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SPACECRAFT DYNAMICS SHOULD BE CONSIDERED IN
KALMAN FILTER ATTITUDE ESTIMATION

Yaguang Yang∗ and Zhiqiang Zhou†

Kalman filter based spacecraft attitude estimation has beenused in some high-
profile missions and has been widely discussed in literature. While some models
in spacecraft attitude estimation include spacecraft dynamics, most do not. To our
best knowledge, there is no comparison on which model is a better choice. In this
paper, we discuss the reasons why spacecraft dynamics should be considered in
the Kalman filter based spacecraft attitude estimation problem. We also propose a
reduced quaternion spacecraft dynamics model which admitsadditive noise. Ge-
ometry of the reduced quaternion model and the additive noise are discussed. This
treatment is more elegant in mathematics and easier in computation. We use some
simulation example to verify our claims.

INTRODUCTION

The Kalman filter found its earliest applications in some high-profile missions in the aerospace
industry, such as the Apollo project [1]. Spacecraft attitude estimation has been a major research
area since the Kalman filter was invented [2]. Although many different methods have been pro-
posed, most models suggest using only quaternion kinematics equations of motion for the attitude
estimation without considering spacecraft dynamics. See for example, some widely cited survey
papers [2,3] and references therein. This model reduces the problem size but discards useful space-
craft attitude information available in the spacecraft dynamics equation. The drawbacks of this
simplified model are (a) when gyros measurements have significant noise, the spacecraft dynamics
information is not used to prevent the degradation of the attitude estimation, and (b) when gyro
measurements are not available (as a matter of fact, gyros are not used in most small spacecraft, for
example, [4]), the simplified model cannot be used to estimate the spacecraft attitude.

There are papers that consider models including the spacecraft dynamics in Kalman filter designs,
for example, [5, 6]. But to our best knowledge, there is no discussion of which model is a better
fit of the application of spacecraft attitude estimation andthere is no performance comparison for
Kalman filters using the two different models.

In this paper, we will discuss the importance of the spacecraft dynamics to the attitude estimation
problem and examine the performance difference between models that incorporate spacecraft dy-
namics and models that do not. As it is well-known that the models for the attitude estimation and
for spacecraft dynamics are nonlinear, some natural choices for solving the estimation problem are
either extended Kalman filter (EKF) or unscented Kalman filter (UKF).
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We recogonize the recent trend of using an unscented Kalman filter instead of the extended
Kalman filter in spacecraft attitude estimation problem [7, 8, 9], however we are also aware of
some simulation comparison between the two methods and different opinions about the potential
advantages of unscented Kalman filter [10]. Therefore, to simplify our presentation and simulation
comparison, without loss of our focus, we will consider onlythe extended Kalman filter in this
paper.

A special feature of the spacecraft attitude estimation problem is that the quaternion has a norm
constraint, and many methods have been proposed to deal withthis constraint [11,12,13,14]. These
methods are more complicated in concept and more expensive in computation than traditional EKF
without the norm constraint. Therefore, we suggest using a reduced quaternion model which does
not need the norm constraint [15,16]. Though, there exists a singular point in this reduced quater-
nion model, no one has really compared the effectiveness andthe performance of these two methods
based on different (full and reduced) quaternion models. This comparison will be the second topic
of this paper.

The remainder of the paper is organized as follows. Section 2provides a description of the ex-
tended Kalman filter for spacecraft attitude estimation that follows common practice, i.e., using
a model without spacecraft dynamics. Section 3 provides a parallel description of the extended
Kalman filter for spacecraft attitude estimation that is ourvision, i.e., using a model with spacecraft
dynamics. The merits of the proposed model over commonly used models are discussed. Simula-
tions and results for these two methods are presented in Section 4 to demonstrate the superiority of
using a model with spacecraft dynamics. The conclusions aresummarized in Section 5.

