme) as implemented in
the finite-volume, structured grid, compressible NS flow solver VULCAN.48,a The weak shock emanating
from the leading edge of the plate was captured within the computational domain. Even though the shock is
relatively weak in comparison with a normal shock at the same incoming Mach number, the computational
mesh was approximately aligned with the shock surface. Given the very low Reynolds number near the
leading edge (unit Reynolds number based on the freestream velocity and leading edge radius), the shock
layer is highly viscous and the flow gradients are smeared across the shock layer. At sufficiently large
distances (compared with the leading edge radius), the shock becomes relatively sharper but also weaker.

The nose radius is set to rn = 1 µm. The free stream unit Reynolds number is set to Re′ = 106/m.
The NS solution for a flat plate boundary layer was obtained for four flow conditions, namely, M = 3 with
adiabatic wall, M = 6 with Tw/Tad = 0.4 and 0.8, and M = 10 with Tw/Tad = 0.35. Figure 2(a) shows
iso-contours of the wall-normal velocity in the vicinity of the leading edge. The effects of viscous-inviscid
interaction and the shock wave lead to a deviation from the self-similar boundary layer profiles, as observed
in figure 2(b). The NS profiles match the self-similar solution, except for R = 20. Figure 3 shows a similar
comparison for the Mach 6 (Tw/Tad = 0.8) and Mach 10 (Tw/Tad = 0.35) cases. The increased Mach number
produces a stronger deviation from the self-similar profile near the leading edge. Although not shown, the
streamwise velocity and temperature profiles converge to the self-similar solution at R ≥ 100 after the profiles
are normalized by the corresponding values at the boundary layer edge.

Because the shock is fairly weak and the wall-normal computational grid is rather fine, no difficulties were
encountered during disturbance calculations that included the basic state shock within the computational
domain. In other words, no special treatment to address the disturbance interaction with the shock was
found necessary for the calculations presented in this paper. Grid sensitivity analysis was performed for
the Mach 10 case by using three grids with successively increasing resolutions. The baseline grid had 1,793
points in the streamwise directions and 513 points along the wall-normal axis. The other two grids were
coarser and finer, respectively, by a factor of two in each direction. The grid distribution was identical across
all three grids, so that the grid convergence process was parametrized by a single parameter corresponding
to the overall cell count. Excellent agreement was found among the mean flow profiles obtained from all
three grids as well as among the transient growth prediction based on these grids.

Transient growth results corresponding to a Mach 3, adiabatic boundary layer obtained from the NS
equations are shown in figure 4(a) for R1 = 1, 000 as the final optimization position. Although not shown
here, results for R0/R1 = 0.01 (i.e., x0/x1 = 0.0001), which needed a much higher resolution due to the
clustering of points inside the boundary layer, proved that the gain factors for R1/R0 = 0.02 have reached
their asymptote corresponding to R0/R1 → 0. Figure 4(b) shows a maximum 9% reduction of optimal
energy gain between self-similar and NS basic states when the initial optimization position is located near
the leading edge. For the same conditions, i.e., Mach 3, adiabatic boundary layer with R0 = 20, R1 = 1, 000
and β = 0.25, the initial optimal and final perturbations are compared for the self-similar and NS basic
states, respectively, in figure 5. The shape of the perturbation at the final station is almost identical for
both basic states. The differences between the initial optimal perturbations are more noticeable. As seen
from the R0 = 20 basic state profiles in figure 2(b), the weak shock layer is located just above the boundary
layer edge at the inflow location. The presence of the shock in the basic state profiles leads to a strong
gradient in the disturbance variables, which decay faster in the free stream above the shock for the NS basic
state case. As previously mentioned, the weak leading-edge shock wave decreases the growth of the optimal
perturbation. The reduction in energy gain is also apparent from the comparison of the disturbance profiles
at R = R1 for both basic states. The maximum values of T̂ , ρ̂, and û are smaller for the NS basic state case.

