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Finite-volume and finite-element schemes, both implemented within the FUN3D flow
solver, are evaluated for several test cases described on the Turbulence-Modeling Resource
(TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic
flow over a swept bump configuration, and supersonic flow in a square duct. The finite-
volume and finite-element schemes are both used to obtain solutions for the first two cases,
whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere
cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite-
volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions
have been obtained for both hexahedral and tetrahedral meshes and are compared with
finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and
the swept bump, solutions are obtained on a series of meshes with varying grid density and
comparisons are made between drag coefficients, pressure distributions, velocity profiles,
and profiles of the turbulence working variable. The square duct shows small variation due
to element type or the spatial accuracy of turbulence model convection. It is demonstrated
that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite-
volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity
to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.

I. Introduction

The use of Reynolds-averaged Navier–Stokes (RANS) with a turbulence model has become a critical tool
for the design of aerospace vehicles. However, the issues that affect the grid convergence of three dimensional
(3D) configurations are not completely understood, as documented in the AIAA Drag Prediction Workshop
series.1–3 This effort extends a previous grid convergence study of turbulent two dimensional (2D) flows.4 In
particular, the 3D Bump-in-channel, 3D Supersonic Square Duct, and 3D Hemisphere Cylinder cases from
the Turbulence Modeling Resource (TMR)5–7 will be examined.

II. Spatial Discretization and Time Advancement

For the current work, the spatial accuracy of finite-volume and finite-element schemes are examined,
both of which are implemented in the FUN3D unstructured-grid RANS flow solver. For each scheme, a
brief summary of each discretization is given below, along with a short description of the time advancement
algorithm used for obtaining steady-state solutions.

II.A. Finite-Volume Discretization

The finite-volume discretization is described by Anderson and Bonhaus8 and Nielsen.9 The flow variables are
stored at the vertices of the mesh. FUN3D solves the equations on mixed-element grids, including tetrahedra,
pyramids, prisms, and hexahedra. At interfaces delimiting neighboring control volumes, the inviscid fluxes
are computed using an approximate Riemann solver based on the values on either side of the interface. Roe’s
flux-difference-splitting scheme10 is used in the current study. For second-order accuracy, interface values are
obtained by a U-MUSCL scheme11,12 with gradients reconstructed at the mesh vertexes using an unweighted
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1 of 15

American Institute of Aeronautics and Astronautics



least-squares technique.8 The U-MUSCL scheme coefficient χ is set to 0.0 for purely tetrahedral grids and
0.5 for grids that contain other element types.

For tetrahedral meshes, the full viscous fluxes are discretized using a finite-volume formulation in which
the required velocity gradients on the dual faces are computed using the Green-Gauss theorem applied to
the elements that surround the dual faces. On tetrahedral meshes this is equivalent to a Galerkin type
approximation. For non-tetrahedral meshes, the same Green-Gauss approach can lead to odd-even decou-
pling. A pure edge-based approach can be used to circumvent the odd-even decoupling issue but yields only
approximate viscous terms. Therefore, for non-tetrahedral meshes, the edge-based gradients are combined
with Green-Gauss gradients; this improves the h-ellipticity of the operator and allows the complete viscous
stresses to be evaluated.8,13

The Spalart-Allmaras14 (SA) model is solved loosely coupled to the mean-flow equations. The negative
SA model15 (SA-neg) is available as well as the original model. The SA-neg model is identical to the original
SA model for positive values of the turbulence working variable. The SA-neg model exhibits better iterative
convergence properties, especially for initial transients. With the finite-volume discretization, both first-order
or second-order approximations for the convection term in the turbulence-model equation can be utilized.
The quadratic constitutive relation (SA-neg-QCR2000) modification of Spalart16 is also applied to the square
duct example.

The solution at each time-step is updated with a backwards Euler time-differencing scheme. On the
innermost level it uses a preconditioner based on a defect-correction method and iterates on a simplified
Jacobian with first-order convection terms, exact diffusion terms, and a pseudo-time term. At each time
step, the linear system of equations is approximately solved with a multi-color point-implicit procedure.
Local time-step scaling is employed to accelerate convergence to steady-state. This implicit relaxation
scheme can also be used as a preconditioner to Generalized Conjugate Residual (GCR)17 for stabilization
and convergence acceleration.