EXTENDED KALMAN FILTER WITHOUT SPACECRAFT DYNAMICS

This type of model is widely used in literature [2] for spacecraft attitude estimation and can be
expressed as follows. Letq0 = cos(α2 ), q = [q1, q2, q3]

T = ê sin(α2 ), and

q̄ = [q0, q
T]T (1)

be the quaternion that represents the rotation of the body frame relative to the inertial frame, where
ê is the unit vector of the rotational axis andα is the rotational angle; the rate of change of the
quaternion is given by [17]









q̇0
q̇1
q̇2
q̇3









=
1

2









0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

















q0
q1
q2
q3


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whereω = [ω1, ω2, ω3]
T is the body rotational rate with respect to the inertial frame represented in

the body frame. However, using this full quaternion model introduces a singularity in the covariance
matrix [2]. Therefore, we suggest using a reduced representation derived in [16] given as follows.

q̇ =
1

2
Ω(ω + φ1) (3)

whereφ1 is the process noise, andΩ is a matrix given by

Ω =





g(q) −q3 q2
q3 g(q) −q1
−q2 q1 g(q)



 , (4)
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with g(q) =
√

1− q21 − q22 − q23. The reduced model embeds the unit length requirement ing(q)
which means that there is no need to consider the unit length constraint in EKF as it was treated
in [12]. This model therefore significantly simplifies the problem, and the model has some other
merits discussed in [16]. Assuming that three rate gyros and quaternion measurement sensors are
installed on board, the measurement equation can be writtenas [9]

β̇ = φ2, (5a)

ωy = ω + β + ψ1, (5b)

qy = q + ψ2, (5c)

whereβ is a drift in the angular rate measurement,φ2 is the process noise,ωy is the angular rate
measurement obtained from gyros,qy is the quaternion measurement (which can be obtained by
using QUEST method [18] or analytic method [19] for measurements of astronomical vectors, such
as sun sensor, magnetometer, gravitometer, and star trackers), andψ1 andψ2 are measurement noise.

Remark 0.1 The reduced quaternion geometry ofqy can be seen from the following argument.
For small noiseψ2 and a quaternionq = e sin(α2 ) which is bounded away from a singular point
(‖q‖ < 1), if q is small, q is a rotation whose Euler angles are half of the elements ofq and
qy is a rotation whose Euler angles are half of the elements ofq + ψ2; if q is not small,q +
ψ2 is a rotation whose rotational axis is a perturbation ofq satisfying‖qy‖ ≤ ‖q‖ + ‖ψ2‖ and
‖qy‖ ≤ 1 (where‖ψ2‖ is small), and the rotational angle aroundqy is α

2 + δ and |δ| is small.
Therefore, the quaternion perturbation model described inthis paper is more general than the
widely used multiplicative perturbation [11] because the former may have different rotational axes
in the original and perturbed quaternion and the latter musthave the same rotational axis in the
original and perturbed quaternion.

Let

x =

[

q

β

]

, u =

[

0
ω

]

.

We can rewrite the system in a compact form

ẋ =

[

q̇

β̇

]

=

[

1
2Ωω
0

]

+

[

1
2Ωφ1
φ2

]

:= f(x, u) + g(x, u)φ, (6a)

y =

[

qy
ωy

]

=

[

q

ω + β

]

+

[

ψ1

ψ2

]

:= h(x, u) + ψ, (6b)

where

f(x, u) =

[

1
2Ωω
0

]

, g(x, u) =

[

1
2Ω 0
0 I3

]

, h(x, u) =

[

q

ω + β

]

.

The simplest discrete version of (6) can be obtained by explicit Euler’s method. However, the
discrete formula obtained by this method is normally not stable for stiff differential equations [20].
In [12], the trapezoidal implicit method was proposed. But this method involves the solution of
nonlinear system of equations which can be very expensive incomputation [20]. We suggest using
the linearly implicit Euler method described in [21,22]. Let dt be the sampling time period and

X =






I3 − dt






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


(7)
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The discrete version of (6) is therefore given as follows:

qk+1 = qk +X−1

(

1

2
Ωkωk +

1

2
Ωkφ1k

)

dt, (8a)

βk+1 = βk + φ2kdt, (8b)

yk =

[

qyk
ωyk

]

