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Abstract. We describe a framework for symbolically evaluating C code
using a deductive approach that discovers and proves program prop-
erties. The framework applies Floyd-Hoare verification principles in its
treatment of loops, with a library of iteration schemes serving to derive
loop invariants. During evaluation, theorem proving is performed on-the-
fly, obviating the generation of verification conditions normally needed
to establish loop properties. A PVS-based prototype is presented along
with results for sample C functions.

1 Introduction

Both formal code verification and techniques for loop invariant generation are
enjoying a moderate resurgence. While much recent work is focused on SMT
solvers and first order logic, “heavyweight” methods using interactive theorem
provers and higher order logics (e.g., PVS [21]) are often considered less practi-
cal. Although tools having rich logics require some manual effort, we present a
new analysis concept that leverages their strengths and offers promising results.
Using a two-track approach, we can achieve an effective division of labor by
pre-computing deductive artifacts, then later applying them automatically.

The first track is an invariant synthesis technique revolving around itera-
tion schemes, which are expressed in PVS notation and rely on PVS tools for
deduction support. In contrast with most invariant generation methods, our ap-
proach emphasizes a body of codified knowledge. The second track makes use
of Floyd-Hoare verification principles [8, 14] along with synthesized invariants
and conventional symbolic analysis techniques. Collectively these ideas achieve
a deductive evaluation of C functions having loops, a task that is conducted au-
tomatically without user-supplied assertions or specifications. The user is simply
presented with a best-effort derivation of the effects computed by his or her code.

We have created early-stage prototype tools, hosted within PVS, to demon-
strate basic feasibility. Examples are provided throughout the paper. C is the
language used in this study, but the approach could be applied to other im-
perative languages. Deductive evaluation offers a powerful, automated analysis
capability that requires little effort to use, potentially serving in a variety of
software development/verification roles.
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2 Analysis Concept

Our concept for analyzing source code in imperative languages is based on several
tools and techniques:

– Theorem proving in higher order logic. Our tool choice is PVS, which in-
cludes an expressive language having rich type features as well as a powerful
theorem prover. Besides the interactive interface, the prover can be invoked
programmatically to conduct fully automated proving.

– Deductive code verification principles. Floyd-Hoare principles for proving
iterative code are used along with concepts of symbolic evaluation/execution.

– Data-driven invariant synthesis. Loop invariants are generated from iteration
schemes, which are stylized PVS theories for modeling the effects of itera-
tive algorithms. Execution effects within a loop body are matched against a
library of iteration schemes to derive invariants.

While the resulting capability does not conduct verification explicitly, its analy-
ses can contribute to contract-based verification or serve other purposes such as
advanced debugging.

2.1 C Features Supported

The current prototype is limited to a subset of C language features. Data types
are integers and arrays of integers. Function declarations and basic C statements
are supported; other declarations are not. Expressions must be free of side effects
(i++ is allowed as a statement, however). Pointers and dynamic memory features
are excluded in this early stage.

The evaluation prototype is limited to partial correctness results (no termi-
nation proofs). C integers are modeled using mathematical numbers rather than
machine numbers. Only a modest library of iteration schemes (around 20) has
been developed so far. If a C function assumes its inputs satisfy some constraints,
there is not yet a direct way to declare or infer pre-conditions.

Some of these limitations will be relaxed in future versions.

2.2 Mechanization Using PVS

PVS (Prototype Verification System) [21] refers to both a language and a set of
deduction tools. The language allows formalization of mathematical and logical
concepts, although it lacks any explicit models of computation. Classical higher
order logic and a flexible type system form the theoretical underpinnings. Hosted
within Emacs, the tools perform parsing, type checking and theorem proving.

PVS declarations (e.g., types, constants, lemmas) are grouped into theories.
Important features for our purposes are function-valued expressions and predi-
cate subtypes [23]. Subtypes may be declared as subsets of previously declared
or built-in types. The set comprehension notation {x : T |P (x)} is the basic way
to express predicate subtypes. Uninterpreted constant declarations allow us to
name an arbitrary value of a type. For example,
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n_1_: {n: int | 0 <= n AND n < q}

illustrates this with a predicate subtype. Deductive evaluation exploits this fea-
ture to embed derived constraints or assertions in the types of PVS constants.

2.3 Prototype Tool Architecture

Fig. 1 depicts the experimental tool framework for deductive evaluation and
invariant synthesis. C source code is first mapped into an abstract syntax tree
(AST) using Lisp s-expressions. The deductive evaluator, which is implemented
in Common Lisp and resides in the same process as PVS, traverses the AST and
carries out analysis steps. A PVS output theory is built incrementally during
this process. Section 4 describes the operation in more detail.

