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SPACECRAFT DYNAMICS SHOULD BE CONSIDERED IN
KALMAN FILTER ATTITUDE ESTIMATION

Yaguang Yang* and Zhigiang Zhou'

Kalman filter based spacecraft attitude estimation has bsed in some high-
profile missions and has been widely discussed in literatifieile some models
in spacecraft attitude estimation include spacecraft ohyos, most do not. To our
best knowledge, there is no comparison on which model istarb&toice. In this
paper, we discuss the reasons why spacecraft dynamicsdshewonsidered in
the Kalman filter based spacecraft attitude estimationlprobWe also propose a
reduced quaternion spacecraft dynamics model which admddgive noise. Ge-
ometry of the reduced quaternion model and the additiveeraois discussed. This
treatment is more elegant in mathematics and easier in catigu \We use some
simulation example to verify our claims.

INTRODUCTION

The Kalman filter found its earliest applications in somehhigofile missions in the aerospace
industry, such as the Apollo project][ Spacecraft attitude estimation has been a major research
area since the Kalman filter was invented]. [ Although many different methods have been pro-
posed, most models suggest using only quaternion kinesnadgjgations of motion for the attitude
estimation without considering spacecraft dynamics. $eeXample, some widely cited survey
papers 2, 3] and references therein. This model reduces the problegrbsizdiscards useful space-
craft attitude information available in the spacecraft alyics equation. The drawbacks of this
simplified model are (a) when gyros measurements have signifnoise, the spacecraft dynamics
information is not used to prevent the degradation of thitud# estimation, and (b) when gyro
measurements are not available (as a matter of fact, gyeasohused in most small spacecraft, for
example, #]), the simplified model cannot be used to estimate the spaitextitude.

There are papers that consider models including the sptdgnamics in Kalman filter designs,
for example, b, 6]. But to our best knowledge, there is no discussion of whicdeh is a better
fit of the application of spacecraft attitude estimation #mefe is no performance comparison for
Kalman filters using the two different models.

In this paper, we will discuss the importance of the spadedyamamics to the attitude estimation
problem and examine the performance difference betweerelnidloat incorporate spacecraft dy-
namics and models that do not. As it is well-known that the et®br the attitude estimation and
for spacecraft dynamics are nonlinear, some natural chdaresolving the estimation problem are
either extended Kalman filter (EKF) or unscented Kalmanrf(ité<F).
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We recogonize the recent trend of using an unscented Kalrtian ifistead of the extended
Kalman filter in spacecraft attitude estimation problem§g, 9], however we are also aware of
some simulation comparison between the two methods angreliff opinions about the potential
advantages of unscented Kalman filte@][ Therefore, to simplify our presentation and simulation
comparison, without loss of our focus, we will consider otitg extended Kalman filter in this
paper.

A special feature of the spacecraft attitude estimatiomlpgra is that the quaternion has a norm
constraint, and many methods have been proposed to deahigittonstraint11,12,13,14]. These
methods are more complicated in concept and more expemsd@riputation than traditional EKF
without the norm constraint. Therefore, we suggest usirgdaaed quaternion model which does
not need the norm constrairtq, 16]. Though, there exists a singular point in this reduced @uat
nion model, no one has really compared the effectivenestharquerformance of these two methods
based on different (full and reduced) quaternion modelss dbmparison will be the second topic
of this paper.

The remainder of the paper is organized as follows. Sectiproides a description of the ex-
tended Kalman filter for spacecraft attitude estimatiort fblhows common practice, i.e., using
a model without spacecraft dynamics. Section 3 providesrallphdescription of the extended
Kalman filter for spacecraft attitude estimation that ission, i.e., using a model with spacecraft
dynamics. The merits of the proposed model over commonlgl nsedels are discussed. Simula-
tions and results for these two methods are presented iilbB&cto demonstrate the superiority of
using a model with spacecraft dynamics. The conclusionsiarenarized in Section 5.

