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The goal of this work is, through computational simulations, to provide statistically-

based evidence to convince the testing community that a distributed testing approach is 

superior to a clustered testing approach for most situations.  For clustered testing, 

numerous, repeated test points are acquired at a limited number of test conditions.  For 

distributed testing, only one or a few test points are requested at many different conditions. 

The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) 

and Response Surface Methods (RSM) are applied to enable distributed test planning, data 

analysis and test augmentation.  The D-Optimal class of DOE is used to plan an optimally 

efficient single- and multi-factor test.  The resulting simulated test data are analyzed via 

ANOVA and a parametric model is constructed using RSM.  Finally, ANOVA can be used to 

plan a second round of testing to augment the existing data set with new data points.  The 

use of these techniques is demonstrated through several illustrative examples.  To date, 

many thousands of comparisons have been performed and the results strongly support the 

conclusion that the distributed testing approach outperforms the clustered testing approach. 

Nomenclature 

ANOVA = analysis of variance 

COV = coefficient of variation 

DOE = design of experiments 

DX9 = Design Expert software, version 9 

eRMS = root mean square error 

eCOV = error in the estimated variability 

OFAT = one factor at a time 

RSM = response surface methods 

SME = Subject Matter Expert 

XML = Extensible Markup Language, a subset of the Standard Generalized Markup Language 
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I. Introduction 

HE current processes used for obtaining experimental data for materials follow the guidelines established in 

MIL-HDBK-17-1F1 and its predecessor documents.  The history of this document dates back as far as 19432.  

Version 1F of the handbook was released in 20021.  This approach, identified herein as clustered testing, results in 

multiple, repeated tests points selected at a limited number of test conditions.  For testing involving numerous 

independent variables, a rectangular grid of testing conditions, typically known as the one-factor-at-a-time (OFAT)3 

method of testing, is also routinely employed.  One now outdated foundation of the OFAT testing strategy is that 

complicated statistical analyses could not be routinely performed on old computers.  Three distinct disadvantages of 

the OFAT testing approach include: (1) OFAT requires more runs for the same precision in effect estimation, (2) 

OFAT cannot estimate multi-factor interactions, and (3) OFAT can miss optimal settings of factors3. 

Considerable progress has been made in computational capabilities since the time4-5 when the OFAT method was 

the default standard testing method.  Peak computer speeds and the number of cores that can be utilized have 

increased by orders of magnitude in that time frame.  Yet, the process to obtain and analyze experimental data for 

composite materials has remained largely unchanged for years.   

This paper proposes a different approach to composite materials testing, data analysis and data augmentation.  The 

proposed process (distributed testing) is based upon the statistical technique known as Analysis of Variance 

(ANOVA)6-13; ANOVA enables the use of Design of Experiments (DOE)14 and Response Surface Methods 

(RSM)15.  These classical statistical methods were too computationally intensive for use many years ago, but now 

can be routinely performed on basic desktop or laptop computers.  A key feature of these methods is that many or all 

of the factor values are changed simultaneously, resulting in greater precision in effect estiamtion3.  This paper 

utilizes the ANOVA methods of a commercially available software package from Stat-Ease16 called Design-Expert 

(version 9, DX9)17, but similar capabilities can be performed through the programming languages of R18, Java19, 

Python20 or Matlab21.  NASA does not endorse the use of any of these products, but they have been investigated and 

found to have many capabilities useful to this effort.   

In general usage, DOE or experimental design is used for planning any information-gathering exercises where 

variation is present, regardless of whether the variation is under the full control of the experimenter or not14. 

However, in statistics, these terms are usually used for controlled experiments. Experimenters are often interested in 

modeling and analyzing the effect of some process or intervention (the "treatment") on specific objects (or people, 

plants, animals, or things). As such, design of experiments is thus a technique that has very broad application across 

all the natural and social sciences and engineering14.  While the authors of this paper are not advocating the use of 

the DX9 software, this package contains many useful and necessary capabilities that can be easily accessed and 

employed by non-experts in statistics.  Among these capabilities is a class of DOE known as optimal designs, in 

which the minimum number of points is used to define a specific RSM functional form16-17.  In the DX9 software, 

the functional form is a single or multi-factor polynomial to which additional mathematical transformations 

(logarithmic, exponential, square root, etc.) can be applied.  Optimal designs allow the functional form model 

parameters to be estimated without bias and with minimum-variance. In comparison to an optimal design, a non-

optimal design requires a large number of experimental runs to estimate the parameters to the same order of 

precision14, 16-17, 22.  The optimality of a design depends on the statistical model and is assessed with respect to a 

statistical criterion, which is related to the variance-matrix of the estimator22.  In practical terms, optimal 

experiments can [significantly] reduce the cost of experimentation. 

In this research, the class of D-Optimal designs is used.  These space-filling designs seek to maximize the 

determinant of the Fischer information matrix of the design22. For these designs, the variance of the parameter 

estimations for a specified model is minimized when the determinant of Fischer information matrix is maximized23.  