A nonlinear controller assesses the correction computed by the linear solver. The controller is responsible
for the CFL adaptation strategy and for deciding when to update the Jacobian. As a result of this assessment,
the suggested correction can be applied fully, partially, or completely discarded; the current Jacobian may
be updated or reused in the next iteration; and the current CFL number may increase, decrease, or stay the
same. Details of the adaptive time advancement scheme are provided by Pandya et al.18

II.B. Finite-Element Discretization

A finite-element scheme is currently under development within FUN3D. The discretization is based on a sta-
bilized finite-element approach that includes the Streamlined Upwind Petrov-Galerkin (SUPG) scheme,19,20

Galerkin least squares,21 and variational multiscale methods.22 In the results shown here, only the SUPG
scheme is considered.

In the current implementation, the negative SA turbulence model15 is tightly coupled with the flow
equations, yielding a non-linear algebraic system of equations with six variables at each mesh point. Although
the current implementation includes the capability for computing on tetrahedra, hexahedra, pyramids, and
prisms, only results for tetrahedral meshes are included.

To advance the solution towards a steady state, the density, velocities, temperature, and the turbulence
working variable are updated in a tightly-coupled formulation using a Newton-type solver similar to Burgess
and Glasby.23 Here, an initial update to the flow variables is computed using Newton’s method, with a
locally varying time-step parameter used to help provide global convergence. This full Newton update is
limited so that the density and temperature are not allowed to change more than fifteen percent. This limit
is then used to provide an upper bound for a line search to determine an optimal value. The root mean
square (RMS) of the residual is determined at four under-relaxed updates between zero and the maximum
update limit determined from realizability conditions described above. Using the four RMS values of the
residual, the optimal relaxation factor is determined by locating the minimum of a cubic polynomial curve
fit through the RMS samples.

At each iteration, the linear system is solved using the generalized minimal residual method (GMRES)24

algorithm with a preconditioner based on an incomplete lower upper (LU) decomposition with two levels
of fill25 and a Krylov subspace dimension of 200. It should be noted that these parameters are based on
previous experience for 2D problems26 but no extensive studies have been conducted to determine optimal
parameters for 3D problems.
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The solution variables used for the finite-element discretization differ from those normally stored in the
perfect gas compressible FUN3D finite-volume discretization, which uses nondimensional conserved variables.
The choice in solving for temperature directly in the finite-element discretization has been made to facilitate
future computations of real-gas flows where the equation of state is invariably given directly in terms of
density and temperature. At the completion of the solution process, the finite-element solution variables are
converted to conserved variables and passed back into the primary solver, which subsequently computes the
forces using previously developed finite-volume routines. It should be noted that this process may adversely
impact the accuracy of the force computations, which should be computed directly from the flux routines
within the finite-element portion of the code.

III. Test Cases

Three test cases are examined to evaluate the relative accuracy of the finite-volume and finite-element
discretizations. A brief description and relevant results are provided below for each case. Further details for
the test cases are provided on the TMR web site. For the cases presented, the residual RMS are converged
below 10−12 for all equations.

III.A. 3D Hemisphere Cylinder

The first test case is a hemisphere cylinder that was experimentally tested by Hsieh.27 A general overview
of the model is depicted in Fig. 1, which shows a surface mesh on the left, and typical pressure contours
on the right. The flow conditions correspond to a free-stream Mach number of 0.6, an angle-of-attack of
zero degrees, and a Reynolds number of 4.2 million per foot (350,000 per inch). The computational meshes
extend ten units in the axial direction, which corresponds to the length of the wind-tunnel model in inches.
Therefore, with the current meshes, the simulations are run at a free stream Reynolds number of 350,000 to
provide conditions consistent with the experiment.

(a) Tetrahedral mesh for hemisphere cylinder. (b) Pressure coefficients.

Figure 1. Surface mesh and contours of pressure coefficient for hemisphere cylinder.

For this configuration, finite-volume computations have been conducted by Diskin et al.28 on very fine
meshes with the intent of providing reference solutions for other researchers. The unstructured meshes used
for these simulations range in density from approximately 2 million nodes to just under 126 million nodes.
The finest mesh has been generated using an algebraic technique embodied in a Fortran code available on
the TMR web site. Each coarser mesh is generated using an additional program that removes alternate
mesh lines from an otherwise structured topology, thereby generating a nested family of grids. A summary
of the grid statistics, including the number of nodes, the number of hexahedra and prisms, the estimated
wall coordinate for the first grid point off the wall, and the number of nodes axially located on the surface
of the geometry is given in Table 1.

