ELECTROMAGNETIC DISSOCIATION CROSS SECTIONS FOR HIGH LET FRAGMENTS

John Norbury

NASA Langley Research Center, Hampton, Virginia, USA

Wednesday February 10, 2016

2:15 - 2:30 pm (15 mins.)
INTRODUCTION

ELECTROMAGNETIC DISSOCIATION (EMD)

RESULTS

CONCLUSIONS
Galactic cosmic rays (GCR) & solar particle events (SPE) are radiation hazards in space for humans & electronic components
- GCR contain all nuclei in periodic table
- Energies hundreds of GeV/nucleon (n) & beyond

Focus on GCR interactions
- Nuclei broken into lighter fragments upon interaction with target nuclei

Target nuclei represent nuclei making up
- Spacecraft shielding, human body, electronic components, etc.
- Example: $^{56}\text{Fe} + \text{Al} \rightarrow ^{55}\text{Fe} + n + \text{Al}$
Introduction: Strong vs. Electromagnetic (EM)

\[^{56}\text{Fe} + \text{Al} \rightarrow ^{55}\text{Fe} + \text{n} + \text{Al} \]

Short range strong interaction when projectile & target nuclei overlap.
Introduction: Strong vs. Electromagnetic (EM)

$^{56}\text{Fe} + \text{Al} \rightarrow ^{55}\text{Fe} + \text{n} + \text{Al}$

Short range strong interaction when projectile & target nuclei overlap.

Long range EM interaction when projectile & target nuclei miss each other.
Electromagnetic Dissociation

$$\sigma_{\text{EMD}} = \int dE_\gamma N(E_\gamma) \sigma(E_\gamma)$$

Photonuclear cross section $\sigma(E_\gamma)$ shown by red curve, plotted against photon energy E_γ. Green & blue curves show virtual photon spectra $N(E_\gamma)$ for low & high energy projectiles.

Previously, EMD models (e.g. within NUCFRG3) calculate single proton (p) production, single neutron (n) or light ion production
- Light ion ≡ isotope of hydrogen (H) or helium (He)
- Deuteron (d ≡ ²H), triton (t ≡ ³H), helion (h ≡ ³He), alpha (α ≡ ⁴He)

New model EMDFRG accounts for multiple nucleon production
- 2p, 2n, 1p1n, 2p1n, 3p1α, 2p2t, ... (in addition to single light ions)

Such processes important:
- Consider reaction \({^{56}}Fe + Al \rightarrow {^{52}}Cr + X + Al \) high LET \({^{52}}Cr \)
- Most probable EMD particles representing X are 2p2n or \({^{4}}He \)
- \({^{56}}Fe + Al \rightarrow {^{52}}Cr + {^{4}}He \) + Al \(\rightarrow {^{52}}Cr + 2p2n + Al \) EMDFRG & NUCFRG3
- \(\sigma({^{52}}Cr) = \sigma(2p2n) + \sigma({^{4}}He) \)
- Production of high LET \({^{52}}Cr \), must include both multiple nucleon production of 2p2n plus light ion production of \({^{4}}He \)
Compare:

EMDFRG ——— with photonuclear parameterization for $\sigma(E_\gamma)$
EMDFRG - - - - - with photonuclear data for $\sigma(E_\gamma)$
NUCFRG2 - - - - -
NUCFRG3

Focus on EMDFRG ——— and NUCFRG3
Excellent agreement for EMDFRG —— Poor agreement for NUCFRG3 • • • • •
Excellent agreement for EMDFRG —— Worse agreement for NUCFRG3 • • • • •
Similar agreement for EMDFRG —— and NUCFRG3 • • • • •

John Norbury (NASA Langley)

Galactic Cosmic Ray Environment

January 28, 2016 10 / 25
RESULTS - SINGLE NUCLEON

Good agreement for EMDFRG —— Poor agreement for NUCFRG3 • • • • •
Similar agreement for EMDFRG —— and NUCFRG3 • • • • •
Excellent agreement for EMDFRG
Large Hadron Collider (LHC)