Essentially, D-Optimal designs seek to optimally cover a given domain with the fewest number of data points 

required to create a given RSM model, while maximizing the predictive capability of the resulting RSM model.  The 

number of points required depends on both the number of factors (independent variables) and the order of the 

polynomial model that is to be created11.  Computations are used to repeatedly simulate a wide variety of possible 

testing campaigns.  For example, as shown in Figure 1, two sample data sets (7 points each, black delta and red 

gradient symbols) are shown to represent the relative strength (in percent) of concrete24.  The value of the response 

(dependent variable) is shown on the y-axis as a function of the factor temperature in degrees Celsius (independent 

variable), plotted along on the x-axis.  The symbols are the actual measured relative minimum and maximum 

measured strength of two different types of concrete.  The solid blue line is the mean value curve and the dashed 

blues lines are the 95% confidence interval about the mean value curve, as computed by the DX9 software.  Without 

know the type of concrete that may be used for a given application, considerable variability in the relative strength 
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(on the order of 40%) is possible throughout the domain.  At a temperature of 600oC, the measured data have spread 

from about 40% to 90% relative strength. 

In this work, the results of different testing strategies (ranging from fully clustered to fully distributed) are 

statistically analyzed and evaluated over a large number of sample sets, so as to produce statistical evidence in 

support of distributed testing.  By using computational simulations of testing, results that would take years to obtain 

through actual testing can be obtained in minutes or hours.  The proposed process uses a more distributed, rather 

than clustered, testing strategy.  With the distributed testing approach, many fewer test points are required to achieve 

equivalent accuracies of the mean value and variability3, 22.  In addition, RSM creates smoother, more globally 

representative models of many material properties, which in turn creates smoother A- and B-Basis confidence 

bounds, typically associated with the strength of materials1. 

To date, many hundreds of thousands of examples (perhaps approaching a total of millions of examples) have 

been analyzed using this computational simulation of testing process.  In each simulation, comparisons were made 

between the distributed testing approach and the clustered testing approach.  Without going into details here, 

numerous phases of the simulated testing process must account for statistical variability and uncertainty.  In each 

example case, an initial truth model was arbitrarily defined to represent some material property behavior of interest; 

the truth model contained some inherent variability.  Then, many simulated test sample draws from the truth model 

population were produced, using some choice of simulated distributed or clustered testing approaches.  The sampled 

data were then fit via RSM to produce analytic surfaces representing the simulated “measured data”.  Finally, the 

RSM models were quantitatively compared to the initial truth model in order to determine the validity of each 

testing approach by several metrics.  As each of these process steps, described in more detail in Section II of this 

paper, can be subject to variability and uncertainty, several replications for each phase in the simulation process 

were obtained.  Enforced replication enables statistically sound conclusions to be drawn. The conclusions should be 

independent of any particular process step or implementation approach. 

Over the course of more than one year, each author has independently performed similar analyses using their own 

methods and tools, and all have reached similar conclusions.  Simulations were initially run using Microsoft Excel 

and the DX9 software.  Later, an XML interface to the DX9 software was introduced to automate the interaction 

process and to allow for thousands of cases to be analyzed overnight on a single office computer.  These exercises 

have since been repeated in the languages R, Matlab, Java, and Python; numerous scripts have been developed that 

can be provided to potential users.  Additional automation steps and parameterization of the problem setup were also 

later employed.  Again, NASA does not endorse the use of any of these products. 

Figures 2, 3 and 4 (typical of the initial results) demonstrate a proof of concept for the distributed versus clustered 

testing approach.  Without going into all the details at this point, these results hint at the strength of the statistically-

based evidence25, 26 that has been obtained to date for the clustered and distributed testing approaches  More rigorous 

examinations of the clustered versus distributed testing approaches are presented in Section III of this paper.  Figure 

2 shows the performance of the distributed testing approach in better replicating the underlying truth model, 

compared with that of the clustered testing approach, for both a one-factor example, Fig. 2(a), and a five-factor 

example , Fig. 2(b).  Each used 1000 single-factor truth models of various polynomial orders.  The distributed 

testing approach resulted in a better approximation to the underlying truth model about 93% of the time for the one-

factor truth models and about 98% of the time for the five-factor truth models.  Using different color bands for 

distributed analyses with increasing numbers of data samples considered, Figure 3 shows the 95% confidence bands, 

typical of distributed testing (with the number of distributed data samples ranging in number from 9 to 75), around a 

truth model curve derived by applying the RSM process to the clustered data points shown with red symbols.  The 

width of the confidence bands quickly decreases with an increasing number of distributed points considered as the 

bands converge to the underlying truth model.  Figure 4 illustrates a comparison of the B-Basis allowables curves1 

that can be derived from the clustered and distributed testing approaches.  In Fig. 4(a), the red symbols are simulated 

clustered data.  The analytic truth model from which the data samples were drawn is also shown (solid blue line).  