Figure 6 shows optimal gain results for Mach 6 boundary layers with Tw/Tad = 0.4 and 0.8. The basic
state solutions are obtained by solving the NS equations. Comparison of the optimal gain magnitudes from

aData available at http://vulcan-cfd.larc.nasa.gov (Oct. 28, 2015)
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(a) v̄ velocity of NS mean flow
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Figure 2. (a) Iso-contours of v̄ velocity of NS solution for an adiabatic Mach 3 boundary layer, including a zoom of
the leading edge zone. (b) Comparison of self-similar and NS solution profiles for selected streamwise positions. The
profiles at R = 20 correspond to a streamwise location of x = 0.0004 m in part (a).

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

η
=
y
d
/δ
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Figure 3. Comparison of self-similar and NS solution profiles for a Mach 6 (Tw/Tad = 0.8) and a Mach 10 (Tw/Tad = 0.35)
boundary layers at selected streamwise positions.

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
/R
e L

β

R0/R1 = 0.02
0.1
0.2
0.3
0.4
0.5
0.6

(a) Effect of x0 on optimal energy gain

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

G
/R

e L

x0

Self-similar
NS

(b) Comparison with self-similar (SS) basic state with β = 0.25

Figure 4. (a) Effect of initial optimization position, R0, in the optimal energy gain with R1 = 1, 000 and the NS basic
state of flat plate boundary layer at freestream Mach number of 3. (b) Comparison of optimal energy gain using the
self-similar (SS) and NS basic states for β = 0.25.
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(a) Self-similar basic state
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Figure 5. Initial and final amplitude vectors with R0 = 20 and R1 = 1, 000 and β = 0.25 using both the self-similar and
NS basic states of Mach 3 adiabatic flat plate boundary layer. The dashed lines denote the position of the boundary
layer edge, i.e., ū = 0.995.

figures 6(a) and 6(b) shows that, similar to previous studies of transient growth at lower mach numbers,17,19

wall cooling enhances the nonmodal growth in hypersonic boundary layers as well. The effect of wall-cooling
will be thoroughly studied in Subsection III.C below. The effect of initial disturbance location and the
optimization location downstream and is studied in figures 6(a) and 6(b) by varying R1/R0, while keeping
R1 fixed at R1 = 1, 000 and R1 = 2, 000 for Tw/Tad = 0.4 and Tw/Tad = 0.8, respectively. The effect
of the shock layer emanating from the leading edge is in-line with the Mach 3 results discussed earlier.
Because of the stronger shock at M = 6, the shock-induced reduction in optimal gain for initial locations
near the leading edge is larger than that at M = 3. Also, the effect is greater for the Tw/Tad = 0.8 because
the boundary layer thickness is larger for wall temperature closer to the adiabatic temperature. For both
conditions, i.e., Tw/Tad = 0.4 and 0.8, the maximum energy gain is achieved for R0/R1 = 0.5. Transient
growth results with R0/R1 = 0.1 and R1 = 1, 000 could not be recovered by using the present technique.
The presence of a stronger inviscid-viscous interaction zone, together with the stronger shock wave near the
leading edge, prevents the computation of converged results for initial locations closer to the leading edge,
R0 < 200. Because the highest optimal gain occurs for inflow locations well downstream of the leading edge
(R0/R1 ≈ 0.5), the limitation to a nonzero but small R0/R1 was deemed acceptable for the purpose of the
present study.
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Figure 6. Effect of initial optimization position, R0, with R1 = 1, 000 (solid lines) and R1 = 2, 000 (dashed lines), in the
optimal energy gain using the NS basic states of flat plate boundary layers at freestream Mach number of 6 and (a)
Tw/Tad = 0.4 and (b) Tw/Tad = 0.8.
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The evolution of the disturbance vector along the Mach 6 boundary layer with Tw/Tad = 0.8 is shown
in figure 7 with initial disturbance location close to the leading edge (x0/x1 = 0.01, i.e., R0/R1 = 0.1, along
with R1 = 2, 000, and β = 0.116) and in figure 8 with initial position that leads to maximum energy growth
at R1 = 1, 000 (R0/R1 = 0.5 and β = 0.166). For the first case (R0/R1 = 0.1), the main component of
the initial optimal perturbation (figure 7(a)) is the spanwise velocity ŵ as also observed in figure 5 for the
Mach 3 case. The peak of ŵ occurs just below the boundary layer edge. The peaks of T̂ , ρ̂, and û are
located in a similar position relative to the boundary layer edge during the evolution of the optimal initial
disturbance, indicating a similar disturbance shape increasing in magnitude along the streamwise coordinate.
Figure 8(a) shows the optimal initial perturbation for R0/R1 = 0.5. In this case, the energy of the initial
optimal perturbation is more evenly distributed between the wall-normal and spanwise velocity components,
v̂ and ŵ.
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Figure 7. Optimal disturbance vector at selected streamwise position for the Mach 6 boundary layer NS solution with
Tw/Tad = 0.8, R0/R1 = 0.1 (i.e., x0/x1 = 0.01), R1 = 2, 000, and β = 0.116
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Figure 8. Optimal disturbance vector at selected streamwise position for the Mach 6 boundary layer NS solution with
Tw/Tad = 0.8, R0/R1 = 0.5, R1 = 1, 000, and β = 0.166