One purpose of the current work is to examine the effects of using tetrahedral elements on the accuracy
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Table 1. Family of mixed-element grids for finite-volume solutions.

Grid Level Nodes Hexahedra Prisms h ≈ (1/N)1/3 y+ Axial nodes
level 2 2,010,998 1,776,000 355,200 0.0079 2.0 200
level 1 15,858,075 14,208,000 2,841,600 0.0049 1.0 400
level 0 125,946,869 113,664,000 22,732,800 0.0020 0.5 800

of the solutions obtained using both the finite-volume and finite-element discretizations. To this end, a
series of tetrahedral meshes has been generated, also using the code from the TMR web site. In this case,
however, the sequence of coarser grids is not generated by removing alternate mesh lines from the finest
mesh. Instead, the finest mesh is generated with 400 nodes distributed in the axial location along the surface
of the cylinder with a wall coordinate of 1.0. The coarser meshes are then generated by subsequent halving
of the number of nodes along the axial direction, and doubling the spacing normal to the wall. A final
summary of the tetrahedral meshes is provide in Table 2. As seen in the table, the finest mesh consists of
18.6 million nodes and 110 million tetrahedra, whereas the coarsest mesh only has 371,308 nodes and just
over 2 million tetrahedra.

Table 2. Family of tetrahedral grids for finite-volume and finite-element solutions.

Grid Level Nodes Tetrahedra h ≈ (1/N)1/3 y+ Axial nodes
level C 371,308 2,138,400 0.0139 4.0 200
level B 2,698,971 15,840,000 0.0072 2.0 400
level A 18,606,808 110,246,400 0.0038 1.0 800

In the comparisons that follow, the results obtained on the finest mesh from Diskin et al.28 are used
as datum solutions for comparison. The pressure distribution along the upper surface of the cylinder is
examined, as are profiles of both the u-component of velocity and the turbulence model working variable.
The variation of the total drag coefficient is also examined as a function of mesh density. These results are
further broken down into appropriate contributions from pressure forces and skin friction forces to provide
more detailed analysis.

Figure 2 shows the pressure distributions obtained with the finite-element and finite-volume schemes
compared to the reference solution, as well as with experiment. Figure 2(a) demonstrates that very little
differences are evident from the solutions obtained on the finest and coarsest meshes when computed using
the finite-element discretization on a tetrahedral mesh. Furthermore, the finite-element solutions agree very
well with the finite-volume reference solution obtained on the mixed-element mesh with almost 126 million

(a) Pressure coefficients from finite-element discretization. (b) Pressure coefficients from finite-volume discretization.

Figure 2. Pressure Distribution for Hemisphere Cylinder.
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nodes. In Fig. 2(b), which shows results obtained using the finite-volume scheme, the pressure distributions
obtained on the different meshes are also very similar, although there is slightly more difference between
the solution obtained on the coarsest mesh and the reference solution than was evident in the finite-element
solution.

In Fig. 3, the skin-friction coefficients obtained with the finite-element and finite-volume schemes on
the tetrahedral meshes are compared with the finite-volume reference solution. In Fig. 3(a), the agreement
between finite-element and reference solutions is very good for the fine grid and the medium grid, but a
discrepancy is apparent on the coarsest mesh of 371 thousand nodes. Figure 3(b) shows results obtained
using the finite-volume discretization. As with the finite-element results, the comparison between the fine-
grid solution and the reference solution is very good, although slightly more difference is observed in the
solutions on the medium and coarse meshes.

(a) Skin-friction coefficients from finite-element discretiza-
tion.

(b) Skin-friction coefficients from finite-volume discretiza-
tion.

Figure 3. Skin-Friction Distribution for Hemisphere Cylinder.

Profiles of the u-component of velocity at the x/L = 0.05 (x = 0.5) intersection of the hemisphere and
cylinder are shown in Fig. 4, which presents comparisons of the finite-element and finite-volume results
obtained on each mesh with the reference solution. In Fig. 4(a), the solutions obtained with the finite-
element and finite-volume discretizations agree well with the reference solution. Note that the discrepancies
that appear between y = 0.0010 and y = 0.0015 are simply because the solution within the elements is
assumed to be linear. On the medium and coarse mesh, the differences between the current solutions and
the reference solution increase as the mesh density decreases. However, it should be noted that the finite-
element solution is closer to the reference solution, indicating that the solution is slightly more accurate.