EXTENDED KALMAN FILTER WITHOUT SPACECRAFT DYNAMICS

This type of model is widely used in literaturg] [for spacecraft attitude estimation and can be
expressed as follows. Ley = cos(5), ¢ = [q1, ¢2, @)t = ésin(g), and

q= [q07 qT]T (l)

be the quaternion that represents the rotation of the beagdrrelative to the inertial frame, where
é is the unit vector of the rotational axis amdis the rotational angle; the rate of change of the
quaternion is given byl[7]

do 0 —w —ws —ws 9
G| _llw 0  wy —w ¢ )
D) 2| we —w3 O w1 q2
qs wg wy —w; 0 q3

wherew = [wy,ws,ws]T is the body rotational rate with respect to the inertial fearepresented in
the body frame. However, using this full quaternion mod#biduces a singularity in the covariance
matrix [2]. Therefore, we suggest using a reduced representatioreden [16] given as follows.

1
§= 50w+ 1) ®3)
whereg; is the process noise, afitlis a matrix given by

9(@) -3 @
Q=1 ¢ 9@ —a |, 4)
- ¢  9(g



with g(q) = /1 — ¢? — ¢ — ¢3. The reduced model embeds the unit length requiremegtagn
which means that there is no need to consider the unit lermibt@int in EKF as it was treated
in [12]. This model therefore significantly simplifies the probleamd the model has some other
merits discussed inlp]. Assuming that three rate gyros and quaternion measuteseeisors are
installed on board, the measurement equation can be was¢j

B: ¢27 (Sa)
wy =w+ B+ 11, (5b)
qdy = ¢ + T;Z)2> (5C)

where/ is a drift in the angular rate measuremepi,is the process noisey, is the angular rate
measurement obtained from gyrag, is the quaternion measurement (which can be obtained by
using QUEST methodl8] or analytic method19] for measurements of astronomical vectors, such
as sun sensor, magnetometer, gravitometer, and starrisgaciedy; andqy», are measurement noise.

Remark 0.1 The reduced quaternion geometry @f can be seen from the following argument.
For small noisey, and a quaternion; = esin($) which is bounded away from a singular point
(llg]l < 1), if ¢ is small, ¢ is a rotation whose Euler angles are half of the elementg ahd

gy is a rotation whose Euler angles are half of the elementg of ,; if ¢ is not small,q +

1 is a rotation whose rotational axis is a perturbation @fatisfying||q,|| < ||q|| + [|¢]| and
llayll < 1 (where||4| is small), and the rotational angle aroung is § + ¢ and |§| is small.
Therefore, the quaternion perturbation model describedhis paper is more general than the
widely used multiplicative perturbatiorl]] because the former may have different rotational axes
in the original and perturbed quaternion and the latter mbave the same rotational axis in the
original and perturbed quaternion.

=|5] =0

We can rewrite the system in a compact form

Let

T = [ g } — { %%Zw ] + { %S;jl } = f(z,u) + g(x,u)o, (6a)
][ a 0
y_[wﬂ_[cwﬁ]Jr{wz}'—h(w,U)er, (6b)
where ) 1
3w 9 0

f(x,u):[ ; } g(m,u):[ ) [3], h(x,u):[wiﬁl

The simplest discrete version dd)(can be obtained by explicit Euler's method. However, the
discrete formula obtained by this method is normally nablstdor stiff differential equations2(].
In [12], the trapezoidal implicit method was proposed. But thighuod involves the solution of
nonlinear system of equations which can be very expensigerimputation 20]. We suggest using
the linearly implicit Euler method described i21], 22]. Let dt be the sampling time period and

_ q1wi w3 _ g2wi _ w2 _ g3wi
Zg(qq)w 2 . %Jg(q) 2 quJ(q)
_ o _ w3 _ qiw2 _ gaw2 w1 _ g3w2
X = I3 dt 2 29(q) 29(q) 2 29(q) (7)
w2 qiws _wl _ G2ws _ g3ws
2 29(q) 2 29(q) 29(q)



The discrete version ob] is therefore given as follows:

Gri1 = qp + X <%kak + %lek) dt, (8a)
/Bk—l—l - /Bk + ¢2kdt7 (8b)
Y = [ EZZ } = [ ZIZ } + [ £k ] + [ z;z ] = Tp + up + Yp = H(zp, up) + ¢k, (8C)

whereH (x, ux) = x + ug. As always, we assume that and);, are white noise signals and the
following relations hold:

E(¢pdp) = Qr, E(bptp) = Re, E(W;0]) =0, Vi, jk, (9b)
E(¢;p7) =0, E(pjp)) =0, Vi j. (9¢)