Transient growth results for a Mach 10 boundary layer with Tw/Tad = 0.35 solution of the NS equations
are shown in figures 9(a) and 9(b) for R1 = 1, 000 and R1 = 2, 000, respectively. The effect of R0/R1 is in line
with the predictions at lower Mach numbers. Again, the maximum optimal energy gain is achieved for an
initial location near R0/R1 = 0.5. Consistent with trends noted in the context of Mach 6 results, the effect
of the shock layer is stronger at this higher Mach number. Thus, for initial disturbance locations close to the
leading edge (R0/R1 ≤ 0.3), the scaled optimal gain at R1 = 1, 000 (figure 9(a)) is significantly lower than
that at R1 = 2, 000. Specifically, a reduction of 60% in the scaled optimal gain is observed with R0/R1 = 0.2
and R1 = 1, 000 and a reduction of 23% with the same R0/R1 and R1 = 2, 000, both with respect to the
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corresponding prediction based on the (shock-free) self-similar basic state. Also, at a fixed R0/R1 < 0.4,
the presence of the leading-edge shock increases the optimum spanwise wavenumber for maximum growth.
As observed in the Mach 6 cases, satisfactory results could not be obtained using the present numerical
method for R0 < 200 due to the strong viscous-inviscid interaction region and shock wave. The streamwise
evolution of disturbance profiles is shown in figure 10 for R1 = 1, 000, R0/R1 = 0.5, and β = 0.124. These
profiles are similar in shape to those at Mach 6 with the same relative initial location R0/R1. Because of
the lower surface temperature ratio in the present case (Tw/Tad = 0.35) vis a vis that in figure 8 for the
Mach 6 case (Tw/Tad = 0.8), the temperature perturbation has a stronger positive (local) maximum near
the surface. The presence of this local maximum for Tw/Tad < 1 was also noted in the M = 3 case by Tumin
& Reshotko.17
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Figure 9. Effect of initial position R0 on optimal energy gain at (a) R1 = 1, 000 and (b) R1 = 2, 000. Basic state
corresponds to NS solution at M = 10 and Tw/Tad = 0.35.
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Figure 10. Optimal disturbance vector at selected streamwise position for the Mach 6 boundary layer NS solution with
Tw/Tad = 0.35, R0/R1 = 0.5, R1 = 1, 000, and β = 0.126.

III.C. Effects of Wall-Cooling and Mach Number on Transient Growth

The effects of wall-cooling and Mach numbers on transient growth are further studied using both self-similar
solutions to boundary layer equations form M = 0 to M = 10 and the previously analyzed NS basic states.
The transient growth results, i.e., optimum energy gain and corresponding spanwise wavenumber, are found
to correlate better when the boundary layer thickness, δ.995, is used as the reference length scale rather
than the similarity scale δ. The rescaled energy gain is defined as