Fig. 1. Architecture of the prototype tool framework.

Iteration schemes are collected in a library, each represented as a PVS the-
ory, and must first be “registered” for later use during invariant generation.
Registration extracts key details from those theories to build data structures for
searching and matching. When the evaluator needs invariants for a fragment of
C code, synthesizer functions are invoked to carry out the generation. Opera-
tion of the invariant synthesizer is discussed in Section 3. It is implemented in
Common Lisp and loaded along with the deductive evaluator.

2.4 Evaluation Example

To illustrate the concepts in some detail, we use a simple iterative algorithm.
Fig. 2 shows a C function to multiply integers alongside an excerpt of the de-
ductive evaluation output. Deductive evaluation produces a PVS theory for each
C function. Each such theory ends with a declaration named final that char-
acterizes the result(s) returned by the C function. (The declaration WFO is a
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int add_mult(

unsigned int m,

int n) {

int p = 0;

unsigned int i = 0;

while (i < m) {

p += n;

i++;

}

return p;

}

add_mult_deval

[ (IMPORTING iter_schemes@prog_types)

m_0_: nat, n_0_: int ] : THEORY

BEGIN

%% Analysis details in next figure.

final: return_values =

(# result_ := m_0_ * n_0_ #)

WFO: boolean = TRUE

END add_mult_deval

Fig. 2. Simple C function and its evaluation result in PVS (excerpted).

well-formedness obligation, explained in Section 4.3.) In this case the evaluator
deduced that the result is the product of parameters m and n. Numeric suffixes
are attached to PVS identifiers to disambiguate C variable values at different
execution points. Additional declarations and evaluator comments from the gen-
erated theory are shown in Fig. 3.

p_0_: int = 0

i_0_: nat = 0

result_0_: int

return_values:

TYPE = [# result_: int #]

% Analyzing while loop at depth 1.

% Found dynamic variables: p, i

% Found static variables: m, n

% Found possible index variables: i

% Values at top of loop:

k_1_: nat % implicit loop index

p_1_: int % dynamic variable

i_1_: nat % dynamic variable

% Effects of loop body:

p_2_: int = p_1_ + n_0_

i_2_: nat = i_1_ + 1

% Invariants for loop index i

% (from scheme loop_index_recur):

% (index_var_expr . i_1_ = k_1_)

% (iter_k_expr . k_1_ = (i_1_ / 1))

% (initial_bound . TRUE)

% (final_bound . i_1_ < 1 + m_0_)

% Invariants for variable p

% (from scheme arith_series_recur):

% p_1_ = (k_1_ * n_0_)

% Values of dynamic variables on

% (normal) loop exit:

k_2_: nat = m_0_

i_3_: nat = m_0_

p_3_: int = m_0_ * n_0_

% End of for/while loop at depth 1.

Fig. 3. Additional declarations for evaluator output of Fig. 2.

For modest functions such as that in Fig. 2, deductive evaluation provides
significant benefits. If the result expression is the desired specification, then
verification has been performed implicitly because that evaluation result is a
machine-checked inference that follows from the C function’s semantics. If the
code contains an error, reviewing the result expression should aid in its discovery
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and localization. For example, if the while-condition had been (i <= m), the
result would have been m_0_ * n_0_ + n_0_, greatly helping to identify the off-
by-one error. In other cases, the user will receive less specific analytical feedback
with which to assess the code’s fitness.

Note that a user need only invoke the evaluator to obtain the results in Fig. 2.
Postconditions are not provided, and intermediate assertions such as loop invari-
ants are generated as needed. If a particular code fragment is not covered by the
iteration scheme libraries, the evaluator will produce only partially useful results.
While the prototype generates output in the PVS language, translation to other
notations is possible. The C specification language ACSL [1], for instance, could
be used when only first-order features are involved.

3 Invariant Synthesis

Deducing the effects of iterative code can be achieved using a Hoare-style proof
rule such as the following, where predicate Q serves as loop invariant.

P ⇒ Q ` {B ∧Q} S {Q} Q⇒ (R ∨B)

` {P} while B do S {R}
(1)

Invariants cannot, in general, be found algorithmically; they must be derived
using heuristic methods. Our approach for automated invariant generation relies
on the expressive power of higher order logic to build a library of iteration
schemes, which are later instantiated to create specific invariants. Over time,
growth of this collection will enable broad coverage for typical iterative code.