Computed B-Basis values for each cluster are shown as the black symbols, with both piecewise linear segments 

connecting the B-Basis values (solid black lines) and a least squares fit through the B-Basis values (black dashed 

line) included in the figure.  Within the materials testing community, the idea of applying RSM methods to generate 

B-Basis curves, rather than discrete values is quite novel, even controversial.  In Figure 4(b), this idea is carried one 

step farther, wherein a set of fully distributed data samples (red symbols) replaces the clustered data in Fig 4(a).  

RSM techniques are then applied to this distributed data to obtain a smooth least squares curve that reflects an 

approximate truth model, and the B-Basis curve is then derived by considering the variability of all the available 

data around the smooth least squares curve.  The resulting B-Basis offset in Fig. 4(b) is less than either B-Basis 

offset in Fig 4(a) and the resulting curve is smoother and more reflective of a natural behavior than the piecewise 

linear B-Basis boundary in Fig 4(a). 
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The remainder of this paper describes in detail the process description, analysis methods employed, and sample 

results for the process.  Finally, a few conclusions are drawn from the work. 

II. Analysis Methods 

In this work, the entire testing process (test planning, data acquisition and data analysis) is simulated through 

computations. First, an initial “truth” model is constructed as a single-factor or multi-factor polynomial curve or 

surface to represent some physical behavior.  The truth model description includes some degree of expected or 

imposed variability in the response.  Upper and lower values for each of the factors are set, which establishes a 

domain in which the truth model will be analyzed.  Then, a test strategy is selected.  The test strategy determines 

how the data points will be sampled within the available single- or multi-factor domain; the determination of how 

the data points will be arranged in the domain may employ the DOE technique.  For a single factor test scenario, 

(e.g., the only independent variable is temperature) the test strategy determines how the independent variable values 

will be chosen.  The number of test points to be obtained is also prescribed.  Then, factor values are selected in 

accordance with the selected test strategy.  Response values are then computed from the truth model description, 

including the imposed variability; these response values are the simulated test data values for the given factor 

values.  Having obtained a set of simulated test data at discrete locations within the domain, data pairs (factor, 

response) are then fit as a polynomial function of the factor values using RSM techniques.  This yields an analytic, 

predictive model of the simulated test that can be interpolated anywhere within the domain.  Having obtained an 

analytic model of the simulated test data, comparisons of that test model can be made with the underlying truth 

model to assess and quantify the goodness of fit with the truth model.  In order to account for the variability and 

uncertainty associated with any particular truth model and any particular test model, this process is repeated over 

and over within a nested Monte-Carlo-based computational simulation of experimental testing.  Given a sufficiently 

large number of simulated test samples, statistical evidence emerges to support the choice of the distributed testing 

approach.  Each of these elements will be discussed in more detail subsequently. 

A. Truth Model Creation 

The process step of truth model creation creates the conditions under which the various test strategies are 

compared. The truth model represents the uncertain physical behavior being tested. In this work, the truth model 

consists of a single factor mean value polynomial curve of order less than or equal to six, surrounded by a band of 

plausible data variability or uncertainty.  Polynomials can be used to capture many physical behaviors, and can 

approximate other mathematical behaviors, such as exponentials, over a limited domain; additional transformations 

to the polynomial form are also available. The first step in generating the truth models is making a choice of the 

polynomial order; this determines the number of terms in the polynomial.  The mean value curve polynomial 

coefficients for those terms are then randomly chosen from a uniform distribution of the interval [-70, 70].  For 

example, a third-order truth model (cubic) polynomial response (y) in one factor (x) may be given by the equation: 

 
32 44.2018.513.1937.52 xxxy     (1) 

 

The truth model mean value curve given by Eq. 1 is deterministic; it has no inherent uncertainty or variability.  

In this work, the data variability or uncertainty about the mean value is represented separately from the deterministic 

portion.  For simplicity, the data variability or uncertainty is represented by a normal distribution, though other 

choices are possible and should be investigated.  A normal distribution requires two mathematical parameters, a 

mean value and a standard deviation.  The data variability or uncertainty is typically expressed as a coefficient of 

variation (COV), a nondimensional measure of the data variability.  The COV is equal to the standard deviation 

divided by the mean value.  This ratio is typically multiplied by 100 so the COV can be expressed as a percent 

value. Experimentalists sometimes claim to have knowledge about much variation might be expected for a given 

data set.  A typical assumed value for the COV might be 10% to 20% (reflective of some early design margins of 

safety) but in this study the COV varies from 1% to 100%. 

Given a polynomial form and a set of polynomial coefficients (such as in Eq. 1), the deterministic portion of the 

truth model is evaluated for perhaps 100 randomly chosen factor values; these samples can then be averaged to 

determine an estimate of the overall functional mean value (.  Alternatively, other analytic means can be used to 
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obtain an estimate of the overall functional mean value.  This overall functional mean value is then multiplied by the 

COV in percent, and divided by 100 to obtain an estimate of the standard deviation (, as shown in Eq. 2 below 

 

100

%
*

COV
     (2) 

 

 The data uncertainty or variability of the truth model is then added to the deterministic portion of the truth model 

as shown in Eq. 3 below 

 

Uncertain Response = Deterministic Response + Normal(0,     

 

The deterministic response in obtained from an equation such as Eq. 1.  Upper and lower bounds are prescribed 

to define the domain over which the truth model (including uncertainty or variability) will be evaluated.  Typical 

bounds for a factor in this study might be [0, 1] or [-1, 1].  Other bounds have also been considered. 