√
G/Reδ.995 and the rescaled spanwise

wavenumber is defined as βδ.995 = β δ.995.
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Figure 11 shows the rescaled optimum energy gains and corresponding rescaled spanwise wavenumbers for
boundary layer flows with Tw/Tad = 1 and M ≤ 3 for an initial disturbance location near the leading edge.
Boundary layers at higher Mach numbers are not included in this figure because of previously mentioned
convergence difficulties due to the presence of the basic state shock very close to the boundary layer edge.
Following the rescaling by δ.995, the maximum optimal gain increases with M and the corresponding spanwise
wavenumber slightly decreases over the selected range of Mach numbers. The optimum value of the spanwise
wavenumber falls within the narrow range of βδ.995 ∈ [2.3, 2.4].
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Figure 11. (a) Rescaled optimum energy gains and (b) corresponding rescaled spanwise wavenumbers with initial
optimization position at the leading edge, x0 = 0, for adiabatic wall and selected Mach numbers. Open symbols with
solid line denote results obtained with self-similar basic states and the filled symbol at Mach 3 represents the result
obtained with a NS basic state with R1 = 1000.

Figure 12 shows a the outcome of a similar parametric study for Mach numbers up to 10 and various values
of Tw/Tad with the initial position corresponding to R0/R1 = 0.5, which approximates the initial position for
maximum transient growth (Subsection III.B). As observed in figure 12(a), the rescaled maximum optimal
gain increases approximately linearly with the wall temperature ratio, Tw/Tad. Also,

√
G/Reδ.995 increases

with the Mach number for constant Tw/Tad. The limited set of results obtained using the NS basic states
agree with the self-similar results. The small reduction produced by the shock layer is hardly visible on the
scale of this plot. Figure 12(b) shows that the rescaled wavenumber also increases with increasing Tw/Tad
and M , and the rate of increase with Tw/Tad becomes greater at larger M . Thus, βδ.995 increases very slowly
with Tw/Tad at M = 3, but the rise becomes significantly more rapid at M = 10. In this figure, the effect
of the leading edge shock wave is small but noticeable, indicating a higher spanwise wavenumber relative to
prediction based on the self-similar mean flow.

The total disturbance energy used to characterize the energy gain defined by equation (4) includes the
kinetic energy component and a component involving contributions from fluctuations in thermodynamic
fluctuations. To characterize the relative variation in these components as a function of flow conditions,
figure 12(c) plots the ratio of kinetic energy and total energy at the final station. Because the secondary
instability of transient growth disturbances is mostly driven by streamwise velocity shear,49,50 a greater value
of this ratio is likely to enhance the growth of shear layer instabilities and possibly result in an earlier onset
of bypass transition associated with a nonlinear disturbance. At M = 10−3, nearly all disturbance energy
corresponds to the kinetic energy. As the Mach number increases to supersonic and hypersonic values, the
contribution of kinetic energy decreases progressively. At M = 10, less than one half of the total energy
comes from kinetic energy, regardless of the surface temperature condition. The relative energy contribution
from thermodynamic fluctuations increases with Tw/Tad. In other words, the kinetic energy component gains
in significance as the surface is cooled, which would likely destabilize the secondary instabilities.

IV. Pressure Gradient Effect: Transient Growth in Planar Stagnation Point
Boundary Layer

Transient growth in a boundary layer flow developing under a favorable pressure gradient is examined
in this subsection. Specifically, the basic state corresponds to a planar stagnation point boundary layer,
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Figure 12. (a) Rescaled optimum energy gains, (b) corresponding rescaled spanwise wavenumbers, and (c) ratio of
kinetic energy and total energy of the optimal disturbance at the final station with R0/R1 = 0.5 and R1 = 1, 000 for
selected Mach numbers and Tw/Tad. Open symbols with solid line denote results obtained with self-similar basic states
and the filled symbols represent the result obtained with NS basic states.
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which is described by the exact solution found by Hiemenz51,52 to the NS equations. This boundary layer
flow is known to be linearly stable at all streamwise locations (or, equivalently, for all Reynolds numbers).
Hence, any linear disturbance growth must occur via the transient growth mechanism. For the Hiemenz
flow, the boundary layer thickness remains constant at all stations; and the edge velocity increases linearly
with distance x∗ from the stagnation location, i.e., u∗∞ = c x∗. The wall-normal length scale is defined as
l∗r =

√
ν∗/c, where c is the inviscid strain rate near the stagnation point, i.e., c = du∗∞/dx

∗. The local
Reynolds number R is defined as R = u∗∞l

∗
r/ν
∗, which leads to R = x. Due to the lack of a velocity scale in

this case, the optimal gain scales linearly with R2
1; and hence, the optimal growth behavior of the Hiemenz

flow is characterized by the single parameter x0/x1, which is also the same as R0/R1 because of the constant
boundary layer thickness.