3.1 Predicate-Based Recurrence Relations

Recurrence relations have been applied in other work on invariant generation [17].
Their application to loop invariants is quite natural. For example, given the code

p = 1; for (i = 0; i < m; i++) p *= 2;

we could formulate the recurrence F (0) = 1;F (n + 1) = 2F (n), which has the
solution F (n) = 2n. From this solution we could infer the invariant p = 2i.

In standard mathematics, solutions to elementary recurrences are functions.
For our purposes this would be overly limiting since many invariants state rela-
tional properties. Thus, we choose to generalize the problem form to accommo-
date predicates as solutions. For example, the recurrence above could become
I(u, 0) ≡ u = 1;R(u, v, n) ≡ v = 2u, where R relates next value v to current
value u. P (u, n) ≡ u = 2n is a solution to this recurrence.

Note there are multiple solutions, many of which are trivial. This does not
diminish the utility of the approach because authors of iteration schemes provide
the solutions, which we expect to be strong enough to serve as effective invariants.
Moreover, predicate-based recurrences support a range of data types by allowing
solutions to be quantified expressions and other Boolean expressions.
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To simplify tool design, we provide a stylized method to express predicate
recurrences directly in PVS theories. Each theory includes a lemma and proof
that the solution satisfies the recurrence. The proof is constructed by the devel-
oper of the iteration scheme using the PVS interactive prover. This setup allows
schemes to be developed “offline” and saved in a library. Afterward, they will be
available for use by the evaluator, where they will be tried automatically.

3.2 Iteration Schemes in PVS

Fig. 4 presents the structure of iteration schemes in example form, using a scheme
applied in the evaluation of Fig. 2. Most of what is shown in Fig. 4 will appear
in every scheme, i.e., it is basically a template. Schemes typically capture the
behavior of a single program variable. In this case, variable p of Fig. 2 is a
matching dynamic variable of type int. Dynamic variables are those that change
value during a loop; static “variables” may be unchanging variables as well as
constants, functions, or static expressions. Recurrences are grouped into several
categories according to form and function.

arith_series_recur : THEORY

BEGIN

dyn_vars: TYPE = int

stat_vars: TYPE = int

IMPORTING recur_pred_defn[dyn_vars, stat_vars]

k: VAR nat

I,U,V: VAR dyn_vars

S,W: VAR stat_vars

recur_type: recurrence_type = var_function

recurrence(I, S)(U, V, k): recur_cond = . . .

solution(I, S)(U, k): invar_list = . . .

recur_satis: LEMMA sat_recur_rel(solution, recurrence)

END arith_series_recur

Fig. 4. Excerpt from iteration scheme used in evaluation of Fig. 2.

The heart of the scheme is the pair of declarations recurrence and solution,
details1 of which appear in Fig. 5. Parameters for these functions have fixed
names: I for initial values of dynamic variables, S for static variables, and U, V
for dynamic variable values before and after each iteration. Any of these could
be a tuple, hence the use of LET expressions to perform de-structuring. Also,
included in every scheme is an implicit loop index k, which is part of the modeling
framework and separate from any similar program variables.

1 PVS notation: (a, b) is a tuple, (: a, b :) is a list, and (# a := b, c := d #)

is a record.
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recurrence(I, S)(U, V, k): recur_cond =

LET s0 = I, d = S, u = U, v = V IN

(# each := (: (iter_effect, v = u + d) :),

once := (: :) #)

solution(I, S)(U, k): invar_list =

LET s0 = I, d = S, u = U IN

(: (func_val_expr, u = k * d + s0),

(initial_bound,

IF d < 0 THEN u <= s0 ELSE u >= s0 ENDIF) :)

Fig. 5. Simple example of recurrence and solution (details for Fig. 4).

Recurrence definitions have the type of record of lists of labeled conditions.
Two categories of conditions are used: “each” conditions must hold before and
after every iteration, and “once” conditions hold initially or constrain constant
expressions. Each list element is a pair (C,Q), giving a condition type C and
Boolean expression Q. Use of condition types helps the evaluator provide more
precise information during the search and matching phase of invariant synthesis.

Solution definitions have the type of list of labeled invariant expressions,
the conjunction of which is a solution predicate. Providing different invariant
types helps the evaluator make better use of derived information. For example,
func val expr means an invariant has the form u = e. Definitions from a meta-
model, expressed in a separate PVS theory, denote what it means for a solution
predicate to satisfy its recurrence relation.