B. Testing Strategy Selection 

The testing strategy defines how the test points will be distributed within the domain defined by the factor upper 

and lower bounds.  In defining the testing strategy, there are a few competing elements to consider: the number of 

factors involved in the test, the expected polynomial functional form (if any form is expected), the total number of 

test samples that can be obtained, the need for global coverage of the domain, and the need for replicate points; 

replicate points are those obtained at the same factor values (or combination of factor values) as one or more other 

previous points.  The number of factors and the expected polynomial functional form work together to establish a 

lower bound on the number of samples that need to be acquired.  Alternatively, the number of factors and the 

number of total samples that can be acquired work together to establish an upper bound on the polynomial forms 

that can be created.  The need for global coverage of the domain is greater for nonlinear models than for linear 

models.  The need for replicate points is to establish an important independent process uncertainty metric for the 

overall repeatability of results. 

Domain coverage can be achieved in one of several ways, including: 

 Completely random distribution 

 D-optimal DOE distributions17 and non-optimal DOE distributions 

 Test points obtained at a pre-defined list of factor values or combinations, either with or without prior 

knowledge of the expected functional behavior; a uniformly-spaced rectangular grid of points is a 

common implementation of this option. 

The various test strategies are illustrated in Figure 5 with different numbers of test samples for a one-factor 

domain.  Beginning from the top (line marked “1”), seven points are randomly generated to cover a certain domain.  

Notice that the domain covered is of a lesser extent than the remainder of the point sample sets.  This is because, for 

randomly generated samples, there is no guarantee that the end points of the domain will be covered.  Moving 

downward, the second data set illustrates a D-Optimal DOE17, also with seven points; notice how the data points are 

spaced irregularly and more toward the bounds of the domain, as is typical of these designs.  The bounds of the 

domain are automatically covered.  The third curve illustrates uniform spacing of seven points in the same domain 

with bounds coverage.  The next three data sets (labeled 4, 5 and 6) illustrate the effect of increasing the sample size 

with D-Optimal designs; sets with 9, 11 and 13 data samples are shown, respectively.  Again, the points are arranged 

irregularly and more toward the bounds of the domain.  Data set labeled 7 illustrates a random distribution of data 

points with 15 samples; coverage of the domain bounds has been enforced.  The next data set (labeled 8) illustrates a 

D-Optimal DOE with 15 samples; notice the more uniform, but still irregular coverage of the domain, compared to 

that of set 7.  The last set (9) show a uniform distribution of 15 data points.  One can observe that as more points are 

added to the D-Optimal DOE, that the distribution becomes more like a uniform distribution.  These data sets are all 

shown with zero replicates; each data point occupies a unique position in the domain.  One can image overlaying 

upon these original distributions sets of replicate points which duplicate prior test conditions.  A replication strategy 

must be defined.  The replication strategies are to randomly distribute the replicate points across the existing unique 

test conditions, to use some D-Optimal strategy, to uniformly distribute the replicates, or perhaps to distribute the 

replicates with some predefined strategy that might place more points in one part of the domain compared to another 

part of the domain. 

Figure 6 illustrates the various test strategies with 25 samples each in a two-factor domain: (a) random, (b) D-

Optimal and (c) uniformly-spaced rectangular grid patterns.  The arrangement in Figs. 6(a) and 6(c) precludes 
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accurate estimation of effects and interactions compared to that of Fig. 6(b)3.  Again, the degree of replication can 

range from zero to compete.  In the former scenario, no replicates are obtained.  In the latter scenario, every test 

point is a replicate of at least one other test point.  These different testing strategies, coupled with the degree of 

replication, can be alternatively considered as simply distributed [Fig. 6(b)] or clustered. 

C. Testing Design Creation (DOE) 

Design of experiments is the design of any information-gathering exercises where variation is present.  Formal 

planned experimentation is often used in evaluating the effect that one or more factors have on physical objects, 

structures, components, and materials.  The DOE methods rely upon statistical methods: ANOVA and RSM.  

Design of experiments has very broad application across all the natural and social sciences and engineering. 