The effect of x0/x1 on the optimal gain factor as a function of the spanwise wavenumber is shown in
figure 13(a), where the ordinate is scaled by R2

1 as mentioned above. The sensitivity of the results to R1 was
checked using R1 = 1, 000 and R1 = 10, 000, and no visible differences were found. Results are plotted for
inflow locations ranging from very close to the stagnation point to just upstream of the location of interest,
x1. Although not shown, for inflow locations just upstream of the target location, the transient growth
magnitude is very small. As the inflow location x0 moves progressively farther upstream of x1, i.e., as the
length of transient growth region increases, the optimal gain factor continues to increase until reaching a local
maximum near x0/x1 ≈ 0.84. The corresponding nondimensional wavenumber is β = 1.13. The optimal gain
factor decreases beyond this peak, reaching a minimum when the inflow location corresponds to x0/x1 ≈ 0.3
(and the corresponding spanwise wavenumber is β ≈ 0.60). As the inflow location moves closer to the
stagnation point, the optimal gain continues to increase in a monotonic fashion, at least until x0/x1 = 0.02
(i.e., the smallest value of x0/x1 for which calculations were performed). The optimal wavenumber for inflow
locations near the stagnation point is significantly smaller than the values noted above in the context of the
local peak for x0/x1 ≈ 0.84 and the minimum energy gain at x0/x1 ≈ 0.3.
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Figure 13. (a) Effect of initial optimization position, x0, in the optimal energy gain for the incompressible planar
Hiemenz boundary layer flow. (b) Energy evolution with x1 = 1, 000 for x0/x1 = 0.04 (β = 0.41), x0/x1 = 0.2 (β = 0.54),
and x0/x1 = 0.84 (β = 1.13).

The streamwise evolution of the optimal gain factor for three selected inflow locations is plotted in figure
13(b). The gain factor for x0/x1 ≈ 0.84 is nearly the same as that for x0/x1 ≈ 0.04, but this growth occurs
over a considerably smaller distance. Therefore, the average rate of increase in disturbance energy norm is
nearly six times higher for the inflow location corresponding to x0/x1 ≈ 0.84.

The evolution of disturbance shape functions for inflow locations at x0/x1 = 0.04, 0.2, and 0.84 is shown in
figures 14 to 16, respectively. Part (a) in each figure illustrates the optimal initial profiles for the respective
inflow location. Regardless of the inflow location, the optimal initial profiles correspond to a streamwise
vortex; and the disturbance progressively evolves into a streamwise streak dominated by the streamwise
velocity perturbation, exactly similar to the disturbance evolution over the flat plate configurations as noted
in Section III. However, whereas the wall-normal support of the disturbance shape functions at the initial
and final streamwise locations was comparable to each other in the flat plate cases, the shape functions in
the stagnation point case exhibit increasingly slower decay along the wall-normal direction for streamwise
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locations near the inflow station. For instance, for x0/x1 = 0.04, the peak of the v̂ component of velocity
occurs at y ≈ 35, which is more than an order of magnitude larger than the thickness of the boundary layer.
Even at y ≈ 100, the v̂-velocity perturbation has decayed by a factor of at most 2 relative to the maximum
of the disturbance shape function. Furthermore, the dominant component of the inflow disturbance shape
corresponds to the v̂ (i.e., wall normal) velocity component, which corresponds to the direction of incoming
flow approaching the stagnation point. The disparity between the wall-normal extents of the disturbance
shape functions at the inflow and optimization locations becomes increasingly weaker as the inflow location
moves closer to the optimization location. For the case of x0/x1 = 0.84, for instance, the wall-normal support
of the inflow shape functions is at most twice as large as that near the outflow location x1.
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û

(e) x/x1 = 0.6

0

2

4

6

8

10

12

-1 0 1 2 3 4 5 6

y

û
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Figure 14. Optimal disturbance vector at selected streamwise positions for the incompressible planar Hiemenz boundary
layer flow with R1 = 1, 000, x0/x1 = 0.04 and β = 0.41.