We need some explicit expression 8§ to obtain the formulas of the extended Kalman filter. Note
that (7) can be simplified as

dt + Q1"J1 UJ% + q22‘;1 UJ2 + ‘Bz‘;l (_{ l_) C—i
X(qw,dt) =dt | G+ Wz &+ B “’1 +852 | =|d e [ |dt.
wz 4 qu w1 + 42w3 dt _|_ q3w3 g ]_I i
Therefore, -
1 A D G
X~ H(q,w, dt) | B E H|,
dt(aA—l—bB—l—cC’) C, F [—
where
A: (éi_f_% B: _(‘Z_f_)v C: (d_ _ég)y
D= —(bi—ch), E=(ai—cg), F=—(ah—bg),
G = (l_)f_éé)7 H= —((_If— E_)7 I= (C_LE—B_),
which leads to
w(q,w)
LX =1 Qwdt u(q,w)
v(q,w)
(1_219 + l_j% - g%)wl + (—Ag3 + Dg + Gq1)wz + (% g2 — Dq1 + Gg)ws
= saamsm | B9+ Ees — Hep)w + (—Bas + Eg + Hq)ws + (Bgz — Equ + Hg)ws ((10)
(Cg+ Fqs — Iq2)w1 + (—=Cqs + Fg+ Iq1)wa + (Cqa — Fq1 + Ig)ws
and
j(q7w7¢1)
X7 10¢1dt == | (g, w, d1)
Z(Q7w7¢1)

(Bg + Eq3 — Hga)¢11 + (—Bags + Eg + Hq1)¢12 + (Bgz — Equ + Hg)dns
(Cg+ Fq3s —Ig2)p1 + (—Caqz + Fg+ Iq1)¢12 + (Cga — Fqr + 1g) 13

. (Ag + Dqgs — Gq2)p11 + (—Ags + Dg + Gq1) 12 + (Aga — Dq1 + Gg) 13
2(aA+bB+cC) (11)



Let

) w(q,w)
I3+ 5 | u(q,w 0
R | Bta UEZ w; 3 , (12)
03 13 .
LTi—1|k—1
o a_:(q,w, ¢1)
Liq— | 961 v(g,w, 1) 03 [ X' adt 03 7
Z(q,w, ¢1) Os dtls T 1|k—1,Uk—1
03 dels |,
—1|k—1,Uk—1
(13)
and SH
Hy = %’%\kﬂ,ukq =1 (14)
The extended Kalman filter iteration is as follows:
Tpjp—1 = F(Tp—_1jp—1, Wk—1) (15a)
Pyt = Fro1 Py 11 ) + Lk Qe Ly (15b)
Uk = Yk — H(Zpp—1) (15¢)
Sk = Pk\k—l + Ry (15d)
Ky, = P15, (15e)
Tk = Trph—1 + KrUk (15f)
Py, = (I — Ky) Prji—1- (159)

Sincewuy, is not available, it is suggested i@][to setuy = wy, = wy, — 5k|k andwy,_, =
Wk—1[k—1-

Remark 0.2 Clearly, the extended Kalman filter using this model canmotipdated without three
dimensional gyro measurementg, . In the next section, we will show that even if the gyro mea-
surements are available, using this model is not as good g @ssmodel which incorporates the
spacecraft dynamics. In section 4, we will use simulatiocoimpare the performance of two differ-
ent methods to support our claim.

Remark 0.3 To improve the estimation accuracyofj;_;, we can reduce the step sizedsf But
in some applications, the measurements may be availableadtdr several sampling period. In
this case,a multi-rate Kalman filter should be consider2g,[which is not the focus of this paper.

EXTENDED KALMAN FILTER WITH SPACECRAFT DYNAMICS

This type of model can be expressed as follots; 16].

w=—Jtwx (Jw)+ J u+ ¢, (16a)
i= 50+ 6), (16b)
y = h(w,q) + 7, (16c)



where[w, ¢|T is the state vectoy is the measurement vectar,= [¢1, ¢»]T is the process Gaussian
noise which models various disturbance torgugss the measurement Gaussian noigds the
inertia matrix of the spacecraft, aftlis defined in 4). Depending on the design, we may have
angular rate measurementg and quaternion measuremept or we may have only quaternion
measuremeng,. Assuming that three gyros and quaternion measurementrseai® installed on

board, then the measurement equation can be writte®] as [

B = ¢37 (l7a)
wy =w+ B+ 1, (17b)
qdy =4 + T;Z)2> (l?C)