Testing design creates the objects of comparison: distributed, clustered, and in-between testing designs. First, the 

total number of data points available for testing is chosen, which in this study varied from 10 to 1000. Keeping the 

total number of data points constant, the way these data are distributed in the testing domain is varied. Completely 

distributed deigns do not contain replicated experiments; in other words, distributed designs contain clusters of one 

sample each. Completely clustered designs consist of clusters at the extreme points of the testing domain, in other 

words, at the maximum and minimum value of interest in each factor. The number of clusters is gradually increased 

to create a spectrum of in-between designs, equally replicating each experiment (clusters of equal numbers of 

samples). For example, for 10 total test points in one factor, the designs tested are 2 clusters of 5 experiments, 3 of 

about 3, 5 of 2, and 10 of 1.  Gradually varying the number of clusters in the test designs allows for the amount of 

clustering to be evaluated, instead of only comparing the two extremes. The testing conditions (i.e., cluster 

conditions) are D-optimally distributed throughout the design space using the built-in MATLAB function 

cordexch21, which for high numbers of clusters is approximated by uniformly spacing the clusters [e.g., Fig. 2(c)]. 

For a certain total number of data points, each design is simulated against the same ensemble of 1,440 truth curves 

in order to ensure any differences in the validation step are due to the design and not the underlying truth model. 

When performing testing in a laboratory, some knowledge of the truth model may be available, for example, 

when testing a physical behavior that is known to be quadratic with respect to a certain factor. Using this knowledge 

can be advantageous, because in order to produce a D-optimal design, some guess of the truth model polynomial 

order is needed. By keeping the truth model creation separate from the DOE creation, these simulations represent the 

worst case scenario: when no outside knowledge is available. Similarly, knowledge of the polynomial order of the 

truth model may influence the choice of the polynomial order of the surrogate curve fit to the data by RSM 

(discussed subsequently), but such influence is not present in these simulations. 

While the D-Optimal design uses the minimum number of test points to define a specific functional form through 

RSM, the value of the D-Optimal DOE is somewhat limited when only a single factor is present.  The true value of 

D-Optimal designs increases exponentially as the number of factors increase. For example, to define a cubic RSM 

form in one dimension requires four data points. To define a cubic form in two dimensions using a D-Optimal DOE 

requires 10 and in three dimensions requires 20 points.  If a rectangular grid of points were instead used to define the 

cubic form, it would require 16 points in two dimensions and 64 points in three dimensions.  Thus, the D-Optimal 

approach requires just 62.5% of the testing for two factors, and just 31.25% of the testing for three factors, compared 

with a more traditional rectangular grid pattern of testing. 

A two-dimensional D-Optimal DOE is shown previously in Fig. 6.  In the following example, two factors are 

present: temperature and a material property ratio.  The factor ratio represents the numerical ratio of two 

dimensional parameters.  Just nine test samples were to be used; this enables only a quadratic RSM form to be 

defined, but provides three data samples to be used as lack-of-fit tests to increase the user’s confidence in the 

resulting model.  A traditional testing approach might simply request a uniformly-spaced rectangular grid pattern for 

the test.  Further discussion with a subject matter expert (SME) for this test revealed a very limited interest in 

acquiring test samples near the lower bound of either factor.  Hence, a constrained two-factor D-Optimal design, 

shown in Figure 7, was created to more evenly spread the test points over just the desired test domain.  Here, both 

physical factors have been replaced with normalized factors that each occupy a range from zero to unity, but this 

normalization is not required.  The color contours in Figure 6 are meaningless and are simply shown to illustrate a 

potential nonlinear physical behavior.  The reader should note how the requested test points are skewed away from 

the lower left hand corner of the test domain because the DOE was constrained to do so. 

 The constrained, two-factor D-Optimal DOE was then further modified by the DX9 square root transformation.  

For values between zero and unity, the square root transformation moves data points closer to unity.  For example, a 

requested test point at NormTemp = 0.5 and NormRatio = 0.3 was replaced by one with coordinates of about (0.71, 

0.55) in the transformed and normalized space; these values are the square root of each component.  The reader 

should notice how the proposed test points are now even more skewed toward the upper right corner of the figure 
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and away from the lower left corner of the figure.  This arrangement was found to be highly desirable by the SME 

for the test being considered.  Again, the color contours in Figure 8 are meaningless and are simply shown to 

illustrate a potential nonlinear physical behavior.   

D. Data Collection 

Simulated test response data is generated from the uncertain truth model (the mean value truth model curve with 

normal distribution of the specified COV wrapped around the truth model curve). This is an intrinsically random 

process, which approximates the inherent variability in a batch of actual test material. To account for random 

effects, the data collection step (and the subsequent surrogate model creation) was repeated ten times for each 

combination of the truth model and the testing design. 

E. Surrogate Model Creation 

Surrogate model creation relies on information only from the data collection step, the response data. Two fits 

were created for each simulated data set: a least-squares polynomial regression fit and a piecewise linear 

interpolation fit.  The built-in MATLAB function stepwise21 was used to select the terms in the polynomial to be fit 

using regression. This function was initialized with a quartic polynomial, to which the function subsequently adds or 

removes terms in the polynomial based on the sum of squared error between the data and the fit curve.  To create the 

linear interpolation fit, the mean of each cluster was calculated and a piecewise linear fit was created through these 

means.  This method is commonly employed for aerospace database generation and interrogation27. 