(a) Fine mesh. (b) Medium mesh. (c) Coarse mesh.

Figure 4. Profile of u-velocity.

Profiles of the turbulence working variable at the x/L = 0.05 (x = 0.5) intersection of the hemisphere
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and cylinder, depicted in Fig. 5, show similar trends as observed with the velocity profiles. Specifically, on
the finest tetrahedral mesh, the finite-element and finite-volume solutions both agree well with the reference
solution obtained using the finite-volume scheme on a mixed-element mesh with approximately 126 million
nodes. As with the velocity profiles, differences between the current solutions and the reference solution
increase as the mesh is coarsened, and the finite-element solution appears to be somewhat more accurate
than the finite-volume solution obtained on the same mesh.

(a) Fine mesh. (b) Medium mesh. (c) Coarse mesh.

Figure 5. Profile of turbulence working variable.

Finally, the convergence of the drag coefficient obtained on the above sequence of meshes is shown in
Fig. 6. A reference area of ten has been used in the computation of the drag coefficient to be consistent
with that used in establishing the reference solutions.28 In Fig. 6, the total drag, pressure drag, and skin-
friction drag are shown for the finite-element and finite-volume results compared with that of the reference
solutions. In Fig. 6, the reference solutions are depicted with solid circles for easier identification. All the
solutions, including the reference solution, are still exhibiting noticeable changes as the mesh is continually
refined. However, the changes in the drag between meshes decreases with each mesh refinement, as expected.
In examining the total drag and the pressure drag, the finite-element scheme shows less sensitivity between
meshes, and is generally closer to the asymptotic value for a given number of degrees of freedom. In contrast,
the skin-friction drag from the finite-element solution exhibits a inexplicable non-monotone behavior where
the viscous drag is lower on the medium mesh than either the fine or coarser ones.

(a) Total drag. (b) Pressure drag. (c) Skin-friction drag.

Figure 6. Drag convergence.

III.B. 3D Bump

The next test case is a swept 3D bump which is also described in further detail on the TMR web site. For
this case, finite-element and finite-volume solutions are obtained on pure tetrahedral meshes and compared
with finite-volume solutions obtained on hexahedra meshes. Solutions have been obtained on hexahedral and
tetrahedral meshes ranging from just over 18 thousand nodes, up to over 966 thousand nodes. Comparisons
are made with simulations by Diskin et al.28 that have been computed on hexahedral meshes with almost 59
million nodes. The 3D bump depicted in Fig. 7 shows the surface mesh for representative tetrahedral and
hexahedral meshes, respectively. The flow conditions correspond to a free-stream Mach number of 0.2 and
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a Reynolds number of 3 million based on unit grid length. In the results that follow, comparisons are again
made with the results described in Diskin et al.28 for drag coefficients, pressure distributions, and profiles of
u-velocity and the turbulence working variable.

(a) Tetrahedral mesh for swept bump. (b) Hexahedral mesh for swept bump.

Figure 7. Geometry and surface meshes for tetrahedral and hexahedral grids.

A summary of the mesh sizes used for this study is given in Table 3. Note that for the finest mesh, finite-
volume results on hexahedra from Diskin et al.28 are used as reference solutions. Because the tetrahedra were
not used beyond mesh sizes of 966 thousand nodes, the number of tetrahedra for the finest two meshes is
designated with “NA”. Pressure distributions, velocity profiles, and profiles of the turbulence working variable
computed using the finite-element and finite-volume results on tetrahedral meshes have been obtained on
grid levels 3–5, and are compared to corresponding finite-volume results on hexahedral meshes of the same
density.

Table 3. Family of tetrahedral grids for finite-volume and finite-element solutions.

Grid Level Nodes Hexahedra Tetrahedra h ≈ (1/N)1/3

level 5 18,245 14,080 84,480 0.0380
level 4 129,033 112,640 675,840 0.0198
level 3 966,161 901,120 5,406,720 0.0101
level 2 7,468,065 15,840,000 NA 0.0051
level 1 58,705,985 110,246,400 NA 0.0026

Computed contours of pressure coefficients over the surface of the bump are shown in Fig. 8, Fig. 9, and
Fig. 10. The contours shown in Fig. 8 have been obtained with the finite-volume scheme on hexahedral
meshes. The contours shown in Fig. 9 depict solutions obtained on tetrahedral meshes using the finite-
element scheme and the contours shown in Fig. 10 depict solutions obtained on tetrahedral meshes using
the finite-volume scheme. As seen in Fig. 8 and Fig. 9, the finite-volume results obtained on hexahedral
meshes and the finite-element results obtained on tetrahedral meshes are qualitatively very similar. However,
the finite-volume solutions obtained on tetrahedral meshes, shown in Fig. 10, are noticeably inferior to the
others.