where/ is a drift in the angular rate measuremepy,is the process noisey, is the angular rate

measurementy, is the quaternion measurement, andandi, are measurement noise. The overall

system equations are given as follows:

w=—Jtwx (Jw)+ J u+ ¢, (18a)
. 1
Q=50+ 02), (18)
B = ¢37 (18C)
wy =w+ B+ 11, (18d)
qy = q+ 12, (18e)
which can be rewritten as a standard state space model assoll
T = f(l’, u) + ¢, (19a)
y=Hzx+, (19b)
wherez = [wT7 qu BT]T, Yy = [wyT7 q;)[‘]T’ ¢ = [qb?[[‘v ¢2Tv ¢3T]T1 T;Z) = [ 1T7 ¢2T]T1 and
| I3 03 I3
H = |: 03 Ig 03 ] ’
The discrete version ofl@) is given by
Wk+1 Wi i —J_lwk X (ka) + J_luk (blk
k+1 | = a |+ % Qwy, dt | + | & Quoo, | dt
Br+1 Br | 0 ®3,
= F(xp, up) + G(xp, up) dr, (20a)
- WE
I3 03 I
A I E R B (200)
Qys, | 03 I3 O3 B, o,
where
\/ l—q — a5, —as, —q3, a2,
Q= a3, \/ l—qi — a5, — a3, —qu, (21)
—q2, q, \/ l—q —a5 —a3,



Note that for two vectorsy = [wy, ws, w3]T andv = [vy,v2, v3]T, the cross product af x v can

be written as the product of matrix* and vectorw where

0 —ws w2
w = | ws 0 —w
— w2 w1 0

We also assume;, andi, are white noise signals satisfying equatios Eor
Fi(z,u) = (=T wg x (Jwg) + T ug) dt + wg,

we have
o,
ox
For Fy(z,u) = % Qruwidt + g, we have

=[1-J w*J— (Jw)*)dt 03 03 ].

OFy OF, OF
Sl o R
with
g  _a ¢
@ — é 22 _2‘1_1 dt = let
Ow e 44 2
2 2 2
and
IR B OB B
% _ _ w3 _ gthwz 1 ngqu w1 qsgdzq dt
dq 2 29(q)  dt 2g(q) 2 29(q)
w2 _ qiws _ w1l _ gaws 1 g3ws
2 29(q) 2 29(q) dt  2g(q)
For I3(x,u) = B, we have
OF:
a—; —[0s 03 Iz].
Therefore,
OF I—J_l(wXJ—(Jw)X)dt 03 03
k=1 = g 1 Ek—jk—1,k—1 0w 0q 3
03 03 3
Let
I3 03 03
oG
Ly = wbkfl\kflvukfl =1 03 % Q-1 03 | dt.
k 03 03 Iy

The extended Kalman filter iteration is as follows:
Tpp—1 = F(@p—1jp—1, uk—1)
Pyt = Foo1 P11 Fiy + L1 Qe Ly
Uk =Yk — Hipp—1

Sy =HPyy_H" + Ry,
Ky = Py H' S,
Ty = Tpjp—1 + KiUrk

Py = (I — K H) Py

Tp_1|k—1

(22)

(23)

(24)

(25)

(26a)
(26b)
(26¢)
(26d)
(26e)
(26f)
(269)



Remark 0.4 The beauty of the Kalman filter using spacecraft dynamicseaseen from26f). The
best estimation is composed of two parts. The first part isegliption ,,_; which is based on
the spacecraft dynamics and the inertia matrix informationthe specific spacecraft. The second
part is a correctiong; which is based on observations. The filter g&ip is constantly adjusted
such that (a) if the noise is higher, the gain is reduced so tthe estimation depends more on the
information of the system dynamics, and (b) if the noisevietpthe gain is increased so that the
estimation depends more on the measurement. That is thenredsy spacecraft dynamics should
be included in the attitude estimation problem even if aagrdte measurements are available.