F. Validation of the Surrogate Model 

The validation step quantifies the closeness of the surrogate model to the truth model via several metrics. These 

measures consist of: 1) comparing how close the surrogate curve is to the truth curve, 2) comparing the sample 

population COV with the true population COV, and 3) comparing the properties of allowables with their definition.  

The primary measure of validation is the root mean squared error (eRMS) between the surrogate curve and the truth 

curve28.  For surrogate curve y


 and truth curve y  over a domain ,A  this is given exactly and approximately (for N 

evaluation points) by: 

 


N

i iiRMS yy
N

dAyy
A

e
1

22 )(
1
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||

1 
   (4) 

 

The eRMS is always nonnegative, and naturally a better surrogate model has a lower error. The units are the same 

as the response y, but eRMS may be non-dimensionalized by dividing by the standard deviation of the truth model.  

Loosely, the eRMS can be thought of as the average distance from the surrogate curve to the truth curve, but squared 

to always be nonnegative.  A secondary nondimensional measure is the error in the estimated variability (COV): 

truth

truthsurrogate

COV
COV

COVCOV
e

|| 
    (5) 

 

A better surrogate model will have near zero COV error, eCOV. The estimation of the COV in the surrogate model 

is important because it is used to create confidence intervals and tolerance bounds, such as the A-Basis and B-Basis 

allowables.  The properties of the A-Basis and B-Basis allowables are also checked directly. The fraction of the true 

population above each allowable is checked using the COV of the truth model. The confidence in each allowable is 

checked by comparing the population requirement with the actual population along each surrogate curve.  In 

addition, the fraction of simulations in which the order of the surrogate polynomial matches the order of the truth 

polynomial is recorded. 

G. Data Augmentation 

Data augmentation is the process of adding new data points to an existing data set.  Again, using the ANOVA 

technique to create a distributed template of new points is favored, unless specific analyses are performed which 

suggest that the new data points should be added in specific regions of the domain to accommodate deficiencies in 

the existing data set.  Such deficiencies might be found where: (1) RSM gradients are large, (2) RSM residuals (the 

difference between actual and predicted data values) are large, or (3) where RSM leverage values (the degree of 

influence a particular data point has on the resulting response surface) are large.  The residuals can take on any 

positive or negative values; these should be small in absolute value.  The leverage of a given point is a positive 
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definite number, usually between zero and unity; it is best if all the leverage values for a given data set are nearly 

equal to unity.  A very successful means to identify where new data points should be added to an existing data set is 

also enabled through the use of ANOVA and RSM as follows.  For each data point, multiply the absolute value of 

the residual [Abs(R)] times the leverage value (L) plus unity.  This provides a metric (M) for each data point that 

gets larger as the need for new data increases, M = Abs(R) * (L+1).  The data points are then ranked from largest to 

smallest in the value of M.  New data points should be added between the cases where M is the largest.  For 

example, if there are twenty data points in an existing data set, each corresponding to a unique factor value, suppose 

the metric value M is largest for point 7 and 8.  New data point should first be added into this gap region of the 

domain.  A more complete discussion of this technique is beyond the scope of this document, but has been used 

successfully in the past10, 27. 

III. Results 

The preliminary results for this study (shown in Section I) used specific clustering strategies for relatively small 

sample sizes (tens to hundreds of points).  This work was later extended and generalized through parameterization to 

consider a variable degree of clustering over much larger sample set sizes (up to 1000 data samples).  In addition, 

several validation metrics, including those described by Eqs. 4 and 5, were considered.   

The eRMS (Eq. 4 above) for each response curve was calculated, and compared between the two analysis 

methods. Figure 9 shows the percent of simulations where the regression curve had a lower eRMS, graphed against 

the number of clusters in the testing design.  Each colored line represents the total number of samples in a given 

design.  When only two clusters are present in a testing design, the two methods of analysis are equivalent because 

both fit a straight line, which is graphed as 50%. For any other number of clusters, and any number of total samples, 

the regression analysis is always on average better than the linear interpolation analysis, as shown by a value greater 

than 50%. For designs with a high number of clusters, greater than 10, regression is better than linear interpolation 

more than 90% of the time.  The advantage of using regression is more pronounced with a larger number of total 

samples, as can be seen from the line representing 1000 points quickly approaching 100%, while 10 and 30 point 

designs have a regression fit that is better around 70% of the time. 

Notable exceptions where linear interpolation in fact was better more often are designs with 3 to 6 clusters with 

high COV and relatively low total number of points, such as 10 points in 5 clusters at 25% COV and 100 points in 4 

clusters at 100% COV. These cases are noisy and difficult to fit with a polynomial surrogate model in general. 

Observing Figure 10, the primary validation measure eRMS is graphed, summarizing the all the simulations. The 

total number of samples is indicated by the different colors sets.  Dashed lines shown represent the linear 

interpolation surrogate model, and the solid lines the regression. A better surrogate model will have fit curve that is 

near the truth curve, which is equivalent to a small RMS error. Since the underlying truth model in all cases was 

smooth, the interpolation surrogate model is better than linear interpolation.  This trend holds not only for the 

average over varying truth order and varying COV, but for any given combination of truth order and COV. In sum, 

given any testing design, the average regression fit is better than the average linear interpolation fit. 