The tetrahedral meshes are generated directly from the hexahedral meshes by splitting each hexahedra
into six tetrahedra with a consistent stencil.29 During this process, all the surface triangles have been gen-
erated by splitting the surface quadrilaterals in identical directions, thereby introducing a strong bias in the
mesh that apparently has a stronger effect on the finite-volume solutions than on the finite-element solutions.
Meshes with more random dissection of the hexahedra or meshes typically produced by unstructured grid
generation, may mitigate the strong bias of these tetrahedral grids.

Diskin et al.28 reported odd-even decoupling for unweighted least-squares reconstruction with FUN3D
for this case, which is indicated by the zigzag pattern in Fig. 10(a) contours. This odd-even decoupling
can be addressed with a directional gradient along the structured grid lines or an approximate mapping
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(a) 966 thousand node hexahedral
mesh.

(b) 129 thousand hexahedral mesh. (c) 18 thousand hexahedral mesh.

Figure 8. Pressure coefficients from finite-volume scheme on hexahedral meshes.

(a) 966 thousand tetrahedral mesh. (b) 129 thousand tetrahedral mesh. (c) 18 thousand tetrahedral mesh.

Figure 9. Pressure coefficients from finite-element scheme on tetrahedral meshes.

(a) 966 thousand tetrahedral mesh. (b) 129 thousand tetrahedral mesh. (c) 18 thousand tetrahedral mesh.

Figure 10. Pressure coefficients from finite-volume scheme on tetrahedral meshes.

technique.28 It should be noted that past experience and the other cases in this paper show that the finite-
volume discretization on pure tetrahedral meshes typically yields good accuracy. The strongly biased grids
with curvature in this case may be exacerbating the weaknesses of unweighted least-squares reconstruction.30

Surface pressure distributions along the y = 0.0 symmetry plane are shown in Fig. 11. Figure 11(a)
shows results obtained with the finite-volume discretization on hexahedral meshes ranging in size from 18
thousand nodes to 966 thousand nodes, as well as the finite-volume reference solution, which is computed on
the mesh with almost 59 million nodes. Similar results are shown in Fig. 11(b) for finite-element solutions
on the tetrahedral meshes. As seen in the figures, the finite-volume results on hexahedra and the finite-
element results on tetrahedra are virtually indistinguishable. In contrast, the finite-volume results obtained
on tetrahedra in Fig. 11(c) show a substantive decline in accuracy compared to the others. The accuracy
reduction appears to be a result of the odd-even decoupling seen in Fig. 10.

Velocity profiles, extracted along a vertical line extending vertically from (1.2079,−0.1250,0.0) are shown
in Fig. 12. Figure 12(a) shows results obtained on the 966 thousand hexahedral and tetrahedral meshes
compared with the reference solution. As seen, the finite-element solution obtained on the tetrahedral
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(a) Finite volume (hexahedra). (b) Finite element (tetrahedra). (c) Finite volume (tetrahedra).

Figure 11. Convergence of pressure coefficients along the y = 0 symmetry plane.

(a) 966 thousand mesh. (b) 129 thousand mesh. (c) 18 thousand mesh.

Figure 12. Profiles of v-velocity.

mesh and the finite-volume hexahedral mesh agree very well with the reference solution. The finite-volume
solution on the tetrahedral mesh shows much more disparity. Profiles in Fig. 12(b) and Fig. 12(c) show
similar results to the reference solutions with slight degradation as the mesh is coarsened. The finite-volume
solutions obtained on tetrahedra have been omitted in Fig. 12(b) and (c) to provide a better view of the
comparison between the finite-element scheme on tetrahedra and the finite-volume scheme on hexahedra.
On the 129 thousand mesh, the finite-element scheme on tetrahedra appears to be somewhat closer to the
reference solution near the wall than the finite-volume scheme on hexahedra, but this trend is reversed at
the edge of the boundary layer. The odd-even decoupling seen in pressures of the finite-volume scheme on
tetrahedral grids appear to also negatively impact the velocities.