=

[

qk
βk

]

+

[

0
ωk

]

+

[

ψ1k

ψ2k

]

:= xk + uk + ψk = H(xk, uk) + ψk, (8c)

whereH(xk, uk) = xk +uk. As always, we assume thatφk andψk are white noise signals and the
following relations hold:

E(φk) = 0, E(ψk) = 0, ∀k, (9a)

E(φkφ
T
k ) = Qk, E(ψkψ

T
k ) = Rk, E(ψjφ

T
i ) = 0, ∀i, j, k, (9b)

E(φjφ
T
i ) = 0, E(ψjψ

T
i ) = 0, ∀i 6= j. (9c)

We need some explicit expression of (8a) to obtain the formulas of the extended Kalman filter. Note
that (7) can be simplified as

X(q, ω, dt) = dt







1
dt

+ q1ω1

2g −ω3

2 + q2ω1

2g
ω2
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2g
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dt
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2g
ω1

2 + q2ω3

2g
1
dt

+ q3ω3

2g






:=





ā b̄ c̄

d̄ ē f̄

ḡ h̄ ī



 dt.

Therefore,

X−1(q, ω, dt) =
1

dt(āĀ+ b̄B̄ + c̄C̄)





Ā D̄ Ḡ

B̄ Ē H̄

C̄ F̄ Ī



 ,

where

Ā = (ē̄i− f̄ h̄), B̄ = −(d̄̄i− f̄ ḡ), C̄ = (d̄h̄− ēḡ),

D̄ = −(b̄̄i− c̄h̄), Ē = (āī− c̄ḡ), F̄ = −(āh̄− b̄ḡ),

Ḡ = (b̄f̄ − c̄ē), H̄ = −(āf̄ − c̄d̄), Ī = (āē− b̄d̄),

which leads to

1
2X

−1Ωωdt :=





w̄(q, ω)
ū(q, ω)
v̄(q, ω)





= 1
2(āĀ+b̄B̄+c̄C̄)





(Āg + D̄q3 − Ḡq2)ω1 + (−Āq3 + D̄g + Ḡq1)ω2 + (Āq2 − D̄q1 + Ḡg)ω3

(B̄g + Ēq3 − H̄q2)ω1 + (−B̄q3 + Ēg + H̄q1)ω2 + (B̄q2 − Ēq1 + H̄g)ω3

(C̄g + F̄ q3 − Īq2)ω1 + (−C̄q3 + F̄ g + Īq1)ω2 + (C̄q2 − F̄ q1 + Īg)ω3



 ,(10)

and

1
2X

−1Ωφ1dt :=





x̄(q, ω, φ1)
ȳ(q, ω, φ1)
z̄(q, ω, φ1)





= 1
2(āĀ+b̄B̄+c̄C̄)





(Āg + D̄q3 − Ḡq2)φ11 + (−Āq3 + D̄g + Ḡq1)φ12 + (Āq2 − D̄q1 + Ḡg)φ13
(B̄g + Ēq3 − H̄q2)φ11 + (−B̄q3 + Ēg + H̄q1)φ12 + (B̄q2 − Ēq1 + H̄g)φ13
(C̄g + F̄ q3 − Īq2)φ11 + (−C̄q3 + F̄ g + Īq1)φ12 + (C̄q2 − F̄ q1 + Īg)φ13



 .(11)
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Let

Fk−1 =









I3 +
∂
∂q





w̄(q, ω)
ū(q, ω)
v̄(q, ω)



 03

03 I3









x̂k−1|k−1

, (12)

Lk−1 =









∂
∂φ1





x̄(q, ω, φ1)
ȳ(q, ω, φ1)
z̄(q, ω, φ1)



 03

03 dtI3









x̂k−1|k−1,uk−1

=

[

1
2X

−1Ωk−1dt 03
03 dtI3

]

x̂k−1|k−1,uk−1

,

(13)
and

Hk =
∂H

∂x
|x̂k|k−1,uk−1

= I. (14)

The extended Kalman filter iteration is as follows:

x̂k|k−1 = F (x̂k−1|k−1, uk−1) (15a)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Lk−1Qk−1L

T
k−1 (15b)

ỹk = yk −H(x̂k|k−1) (15c)

Sk = Pk|k−1 +Rk (15d)

Kk = Pk|k−1S
−1
k (15e)

x̂k|k = x̂k|k−1 +Kkỹk (15f)

Pk|k = (I −Kk)Pk|k−1. (15g)

Sinceuk is not available, it is suggested in [2] to setuk = ω̂k|k = ωyk − β̂k|k and ω̂k|k−1 =
ω̂k−1|k−1.

