Climate-driven Mosquito Population Modeling

Cory Morin
NASA Postdoctoral Program Fellow
cory.morin@nasa.gov
A *multi-factorial* relationship between hosts, agents, environment, and vector.

Host (Human, Livestock)

Pathogen (Virus, Bacteria, Parasite)

Vector/Reservoir (Mosquito, Bird)

Environment (Climate, Vegetation)

Dengue Virus

West Nile Virus
Weather/Climate Influences on Vector-borne Disease Ecology

Environment:
- Temperature
- Immature Habitat
- Precipitation

Vector:
- Development
- Survival
- Reproduction

Pathogen:
- Development
- Transmission

Relationships:
- Positive Relationship
- Negative Relationship
- Positive or Negative

Diagram showing the interactions between weather/climate, disease vectors, and pathogens.
Temperature Relationships

- Development Period
- EIP
- Survival Rate (Egg to Adult)
- Adult Feeding Rate
Example Results (San Juan, PR)

<table>
<thead>
<tr>
<th>Year</th>
<th>Reported Cases</th>
<th>Simulated Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R^2 = 0.90$</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>$R^2 = 0.83$</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>$R^2 = 0.94$</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>$R^2 = 0.25$</td>
</tr>
</tbody>
</table>
Example Results (Hermosillo, MX)

- **2006**: $R^2 = 0.67$
- **2007**: $R^2 = 0.76$
- **2008**: $R^2 = 0.70$
- **2009**: $R^2 = 0.01$
- **2010**: $R^2 = 0.20$
- **2011**: $R^2 = 0.30$
Forecasting Techniques

- Iterative weekly process: using weather forecasts (SPoRT) and weekly reported dengue data

 - Run multiple simulations of model using weather data
 - Evaluate model with dengue data
 - Choose best fit simulations
 - Drive model with weather forecast data
 - Make predictions based on model results

Dengue Cases

Time

Small increase in dengue incidence
Challenges and Opportunities for Forecasting Vector-borne Disease Risk

- **Knowledge gaps**
 - Vector population dynamics
 - Extrinsic Incubation Period (EIP)
 - Transmission probabilities

- **Vector-Disease**
 - Misdiagnosis
 - Subclinical cases
 - Availability of data

- **Environmental data**
 - Availability/Reliability
 - Resolution
 - Predictability

- **Surveillance Data**
 - Model parameterization
 - Model evaluation
 - Data integration

- **Expertise**
 - Behavioral risk factors
 - Demographic risk factors
 - GIS and mapping

- **Environmental data**
 - Observations
Thank You for Your Attention

Questions?

Cory Morin
NASA Postdoctoral Program Fellow
cory.morin@nasa.gov