SYSTEM LEVEL AEROTHERMAL TESTING FOR THE
ADAPTIVE DEPLOYABLE ENTRY AND PLACEMENT TECHNOLOGY (ADEPT).

Alan Cassell\(^1\), Sergey Gorbunov\(^2\), Bryan Yount\(^3\), Dinesh Prabhu\(^4\), Maxim de Jong\(^5\), Tane Boghozian\(^4\), Frank Hui\(^1\), Y.-K. Chen\(^1\), Carl Kruger\(^3\), Carl Poteet\(^6\), Paul Wercinski\(^1\)

\(^1\) Email: Alan.M.Cassell@nasa.gov, Entry Systems & Technology Division, NASA Ames Research Center, Moffett Field, CA
\(^2\) Jacobs Technology, Inc.- Entry Systems & Technology Division, NASA Ames Research Center, Moffett Field, CA
\(^3\) Engineering Systems Division, NASA Ames Research Center, Moffett Field, CA
\(^4\) Analytical Mechanics Associates, Entry Systems & Technology Division, NASA Ames Research Center, Moffett Field, CA
\(^5\) Thin Red Line Aerospace, Chilliwack BC, Canada
\(^6\) Structural Mechanics and Concepts Branch, NASA Langley Research Center, Hampton, VA
Adaptive Deployable Entry and Placement Technology

Key ADEPT Components

- Rigid Nose
- Robust Fabric Joints
- Ribs
- Struts
- Main Body
- 3d Woven TPS

Front Surface - Plain Weave
Aft Surface - Ortho Weave

Deployment Prototype Time Lapse Video

1 m Class Technical Maturation

- Develop and integrate technologies for a mechanically deployable decelerator for missions to Venus, Mars, and other destinations.
Primary Objective:
Demonstrate *simplified* ADEPT SPRITE-C configuration maintains integrity during test.

Secondary Objectives:
1. Monitor temperatures of key design features.
2. Evaluate fabric joint designs.
3. Measure recession.
5. Determine if rigid nose ablation products effect downstream design features.
Key TPS Design Features

FLOW FEATURES
- Bow Shock
- Separation
- Reattachment
- Streamlines & Heating Contours

JOINT ANATOMY
- 2-ply of 2-layer PW
- 6-layer (4PW/2OW)
- Frayed edges
- 14 layers
- 1.5" x 2.0"
- High density structural stitching

3D WOVEN FABRIC
- Nose/Gore Acreage Interface
- Nose
- Gore Close-Out

TOP VIEW ACREAGE

BOTTOM VIEW ACREAGE

CROSS SECTIONAL VIEW
- Joint/Stitching & Insulating Layers
- Shielding Layer Infusion

TRAILING EDGE TENSION CORD POCKET
- Joint/Stitching & Insulating Layers

6/15/2016
International Planetary Probe Workshop-13

5
Test Environment Predictions

Condition 1

IHF 21.5-in nozzle, 10" from nozzle exit plane

- $I_{arc} = 2000$ A
- $m_{air} = 200$ g/s, $m_{air+} = 55$ g/s, $m_{Ar} = 26$ g/s
- $P_{arc} = 240$ kPa

Condition 2

IHF 21.5-in nozzle, 10" from nozzle exit plane

- $I_{arc} = 2200$ A
- $m_{air} = 110$ g/s, $m_{air+} = 160$ g/s, $m_{Ar} = 30$ g/s
- $P_{arc} = 193$ kPa

Shear Stress & Pressure Plots for Acreage Material

Test Conditions Match Mars DRM Predictions
Test Article Description

Pre-Test

Test Article 1
Condition 1 for 60 sec
- Graphite Nose
- Six Layer C-Fabric
- Phenolic Infused Joints

Test Article 2
Condition 1 for 40 sec
Condition 2 for 40 sec
- Conformal PICA Nose
- Six Layer C-Fabric
- Phenolic Infused Joints

Post-Test

Test Article 3
Condition 2 for 60 sec
- Graphite Nose
- Six Layer C-Fabric
- Phenolic Infused Joints
- Various Resin Infused Joints