Remark 0.2 Clearly, the extended Kalman filter using this model cannot be updated without three
dimensional gyro measurementsωyk . In the next section, we will show that even if the gyro mea-
surements are available, using this model is not as good as using a model which incorporates the
spacecraft dynamics. In section 4, we will use simulation tocompare the performance of two differ-
ent methods to support our claim.

Remark 0.3 To improve the estimation accuracy ofx̂k|k−1, we can reduce the step size ofdt. But
in some applications, the measurements may be available only after several sampling period. In
this case,a multi-rate Kalman filter should be considered [23], which is not the focus of this paper.

EXTENDED KALMAN FILTER WITH SPACECRAFT DYNAMICS

This type of model can be expressed as follows [15,16].

ω̇ = −J−1ω × (Jω) + J−1u+ φ1, (16a)

q̇ =
1

2
Ω(ω + φ2), (16b)

y = h(ω, q) + ψ, (16c)
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where[ω, q]T is the state vector,y is the measurement vector,φ = [φ1, φ2]
T is the process Gaussian

noise which models various disturbance torques,ψ is the measurement Gaussian noise,J is the
inertia matrix of the spacecraft, andΩ is defined in (4). Depending on the design, we may have
angular rate measurementsωy and quaternion measurementqy; or we may have only quaternion
measurementqy. Assuming that three gyros and quaternion measurement sensors are installed on
board, then the measurement equation can be written as [9]

β̇ = φ3, (17a)

ωy = ω + β + ψ1, (17b)

qy = q + ψ2, (17c)

whereβ is a drift in the angular rate measurement,φ3 is the process noise,ωy is the angular rate
measurement,qy is the quaternion measurement, andψ1 andψ2 are measurement noise. The overall
system equations are given as follows:

ω̇ = −J−1ω × (Jω) + J−1u+ φ1, (18a)

q̇ =
1

2
Ω(ω + φ2), (18b)

β̇ = φ3, (18c)

ωy = ω + β + ψ1, (18d)

qy = q + ψ2, (18e)

which can be rewritten as a standard state space model as follows:

ẋ = f(x, u) + φ, (19a)

y = Hx+ ψ, (19b)

wherex = [ωT, qT, βT]T, y = [ωT
y , q

T
y ]

T, φ = [φT1 , φ
T
2 , φ

T
3 ]

T, ψ = [ψT
1 , ψ

T
2 ]

T, and

H =

[

I3 03 I3
03 I3 03

]

.

The discrete version of (18) is given by




ωk+1

qk+1

βk+1



 =









ωk

qk
βk



+





−J−1ωk × (Jωk) + J−1uk
1
2 Ωkωk

0



 dt



+





φ1k
1
2 Ωkφ2k
φ3k



 dt

= F (xk, uk) +G(xk, uk)φk, (20a)

[

ωyk

qyk

]

=

[

I3 03 I3
03 I3 03

]





ωk

qk
βk



+

[

ψ1k

ψ2k

]

= Hxk + ψk, (20b)

where

Ωk =











√

1− q21k − q22k − q23k −q3k q2k

q3k

√

1− q21k − q22k − q23k −q1k

−q2k q1k

√

1− q21k − q22k − q23k











. (21)
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Note that for two vectorsw = [w1, w2, w3]
T andv = [v1, v2, v3]

T, the cross product ofw × v can
be written as the product of matrixw× and vectorv where

w× =





0 −w3 w2

w3 0 −w1

−w2 w1 0



 .