The secondary measure of validation eCOV is shown in Figure 11. The total number of samples is indicated by the 

different colors sets.  The dashed lines shown represent the linear interpolation surrogate model, and the solid lines 

the regression. A better surrogate model will be able to estimate the true COV with small error on average. As for 

eRMS, the average regression estimate of the variability is less erroneous than the average linear interpolation 

estimate. This conclusion holds for the average over varying truth orders and varying COVs, and for any specific 

combination. 

Allowables, such as the B-Basis and A-Basis1, are intended to provide a reliable bound on a material property in 

the presence of natural variability.  Allowables are typically applied to the strength of materials and might be applied 

in other situations.  A typical allowable for material strength, the B-Basis, states that 90% of the material samples 

exceed the allowable value to 95% confidence; similarly, the A-Basis (used for human rated designs) states that 99% 

of the material samples exceed the allowable value to 95% confidence.  The allowable statement has two portions: 

the population percentage (90% or 99%, respectively) and the confidence level with which the population meets the 

allowable (95%). 

To minimally demonstrate compliance with a given B-Basis allowable value, one might use 20 sample sets of 

ten samples each (200 total material samples).  It would be expected that for 19 of the 20 sample sets, the measured 

strength of nine samples in each sample set, would exceed the stated allowable value.  Hence, the measured strength 

for nine of the ten samples (90%) exceeds the allowable value 19 out of 20 times (95% confidence).  A much more 

meaningful demonstration of compliance with the same B-Basis allowable value might employ 200 samples sets of 

100 samples each, for which it would be expected that the measured strength exceeds the allowable value for 90 
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samples from each sample set, 190 out of 200 times.  Appropriate statistical factors have been defined to allow for 

estimation of A- and B-Basis values with many fewer samples1.  The more samples in the experiment, the more 

information that is available. 

Figure 12(a) illustrates the percent of the population above the B-Basis value. The total number of samples is 

indicated by the different colors sets.  The solid lines represent the regression surrogate model and the dashed line 

the linear interpolation surrogate model.  For distributed designs, as the total number of samples increase, the 

average population decreases towards 90%. Notice that this limiting effect is not reliably present for linear 

interpolation fits. For highly clustered designs, the population above the B-Basis of linear interpolation fits 

approaches a value lower than desired. And for distributed designs, an extremely high number of samples would be 

needed to see this limiting effect.   

Test planning is the process of choosing how and under what conditions to take data. This process of allocating 

data collection should address the objectives of taking the data. Common objectives may be to identify the 

conditions where the response is minimized, or to identify if a factor has a significant effect on the response. When 

more than one factor is being investigated, DOE provides a systematic method for planning testing. As demonstrated 

above, the RSM of least squares regression produces a more accurate surrogate model. Discussed below is how to 

best allocate data collection to produce the most accurate regression surrogate model. 

Observing Figs. 10 and 12, the validation measures graphed for regression exhibit drastic behavior for designs 

with a low number of clusters. These clearly indicate that highly clustered designs are far worse than distributed 

testing designs. In Fig. 10, the average RMS error of designs with less than eight clusters is greater than the error in 

distributed designs of the same total number of samples, with a drastically greater error in designs of two or three 

clusters. In Fig. 12(a), the average population above the B-Basis levels off for designs of 8 clusters or more. For 

clustered designs, the average population was lower, for most below 90%, than the intended value. Similarly in Fig. 

12(b), the confidence in the B-Basis is lower for clustered deigns of less than eight clusters and levels off for 

distributed designs.  The linear interpolation procedure incorrectly overstates the confidence level.  

The testing design limits what order surrogate models can be fit to the data. If only a few unique response values 

are sampled, only low order models can be fit using regression. For example, if the underlying physical behavior is a 

cubic polynomial with respect to two factors (y = C0 + C1a + C2b + C3ab + C4a2b + C5ab2 + C6a3 + C7b3, for factors a 

and b), in order to fit a cubic polynomial to the response data, the minimum number of required distributed clusters 

is just eight, one for each of the polynomial coefficients (C0, C1, C2, …, C7). The total number of test samples, 

however, must be at least one greater than the minimum number of clusters, since one additional data point is 

needed to estimate the variability. 

Using the minimum number of clusters to fit the expected order model is dangerous because it inhibits any 

higher order behavior to be identified. Design-Expert, for example, always recommends including lack-of-fit points 

(also called exploratory points) in an optimal testing design17.  Lack-of-fit points are data taken under new 

experimental conditions other than the minimum needed to fit the expected model. Not distributing data collection 

results in poorly fitted curves with a large eRMS, unacceptably low population above allowables, and unacceptably 

low confidence in allowables and confidence intervals. In Fig. 13, the error and the allowable metrics are shown for 

a fourth order truth model.  The total number of samples is indicated by the different colors sets.  Note that for 

designs with less than five clusters, these statistics indicate a far worse fit. This indicates that regression could not fit 

a fourth order polynomial and missed major information about the truth curve, which is evident in both graphs. The 

RMS error is substantially greater for testing designs with two, three or four clusters than designs with five or more 

clusters, which have a stable average RMS error for a given total number of samples. Similarly the average 

population above the B-Basis is stable for designs of the same total number of samples and greater than 5 clusters. 