Profiles of the turbulence working variable, along a vertical line emanating from (1.2079,−0.1250,0.0),
are shown in Fig. 13. As with the results presented for the velocity profiles, Fig. 13(a) demonstrates that the

(a) 966 thousand mesh. (b) 129 thousand mesh. (c) 18 thousand mesh.

Figure 13. Profiles of turbulence working variable.
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results obtained using the finite-element discretization on the 966 thousand tetrahedral mesh agrees well with
the reference solution, as does the finite-volume solution obtained on the 966 thousand hexahedral mesh.
Again, the finite-volume solution obtained on the tetrahedral mesh is somewhat degraded when compared to
the other solutions. Figure 13(b) shows similar results obtained on the 129 thousand meshes. In contrast to
the velocity profiles, results from the finite-volume scheme on tetrahedra are partially shown in this figure,
although they are clipped to facilitate better comparison between the other results. For this mesh density,
the finite-element solution appears to be in slightly better agreement than the finite-volume scheme using
hexahedra. On the coarsest mesh density, consisting of only 18 thousand nodes, the finite-element solution
on tetrahedra continues to provide good results when compared to the much finer finite-volume reference
solution on the hexahedral mesh. The finite-volume solution obtained on the coarsest tetrahedral mesh is
clearly less accurate as the results are barely visible as they exceed the range in Fig. 13(b) and (c).

The final results for the swept-bump case depict the drag computed with each scheme on a sequence of
continuously refined meshes to observe the effects of varying mesh density. Figure 14(a) shows the conver-
gence of the total drag with mesh refinement. The finite-volume scheme on tetrahedra shows significantly
more variation than the same scheme on hexahedra, or the finite-element scheme on tetrahedra. Examin-
ing the finite-volume results on tetrahedra compared with those for the hemisphere cylinder in Fig. 6, the
variation in drag for this case is significantly higher than for the 3D hemisphere cylinder. The odd-even
decoupling seen in pressures and velocities of the finite-volume scheme on tetrahedral grids appear to also
impact the integrated drag convergence.

(a) Total drag. (b) Pressure drag. (c) Viscous drag.

Figure 14. Drag coefficients with mesh refinement.

Because of the wide variation in the drag results from the finite-volume scheme obtained on the tetrahe-
dral meshes, Fig. 15 shows a view of the results from Figure 14, excluding the finite-volume solutions on the
tetrahedral meshes with the largest variation. It appears that the solutions on the hexahedral meshes ob-
tained with the finite-volume discretization and the finite-element solutions on tetrahedral meshes asymptote
to similar values as the mesh is refined.

(a) Total drag. (b) Pressure drag. (c) Viscous drag.

Figure 15. Enhanced view of drag coefficients with mesh refinement.
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III.C. 3D Supersonic Flow in a Square Duct

Experimental data for this case is extracted from Davis and Gessner31 as provided by the TMR web site. This
case models flow in a square duct that develops without strong shock waves. The lack of strong shocks focuses
this example on the viscous development without overwhelming inviscid shock structures. The presence of
turbulence-driven secondary flow is a stringent test for turbulence models to predict supersonic corner flows.

One quarter of the square domain cross section with internal duct width of D is modeled by symmetry
planes. A short symmetry boundary length of 1.26829D is extended in front of a non-slip adiabatic wall
of 52D in length. The inflow boundary is Riemann invariant to provide a uniform supersonic inflow of 3.9
Mach number and 520 ◦R, which are also the reference conditions. The outflow boundary is extrapolation.
The Reynolds number of 508,000 is based on D.

A Fortran code is provided by the TMR web site to generate a structured H-topology grid with clustering
in the solid wall corner of the 0.5D× 0.5D domain with coarsest spacing along the symmetry boundary con-
dition intersection. Once the finest level0 grid is created, it is recursively coarsened by removing every other
node in each coordinate direction, reducing cell counts by factors of eight. The quarter-domain structured
grid provided is converted into an unstructured hexahedral grid format. Each hexahedral grid constructed
from these structured grid is converted into tetrahedral grids with the method of Dompierre et al.29 Four
grid levels with two element types are examined and their dimensions are given in Table 4. Each grid is
either all hexahedra or all tetrahedra and the number of nodes is independent of element type. The coarsest
hexahedral mesh is shown in Fig. 16.

Table 4. Committee supplied structured and hybrid grids.