As mentioned before, the Kalman filter with spacecraft dyicamorks without the (gyro) mea-
surement of spacecraft angular velocity vector with resfmethe inertial frame. In this case, gyro
measurement drift does not exist. Therefore, the continuous syst&8i reduced to

w=—J wx (Jw)+ J u+ ¢, (27a)

i = 50w+ ), (27b)

qy = q+ . (27¢)

We still use (9) for this system butr = [wT,¢"%, y = ¢, ¢ = [¢1,04]T, ¥ = ¢, and

C = [ 03 I3 |. The discrete version of{) is given by

- (31 L)) )

Q+1 qk 3 Qpwy 5 Qx P,
= F(l’kwuk) + G(l’k’vuk’)st’» (28a)
Gy, =[ 03 Iy | [Zj]erk:wawk, (28b)

where();, is the same as i2Q). We also assume, and; are white noise signals satisfying
equations 9). For
Fi(z,u) = (—J_lwk x (Jwy) + J_luk) dt + wy,
we have
? =[I—J Hw*J = (Jw))dt 03 ].
xXr
For Fy(z,u) = 3 Qwydt + qx, we have

OB _ [ om om
ax_ ow dq ’

with 22 andf’a—f} the same a2Q) and @3). Therefore,

oF I —J Y w*J - (Jw)*)dt 03
Fr1:= a_’ikfl\k—lvukfl = |: ( oFy (w)™) OF, :| . (29)
r dw 9 day s
Let oC
_ oG | I3 03
Lk—l - a(bk ‘xkfl\kflvukfl - |: 03 % Qk_l :| dt. (30)

The extended Kalman filter will be the same 26)(



SIMULATION TEST

Extended Kalman filters with and without spacecraft dynarhave been implemented in Simulink
to assess their performances. The inertia matraf the spacecraft in the simulation has the follow-
ing values taken from24:

1200 100 —200
100 2200 300
—200 300 3100

The unit of.J is kg -m?. The state and measurement noise variance matgigesd R, are positive
definite and represent the noise magnitudes of the angutbharmgular rate in state dynamics and
measurement instruments. While the dimensiong)pfin the extended Kalman filters (with or
without spacecraft dynamics) are differeRy, is the same for both filters and given by

R, =0.11g

where I is a6 x 6 identity matrix. State dynamics noisg; for the filter without spacecraft
dynamics is given by
B 0.415 —0.00413
Q=1 0004 041

For the filter with spacecraft dynamiagy, is given by a similar but different dimensional matrix
0.415 —0.00413 03

Qr = | —0.00413 0.413 03
03 03 0.0000513

03 is 3 x 3 matrix of zeroes. The initial values of the statigs, and the covariancéy,, are set
to zeroes. The true and estimated quaternions for the Kafittars with and without spacecraft
dynamics are shown in Figure 1 through Figure 4.

0.15

0.1

iy
~0.05 H \|

: ,}5.

-0.1

ql
gel with SC
gel without SC

i i i i i i
20 40 60 80 100 120 140
Time (sec)

Figure 1. The first component of the estimated and true quatarion.

These figures show that the estimated attitudes for bothsfiftdlow the true attitude, but the
estimation using spacecraft dynamics is clearly better tha estimation without using spacecraft
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Figure 2. The second component of the estimated and true quaitnion.

dynamics. The attitude errors between the estimated andattilude are represented by the Euler
angles, roll, pitch and yaw angle errors. The attitude srodthe extended Kalman filters with and
without spacecraft dynamics are compared. The mean andasthdeviation of the attitude errors
with and without SC dynamics are summarized in Table 1.

Table 1. Mean and standard deviation of the attitude errors wth and without SC dynamics

Euler angles Attitude error mean (deg) Attitude error standard deviation (deg)
Roll with SC dynamics -0.4869 0.4145
Roll without SC dynamics 3.1075 4.8599
Pitch with SC dynamics 1.0194 1.1230
Pitch without SC dynamics 3.3738 7.7963
Yaw with SC dynamics 0.0889 0.3741
Yaw without SC dynamics| 3.1770 4.9706

CONCLUSIONS

In this paper, we compared two different models that can bd @ spacecraft attitude estima-
tion. One model does not use spacecraft dynamics and is mpregp in the guidance, navigation,
and control community; the other one involves the spacedwfamics and has not been inves-
tigated as much as the first model. We adopted a reduced guetespacecraft dynamics model
which admits additive noise. Geometry of the reduced goetermodel and the additive noise was
discussed. This treatment is more elegant in mathematetgasier in computation. Our analysis
and simulation results show that the second model and thespumding extended Kalman filter is
a better choice in attitude determination because the dethes more information and gives more
accurate attitude estimation.
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