The transient growth results for the stagnation point boundary layer present an interesting contrast to
the flat plate results in previous subsections. Figure 17 shows a comparison of the respective values of
rescaled optimal gain and the associated spanwise wavenumbers as a function of the initial optimization
position. The rescaled optimal energy gains and spanwise wavenumbers are greater for the Blasius flow
at every selected R0/R1. The overall maximum of the rescaled energy gin for the Blasius flow occurs
at R0/R1 =

√
x0/x1 = 0.6, where

√
G/Reδ.995 = 0.309 and βδ.995 = 2.79. For the Hiemenz flow, the

overall maximum is found at R0/R1 = x0/x1 = 0.84 with
√
G/Reδ.995 = 0.0489 and βδ.995 = 2.96. Not

surprisingly, however, these results are significantly lower than those for the Blasius boundary layer, but
rather similar to those of Refs. 18 and 19 for azimuthally periodic disturbances in an axisymmetric stagnation
point flow. The latter case includes the additional complexity of a decreasing disturbance wavelength in the
azimuthal direction as the inflow location approaches the stagnation point. The similarity of transient growth
characteristics in that case and the planar stagnation point boundary layer considered herein suggests that the
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û
v̂
ŵ
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Figure 15. Optimal disturbance vector at selected streamwise positions for the incompressible planar Hiemenz boundary
layer flow with R1 = 1, 000, x0/x1 = 0.2 and β = 0.54.
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Figure 16. Optimal disturbance vector at selected streamwise positions for the incompressible planar Hiemenz boundary
layer flow with R1 = 1, 000, x0/x1 = 0.84 and β = 1.13.
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flow acceleration is the dominant effect in comparison with the effect of a collapsing azimuthal length scale.
Even though the basic state for the planar stagnation point represents an exact solution to the NS equations
in this case, the PSE represent an approximate set of governing equations for the disturbance field. Hence,
direct numerical simulations of transient growth are desired to evaluate the accuracy of the PSE predictions
presented herein. The increasing “protrusion” of the disturbance shape functions into the freestream region
has potential implications for the excitation of the transient growth disturbances in a realistic freestream
disturbance environment and those implications should be assessed in future work as well. On the other
hand, disturbances at the body surface such as wall roughness are unlikely to induce disturbance profiles
that extend as far out as the optimal initial conditions near the stagnation point. Therefore, the growth of
stationary disturbances induced by surface roughness in the vicinity of the stagnation point is likely to be
suboptimal. Additional computations based on initial disturbance profiles that are primarily confined to the
boundary layer region would help determine just how suboptimal the associated transient growth is likely
to be.
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Figure 17. Comparison between (a) rescaled optimum energy gains and (b) corresponding rescaled spanwise wavenum-
bers for the Hiemenz and Blasius boundary layer flows