Designs of two, three or four clusters produce a B-Basis with an average population of about 90% or less, which as a 

result have confidence far below 95%.  However, the statistics for the linear interpolation fit are also inappropriately 

valued at low numbers of clusters, indicating that regression is not the problem. In fact, there is simply not enough 

information to properly fit an accurate curve with a highly clustered testing design. 

When a model of a lower order than the true underlying behavior is fit to a data set, the full curvature of the truth 

curve cannot be captured. As a result, the surrogate curve may differ from the truth curve by omitting peaks or 

valleys or by straightening curvature present in the truth curve. When too few clusters are present to identify these 

higher order behaviors, no indication of this missed information is available. Whereas when using a distributed 

design, many more unique factor values are sampled than the minimum needed to fit the order of the truth curve. 

However, especially when using a low number of total samples in a distributed design, identifying higher order 

behaviors is the process of discerning the spread of the response values due to the intrinsic population variance and 

that due to the changing mean value. When some of the intrinsic variability is misidentified as higher order behavior 

(over-fitting), the error in the COV is increased (and the expected value of the COV is decreased (not shown)). This 
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effect is seen in Fig. 11 for the distributed designs of 10 and 14 total number of samples. In practice, human 

inspection of the data sets should reduce the COV error. For low total number of samples, distributed designs are 

still preferable because the RMS error is significantly lower. 

IV. Conclusions 

 

Computational simulations of two distinct testing strategies, distributed and clustered, are compared.  For 

clustered testing, many test points are acquired at a few different conditions.  For distributed testing, only one or a 

few test points are requested at many different conditions.  The statistical techniques of Analysis of Variance 

(ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied for the distributed test 

planning, data analysis and test augmentation.  A statistically-based argument is advanced to suggest that the 

distributed testing approach advocated in this paper is superior to the clustered testing approach for most 

applications.  The evidence to support the claim is based upon the work of numerous researchers using different 

metrics to achieve the same results. 

In preliminary results, the distributed approach outperformed the clustered approach in recovering the underlying 

truth model at least 93% of the time.  The 95% confidence bands around RSM fits to distributed data sets with as 

few as 9 points converged quickly to the underlying truth model defined by 75 data points obtained via the clustered 

approach.  The B-Basis curves defined by the distributed approach are smoother and have less offset from the mean 

value curve than those obtained using the clustered approach. 

In later work, the percent of data set simulations where the regression surrogate curve has a lower eRMS than the 

linear interpolation surrogate curve rapidly approaches 100% as a more distributed sampling approach is employed. 

A lower eRMS value is obtained as the designs become more distributed.  The percent error in COV is smaller for a 

given design using the distributed approach, compared to the clustered approach.  The percent of population meeting 

the allowable definition is better for the distributed approach than the clustered approach.  In short, all the 

experiments performed support the conclusion that the distributed testing or sampling approach is superior to the 

clustered approach. 
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Figure 1.  Sample data sets representing the relative strength of concrete                                                           

as a function of temperature. 

 

 

      
(a) One-Factor Example            (b) Five-Factor Example 

 

Figure 2. Relative performance of the distributed and clustered testing approaches in predicting the 

underlying truth models. 
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Figure 3.  Comparison of the 95% RSM confidence bands for various numbers of data points obtained 

using the distributed testing approach, compared to the original clustered testing approach. 
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(a) Clustered testing approach 

 

 
(b) Distributed testing approach 

Figure 4.  Comparison of B-Basis allowables curves derived for the clustered and                               

distributed testing approaches. 
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Figure 5. Illustration of various point distribution (test) strategies (one factor). 

 

 

   
(a) random                                                               (b) D-Optimal 

 

 
(c) uniform rectangular grid 

Figure 6. Illustration of three distribution patterns (two factors). 
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Figure 7.  Constrained D-Optimal DOE for two-factor example. 

 

 
 

Figure 8.  The transformed, two-factor, D-Optimal DOE. 
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Figure 9: Percent of data set simulations where the regression surrogate curve has a lower eRMS than the 

linear interpolation surrogate curve. 

 

 
 

Figure 10: The eRMS shown plotted against number of clusters for several sample size cases. 
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Figure 11: The percent error in the COV shown plotted against number of clusters for                              

several sample size cases. 
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(a) Percent of population above B-Basis value. 

 
(b) Confidence in B-Basis estimate. 

 

Figure 12: Average B-Basis population and confidence shown plotted against number of clusters                   

for several sample size cases. 
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(a) Normalized error metric. 

 

 
(b) Percent of population above B-Basis value. 

 

Figure 13: Graphs for fourth order truth curves.  

 