Grid Level Nodes Hexahedra Tetrahedra
level3 53,125 48,384 290,304
level2 405,769 387,072 2,322,432
level1 3,170,833 3,096,576 18,579,456
level0 25,068,577 24,772,608 148,635,648
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(b) x− z view, x scaled by 1/100.

Figure 16. Supersonic square duct hexahedral level3 mesh.

First- and second-order convection (using reconstructed turbulence model working variable gradients)
is utilized with the SA-neg and SA-neg-QCR2000. The RMS of all supersonic square duct residuals are
reduced ten orders of magnitude. The hexahedral level0 SA-neg-QCR2000 with second-order turbulence
working variable convection was restarted from the corresponding converged first-order convection case
because initialization with reference conditions resulted in stalled convergence. All other cases were initialized
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with reference conditions.
The skin friction profile exhibited by SA-neg-QCR2000 in Fig. 17 and Fig. 18 is indicative of the secondary

corner flow observed in the experiment. The SA-neg skin friction profile (Fig. 19) indicates a lack of secondary
flow, which results in the poor prediction of experimental skin friction.
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(a) First-order convection SA-neg-QCR2000.
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(b) Second-order convection SA-neg-QCR2000.

Figure 17. Hexahedral mesh, supersonic square duct skin friction uniform grid refinement at 50D station.
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(a) First-order convection SA-neg-QCR2000.
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(b) Second-order convection SA-neg-QCR2000.

Figure 18. Tetrahedral mesh, supersonic square duct skin friction uniform grid refinement at 50D station.

SA-neg-QCR2000 (Fig. 17 and Fig. 18) appears to require a finer grid than SA-neg (Fig. 19) as inferred
from the greater amount of variation between grids, particularly inflection in skin friction seen near the
centerline of the finer two grids. Grid dependency trends are similar for the hexahedral (Fig. 17) and
tetrahedral (Fig. 18) grids. First- and second-order convection show similar grid dependency trends. The
difference between first- and second-order convection for a grid level is negligible. Differences can only be
observed on the coarsest level3 tetrahedral grid.

SA-neg on hexahedral grids (Fig. 19) shows very little variation between grids, with the only difference
shown by the centerline skin friction on the coarsest grid. This indicates that these grids may be sufficiently
fine for this turbulence model. The SA-neg simulations appear to be grid resolved on this family of grids,
but the SA-neg-QCR2000 simulations may require an increase in grid resolution to resolve the inflection in
the skin friction profile near the duct centerline.

The drag coefficient on the square duct is shown in Fig. 20 as a function of characteristic h. Linear
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Figure 19. Hexahedral mesh, supersonic square duct skin friction uniform grid refinement at 50D station, first-order
convection SA-neg.

trends indicate that a method presents first-order convergence in space. This characteristic h is estimated
with the number of nodes N by h = N−1/3. The two series of hex grids (square symbols) appear to be
insensitive to the accuracy of the convection terms in the turbulence model for SA-neg-QCR2000. The two
series of tetrahedral grids (triangle symbols) are more sensitive to the accuracy of the convection terms
in the turbulence model. The second-order convection tetrahedral drag is near the hexahedral drag on
equivalent grids. The first-order convection tetrahedral drag is lower than the hexahedral drag or second-
order convection tetrahedral drag, but appears to be approaching the same asymptotic value. The SA-neg
drag is lower than that predicted by the SA-neg-QCR2000 model, which may be a result of the difference in
secondary flow prediction indicated by the skin friction profiles.
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Figure 20. Supersonic square duct drag coefficient uniform grid refinement.

IV. Conclusions

The hemisphere cylinder, bump, and square duct 3D cases from the TMR web site were presented. The
finite-element formulation in FUN3D provided better comparisons to reference solutions than the finite-
volume formulation. The 3D bump showed odd-even decoupling on tetrahedral grids created with a biased
subdivision of hexahedral grids that polluted surface pressures and negatively impacted velocity and turbu-
lence working variable profiles. Diskin et al.28 indicated this odd-even decoupling could be mitigated with
different gradient reconstruction techniques for mean flow convection. The odd-even decoupling was not ob-
served for the hemisphere cylinder or supersonic square duct tetrahedral grids. The supersonic duct showed
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very weak grid topology or turbulence convection order of accuracy dependence. SA-neg-QCR2000 resulted
in improved prediction of experimental flow topology over SA-neg as indicated by skin friction comparisons
to experiment. The secondary corner flows simulated by SA-neg-QCR2000 showed more grid dependence
than SA-neg.
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