V. Summary and Conclusions

Optimal transient growth in compressible, zero-pressure-gradient boundary layer flows has been studied
using a variational approach based on the parabolized stability equations (PSE). The effects of viscous-
inviscid interaction near the leading edge and the weak shock wave are addressed using mean flows based on
the NS equations. Optimal growth results are shown for compressible flat plate boundary layer flow solutions
of the NS equations for four cases, namely, M = 3 (Tw/Tad = 1.0), M = 6 (Tw/Tad = 0.4 and 0.8), and
M = 10 (Tw/Tad = 0.35). At Mach 3, when the initial optimization position is located near the leading
edge, the difference between energy gains based on the NS mean flow and the self-similar, boundary layer
approximation is rather small, less than approximately 9%. At higher Mach number, this effect becomes
relevant. For the Mach 10 (Tw/Tad = 0.35) case, the scaled optimal gain with initial disturbance location
at R0/R1 = 0.2 is reduced with respect to predictions based on the (shock-free) self-similar mean flow by
60% with the final optimization position at R1 = 1000 and by 23% when R1 = 2000. For the higher Mach
number cases, the stronger inviscid-viscous interaction and shock wave in the NS mean flow prevents the
solution of converged results for initial optimization positions near the leading edge. For the downstream
initial locations that yielded satisfactory optimal growth predictions, the main effect of the shock wave on
the transient growth results was a small reduction in the optimum energy gain and small increase of the
corresponding spanwise wavenumber. Calculations for various initial locations show that the highest optimal
growth occurs for an initial location of x0/x1 ≈ 0.25 (R0/R1 ≈ 0.5), where the effects of the leading edge
shock are relatively weak for the optimization station of interest (R1 = 1000). Hence, the difference between
optimal gain predictions based on the self-similar approximation and the NS solution is less than 6% of
relative error for the selected cases. For x0/x1 = 0.25, the reduction in optimal growth based on the NS
mean flow solution increases to approximately 3.4% at Mach 6 with Tw/Tad = 0.8 and to 6.1% at Mach 10
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with Tw/Tad = 0.35.
The effect of Mach number and wall-cooling is studied by using self-similar and NS basic states. Setting

the leading-edge as initial optimization position for boundary layer flows with Tw/Tad = 1 and M ≤ 3,
the optimum nondimensional wavenumber scaled with respect to δ.995 is found to lie within the narrow
range of (2.3, 2.4) for M ≤ 3 with Tw/Tad = 1. The rescaled energy gain,

√
G/Reδ.995 , shows a monotonic

increase with increasing Mach numbers. When the initial location for transient growth is set to x0/x1 = 0.25
(R0/R1 = 0.5), which approximately corresponds to the maximum energy gain over all possible inflow
locations, the rescaled optimal wavenumber is found to increase with the flow Mach number over M ∈ [0, 10],
and also with the wall temperature ratio Tw/Tad. The same trend is observed for the rescaled energy gain.
The ratio of kinetic energy to total energy of the disturbance, K/E, is studied for the optimal spanwise
wavenumbers for a variety of freestream conditions. Because the secondary instability of transient growth
disturbances is mostly driven by streamwise velocity shear,49,50 a greater value of this ratio is likely to
enhance the growth of shear layer instabilities and possibly result in an earlier onset of bypass transition
associated with a nonlinear disturbance. As the Mach number increases, K/E is found to decrease with Mach
number and increase with Tw/Tad. Therefore, the wall-cooling effect is likely to enhance the consequences
of transient growth in two different ways: it increases both the maximum energy gain and the percentage of
disturbance kinetic energy.

The effect of pressure gradient on transient growth results is addressed in a canonical setting by analyzing
the incompressible planar stagnation flow. The boundary layer solution is given by the Hiemenz flow. Again,
the optimal initial perturbation corresponds to a streamwise vortex that evolves into a streamwise streak,
as in the zero-pressure-gradient flate plate cases. However, in comparison with the Blasius boundary layer,
the rescaled optimum gain and spanwise wavenumbers are found to be lower in the presence of the favorable
pressure gradient. Furthermore, there is a dramatic change in the dependence of optimal energy gain on the
initial location. In addition to a maximum at R0/R1 = 0.84, one observes a local minimum at R0/R1 = 0.3
in the optimum gain as a function of the initial location. For R0/R1 < 0.3, the optimal gain increases with
decreasing R0. Looking at the optimal initial disturbance profiles for initial positions close to the leading
edge, e.g., x0/x1 = 0.04, the wall-normal extension of the wall normal velocity is found to be several orders
of magnitude larger than the constant boundary layer thickness of the Hiemenz flow. Because optimal initial
perturbations of this type are unlikely to be generated by surface disturbances, energy gain due to roughness
induced transient growth near the stagnation point is likely to be significantly suboptimal. Of course, the
actual disturbance amplitudes would be determined by the combined effects of the favorable pressure gradient
on the (reduced) optimal gain and the realizability of the optimal initial disturbance in a typical disturbance
environment. The effect of pressure gradient on realizable transient growth is suggested as a topic for future
research.
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