Test Article 4
Condition 2 for 60 sec
- Graphite Nose
- Four Layer C-Fabric
- Various Resin Infused Joints
- Insulating Fabric at Rib Interface

Stag pt heat load

~7.2 kJ/cm²

~7.2 kJ/cm²

~3.6 kJ/cm²

~3.6 kJ/cm²
Instrumentation & Imagery

Thermocouple Locations & Pyrometer Pointing

HD Video, Infrared Thermography & Pyrometry

- West View Ports
- HD Video
- IR Video
- Optical Pyrometers
- Still Camera
- GoPro Cameras

Test Article C2 @ 40 sec

- Thin Film TCs to monitor rib temperature

International Planetary Probe Workshop-13
Results: Fabric Performance

Acreage Fabric Observations

Pre-Test
Post-Test
Mechanically Shed Fibers

Acreage Fabric Temperature Response

Time (sec)
Temperature (°C)

570 °C ΔT
410 °C ΔT

Recession Measurements Along Gore Centerline

Gore Thickness (mm)
Radial Coordinate (mm)

50
100
150
175

2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

6-layers
5-layers
4-layers
3-layers
2-layers

Engineering Fidelity Response Model

Fabric Recession (mm)
Time (sec)

Engineering Response Model Predicts Recession (+/- 15%)

Significant delta T between forward and aft surface of fabric. Thermal analysis model correlates well with measurements.
Results: Fabric Joint Performance

Infrared Imagery

Rib Interface Temperatures for Various Joint Configurations

Resin-Infused Shielding Layers Are Robust Under These Environments

*Infused & Insulated Joint Showed Best Overall Performance.

Non-Infused Shielding Layers Shed After Burning Through Top Plies

6/15/2016 International Planetary Probe Workshop-13
Results: Upstream Ablator & Dual Heat Pulse

Graphite versus Conformal PICA Nose @ Condition 1
- Thermally massive graphite nose piece took time to reach thermal equilibrium, likely causing downstream temperature increases observed.

TEST ARTICLE C1 @ 40 SEC

TEST ARTICLE C2 @ 40 SEC

SURFACE TEMPERATURE COMPARISON

- Ablator upstream of fabric does not have much effect on performance of fabric.

Dual Heat Pulse Capability Demonstrated - SPRITE-C with C-PICA nose TPS
- 1st pulse - Heat Rate 120 W/cm² (stag point), duration 40 sec (test article left overnight in test chamber)
- 2nd pulse - Heat Rate 60 W/cm² (stag point), duration 40 sec
Lessons Learned & Future Work

Lessons Learned

1. **More Instrumentation**
 - Facility is generally limited to 12-channels per test article
 - Modify design to incorporate custom miniaturized data acquisition systems

2. **Develop more robust TC mounting technique.**
 - 5 out of 32 of the foil TCs did not survive assembly

3. **Develop better handling procedures.**
 - Fabric skirt was prone to shifting/geometry changes during preparation and handling, need more consistent geometry, especially at the free trailing edge.

4. **Develop insulating joint concept**, especially for less severe entry environments (i.e.-Mars).
 - Quartz fabric at joint/rib interface shows promise for limiting conduction into structure

5. **Understand ‘payload’ environment better**, including heat transfer, contamination (outgassing and decomposition of the fabric skirt) and fabric permeability.

Future Work

1. **Design Flight-Like Arc-Jet Test Article**
 - Incorporate Flight-Like Structural Features, Payload Simulator & Seals.

2. **Load Test Post-Heated Joints to Failure.**
 - Evaluate various designs for ultimate load strength.

3. **Utilize Computed Tomography Imaging to Aid in Material Properties Characterization.**
Acknowledgements

Funding
- Space Technology Mission Directorate- Game Changing Development
- Ames Research Center Innovation Fund

ADEPT Team Members Past & Present
- Brandon Smith, Owen Nishioka, Greg Swanson, Cole Kazemba, James Arnold, Ethiraj Venkatapathy, Peter Gage

Industry Partners
- Bally Ribbon Mills
- Thin Red Line Aerospace

Facility
- Arc Jet Test Crew
- STAR Labs

Computed Tomography- Lawrence Berkeley National Laboratory
- Francesco Panerai
- Nagi Mansour