We also assumeφk andψk are white noise signals satisfying equations (9). For

F1(x, u) =
(

−J−1ωk × (Jωk) + J−1uk
)

dt+ ωk,

we have
∂F1

∂x
=

[

I − J−1(ω×J − (Jω)×)dt 03 03
]

.

ForF2(x, u) =
1
2 Ωkωkdt+ qk, we have

∂F2

∂x
=

[

∂F2

∂ω
∂F2

∂q
03

]

,

with

∂F2

∂ω
=





g
2 − q3

2
q2
2

q3
2

g
2 − q1

2
− q2

2
q1
2

g
2



 dt =
1

2
Ωdt, (22)

and

∂F2

∂q
=







1
dt

− q1ω1

2g(q)
ω3

2 − q2ω1

2g(q) −ω2

2 − q3ω1

2g(q)

−ω3

2 − q1ω2

2g(q)
1
dt

− q2ω2

2g(q)
ω1

2 − q3ω2

2g(q)
ω2

2 − q1ω3

2g(q) −ω1

2 − q2ω3

2g(q)
1
dt

− q3ω3

2g(q)






dt. (23)

ForF3(x, u) = βk, we have
∂F3

∂x
=

[

03 03 I3
]

.

Therefore,

Fk−1 :=
∂F

∂x
|x̂k−1|k−1,uk−1

=





I − J−1(ω×J − (Jω)×)dt 03 03
∂F2

∂ω
∂F2

∂q
03

03 03 I3





x̂k−1|k−1

. (24)

Let

Lk−1 =
∂G

∂φk
|x̂k−1|k−1,uk−1

=





I3 03 03
03

1
2 Ωk−1 03

03 03 I3



 dt. (25)

The extended Kalman filter iteration is as follows:

x̂k|k−1 = F (x̂k−1|k−1, uk−1) (26a)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Lk−1Qk−1L

T
k−1 (26b)

ỹk = yk −Hx̂k|k−1 (26c)

Sk = HPk|k−1H
T +Rk (26d)

Kk = Pk|k−1H
TS−1

k (26e)

x̂k|k = x̂k|k−1 +Kkỹk (26f)

Pk|k = (I −KkH)Pk|k−1 (26g)
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Remark 0.4 The beauty of the Kalman filter using spacecraft dynamics canbe seen from (26f). The
best estimation is composed of two parts. The first part is a prediction x̂k|k−1 which is based on
the spacecraft dynamics and the inertia matrix informationfor the specific spacecraft. The second
part is a correctionỹk which is based on observations. The filter gainKk is constantly adjusted
such that (a) if the noise is higher, the gain is reduced so that the estimation depends more on the
information of the system dynamics, and (b) if the noise is lower, the gain is increased so that the
estimation depends more on the measurement. That is the reason why spacecraft dynamics should
be included in the attitude estimation problem even if angular rate measurements are available.

As mentioned before, the Kalman filter with spacecraft dynamics works without the (gyro) mea-
surement of spacecraft angular velocity vector with respect to the inertial frame. In this case, gyro
measurement driftβ does not exist. Therefore, the continuous system (18) is reduced to

ω̇ = −J−1ω × (Jω) + J−1u+ φ1, (27a)

q̇ =
1

2
Ω(ω + φ2), (27b)

qy = q + ψ2. (27c)

We still use (19) for this system butx = [ωT, qT]T, y = qy, φ = [φT1 , φ
T
2 ]

T, ψ = ψ1 and
C =

[

03 I3
]

. The discrete version of (27) is given by

[

ωk+1

qk+1

]

=

([

ωk

qk

]

+

[

−J−1ωk × (Jωk) + J−1uk
1
2 Ωkωk

]

dt

)

+

[

φ1k
1
2 Ωkφ2k

]

dt

= F (xk, uk) +G(xk, uk)φk, (28a)

qyk =
[

03 I3
]

[

ωk

qk

]

+ ψk = Hxk + ψk, (28b)

whereΩk is the same as in (21). We also assumeφk andψk are white noise signals satisfying
equations (9). For

F1(x, u) =
(

−J−1ωk × (Jωk) + J−1uk
)

dt+ ωk,

we have
∂F1

∂x
=

[

I − J−1(ω×J − (Jω)×)dt 03
]

.