4,056.44 TeV/n: 208Pb + Target \rightarrow 1n

Excellent agreement for EMDFRG
RESULTS - DOUBLE NUCLEON

EMDFRG —— DATA ——

1700 MeV/n : 18O + Target → 16O (2n)

σ (mb)

Z target

1700 MeV/n : 18O + Target → 16N (1p1n)

σ (mb)

Z target

Good agreement for EMDFRG

$\sigma_{\text{NUCFRG3}} = 0$
RESULTS - DOUBLE NUCLEON

EMDFRG

DATA*—— MMM***

13.7 GeV/n: 28Si + Target → 26Al + 1p1n

Excellent agreement for EMDFRG ———

$\sigma_{\text{NUCFRG3}} = 0$

13.7 GeV/n: 28Si + Target \rightarrow 26Mg + 2p (f=0.18)

Poor agreement for EMDFRG ——— (fit = - - -)

$\sigma_{\text{NUCFRG3}} = 0$

13.7 GeV/n: 28Si + Target \rightarrow 26Si + 2n (f=0.05)
Good agreement for **EMDFRG**

\[\sigma_{\text{NUCFRG3}} = 0 \]

RESULTS - DOUBLE NUCLEON

1260 MeV/n: \(^{59}\text{Co} + \text{Target} \rightarrow ^{57}\text{Co} \ (2n)\)

1700 MeV/n: \(^{59}\text{Co} + \text{Target} \rightarrow ^{57}\text{Co} \ (2n)\)

2100 MeV/n: \(^{59}\text{Co} + \text{Target} \rightarrow ^{57}\text{Co} \ (2n)\)

1000 MeV/n: \(^{197}\text{Au} + \text{Target} \rightarrow ^{195}\text{Au} \ (2n)\)
Reasonable agreement for \textit{EMDFRG} ——– $\sigma\text{NUCFRG3} = 0$
RESULTS - TRIPLE NUCLEON

Excellent agreement for EMDFRG ——– $\sigma_{\text{NUCFRG3}} = 0$

Poor agreement for EMDFRG ——– (fit = - - -) $\sigma_{\text{NUCFRG3}} = 0$
RESULTS - TRIPLE NUCLEON

1000 MeV/n: 197Au + Target → 194Au (3n)

1700 MeV/n: 197Au + Target → 194Au (3n)

Mixed agreement for EMDFRG

\[\sigma_{\text{NUCFRG3}} = 0 \]
Results - Many Nucleon

13.7 GeV/n: 28Si + Target → 24Mg + 2p2n

- Good agreement for EMDFRG
 $\sigma_\text{NUCFRG3} = 0$

13.7 GeV/n: 28Si + Target → 23Na + 3p2n

- Poor agreement for EMDFRG
 (fit = - - -)
 $\sigma_\text{NUCFRG3} = 0$

13.7 GeV/n: 28Si + Target → 24Na + 3p1n
 (f=0.27)
13.7 GeV/n: $^{28}\text{Si} + \text{Target} \rightarrow ^{24}\text{Mg} + \alpha$

Excellent agreement for EMDFRG

Poor agreement for NUCFRG3

Results - Alpha

(Another reason for developing EMDFRG)
Excellent agreement for EMDFRG

\[\sigma_{\text{NUCFRG3}} = 0 \]
CONCLUSIONS

- New EMDFRG model for single & multiple nucleon & light ion
- Calculations are compared to complete set of experimental data
- Agreement with data is excellent for all cases relevant for space radiation
- Single, double & triple nucleon removal data agrees very well over the whole range of energies, projectiles and targets
- Alpha production data agrees very well for ^{28}Si projectiles, including alpha production in coincidence with single nucleons
- Some discrepancies, but not important for space radiation, because cross sections are quite small
 - Exception is for double nucleon removal from ^{28}Si