ForF2(x, u) =
1
2 Ωkωkdt+ qk, we have

∂F2

∂x
=

[

∂F2

∂ω
∂F2

∂q

]

,

with ∂F2

∂ω
and ∂F2

∂q
the same as (22) and (23). Therefore,

Fk−1 :=
∂F

∂x
|x̂k−1|k−1,uk−1

=

[

I − J−1(ω×J − (Jω)×)dt 03
∂F2

∂ω
∂F2

∂q

]

x̂k−1|k−1

. (29)

Let

Lk−1 =
∂G

∂φk
|x̂k−1|k−1,uk−1

=

[

I3 03
03

1
2 Ωk−1

]

dt. (30)

The extended Kalman filter will be the same as (26).
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SIMULATION TEST

Extended Kalman filters with and without spacecraft dynamics have been implemented in Simulink
to assess their performances. The inertia matrixJ of the spacecraft in the simulation has the follow-
ing values taken from [24]:





1200 100 −200
100 2200 300
−200 300 3100





The unit ofJ is kg ·m2. The state and measurement noise variance matricesQk andRk are positive
definite and represent the noise magnitudes of the angular and angular rate in state dynamics and
measurement instruments. While the dimensions ofQk in the extended Kalman filters (with or
without spacecraft dynamics) are different,Rk is the same for both filters and given by

Rk = 0.1I6

whereI6 is a 6 × 6 identity matrix. State dynamics noiseQk for the filter without spacecraft
dynamics is given by

Qk =

[

0.4I3 −0.004I3
−0.004I3 0.4I3

]

For the filter with spacecraft dynamics,Qk is given by a similar but different dimensional matrix

Qk =





0.4I3 −0.004I3 03
−0.004I3 0.4I3 03

03 03 0.00005I3





03 is 3× 3 matrix of zeroes. The initial values of the statesx̂0|0 and the covarianceP0|0 are set
to zeroes. The true and estimated quaternions for the Kalmanfilters with and without spacecraft
dynamics are shown in Figure 1 through Figure 4.
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qe1 without SC

Figure 1. The first component of the estimated and true quaternion.

These figures show that the estimated attitudes for both filters follow the true attitude, but the
estimation using spacecraft dynamics is clearly better than the estimation without using spacecraft
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Figure 2. The second component of the estimated and true quaternion.

dynamics. The attitude errors between the estimated and true attitude are represented by the Euler
angles, roll, pitch and yaw angle errors. The attitude errors of the extended Kalman filters with and
without spacecraft dynamics are compared. The mean and standard deviation of the attitude errors
with and without SC dynamics are summarized in Table 1.

Table 1. Mean and standard deviation of the attitude errors with and without SC dynamics

Euler angles Attitude error mean (deg) Attitude error standard deviation (deg)

Roll with SC dynamics -0.4869 0.4145

Roll without SC dynamics 3.1075 4.8599

Pitch with SC dynamics 1.0194 1.1230

Pitch without SC dynamics 3.3738 7.7963

Yaw with SC dynamics 0.0889 0.3741

Yaw without SC dynamics 3.1770 4.9706

CONCLUSIONS

In this paper, we compared two different models that can be used for spacecraft attitude estima-
tion. One model does not use spacecraft dynamics and is more popular in the guidance, navigation,
and control community; the other one involves the spacecraft dynamics and has not been inves-
tigated as much as the first model. We adopted a reduced quaternion spacecraft dynamics model
which admits additive noise. Geometry of the reduced quaternion model and the additive noise was
discussed. This treatment is more elegant in mathematics and easier in computation. Our analysis
and simulation results show that the second model and the corresponding extended Kalman filter is
a better choice in attitude determination because the method uses more information and gives more
accurate attitude estimation.
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Figure 3. The third component of the estimated and true quaternion.
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