Higher order logic figures prominently in the formulation of schemes, enabling
generic expression of both conditions and solutions. Functions can be restricted
to have necessary properties, such as monotonicity:

(stat_cond, FORALL (p, q: nat): p < q IMPLIES f(p) < f(q))

For typical bindings of f, such properties can be proved automatically by PVS.
Other uses for function variables in schemes include accommodating ascending
and descending iteration, or both directions of ordering relations, as well as
representing mappings between implicit index k and loop counters in the code.

3.3 Instantiating Iteration Schemes

Given a loop body S and dynamic variable x, two constants, e.g., x1 and x2,
will denote x’s value before and after an arbitrary iteration. Evaluation of S
will derive an expression e for the value x2. Subsequently, x1, x2 and e become
inputs to the scheme-matching process.

During scheme registration, recurrence conditions are turned into patterns
suitable for matching. Variables in a recurrence declaration (e.g., s0,d,u,v
from Fig. 5) become pattern variables. Each can be matched by a program
variable or expression of the appropriate type and dynamic status.

During evalution, applicable schemes will be searched and matches attempted.
Only after all recurrence conditions are met, which requires theorem proving, will
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a matching scheme be recognized. Included are any conditions needed to ensure
the invariants hold in the initial state. After a successful match is found, each
solution expression will be instantiated with terms from the pattern variables
and emitted as invariants.

Matching and condition checking play a role similar to unification in the
application of lemmas by a theorem prover. In fact, schemes can be thought of
as lemmas in a meta-theory of iteration for a model of computation.

In the running example of Fig. 2, the loop body has an effect on variable p

that is recorded as p_2_ = p_1_ + n_0_, with the initial condition p_0_ = 0

(see Fig. 3). This would satisfy the recurrence condition of Fig. 5, leading to the
invariant p_1_ = k_1_ * n_0_ + 0.

An important feature of this method is that synthesized invariants are valid
logical inferences of loop behavior. They are not merely candidates needing fur-
ther checking because all necessary conditions are shown to hold and each scheme
solution is proved to satisfy its recurrence. This in turn reduces the theorem prov-
ing burden during evaluation. Mathematically deep properties can be placed in
schemes without taxing the deduction performed during evaluation.

3.4 Special Features

Several features increase the range of invariant synthesis. First is the ability to
specify that a scheme depends on other facts that would be generated as sepa-
rate invariants. Consider the example of Fig. 6, which is a more realistic multiply
algorithm, similar to a hardware shift-and-add algorithm. Three dynamic vari-
ables are used, where y is doubled each time, d is halved, and p is the partial
product. The scheme that p satisfies includes the conditions

(dep_var_func, d = floor(d0 / 2^k)),

(dep_var_func, y = y0 * 2^k),

which are matched by invariants generated for d and y. Fig. 7 shows the relevant
evaluation details.

A second feature favors writing schemes with explicit function application
instead of simple expressions. For instance, the following recurrence conditions

(dep_index, i = g(k)),

(dyn_expr_func, j = f(i)),

include function-valued variables f and g. The evaluator applies lambda abstrac-
tion to convert an expression such as k+1 into (LAMBDA (i: nat): i+1)(k) so
that f will match (LAMBDA (i: nat): i+1). This binding can then be used to
instantiate a solution predicate such as

all_in_bounds(f o g, k, n) IMPLIES

FORALL (q: below(k)): A(f(g(q))) = h(g(q))

Despite increasing the difficulty of creating schemes, this technique makes them
less sensitive to the form of expressions needing to be matched.
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int add_mult_exp(

unsigned int m,

int n) {

int p = 0;

unsigned int d = m;

int y = n;

while (d > 0) {

if (d % 2 == 1) p += y;

y += y;

d /= 2;

}

return p;

}

add_mult_exp_deval

[ (IMPORTING iter_schemes@prog_types)

m_0_: nat, n_0_: int ] : THEORY

BEGIN

%% Internal analysis details omitted.

final: return_values =

(# result_ := n_0_ * m_0_ #)

WFO: boolean = TRUE

END add_mult_exp_deval

Fig. 6. A more realistic multiply algorithm and its evaluation.

% Invariants for variable d (from scheme div2_exp2_recur):

% d_1_ = floor((m_0_ / (2 ^ k_1_)))

% Invariants for variable y (from scheme double_exp2_recur):

% y_1_ = (n_0_ * (2 ^ k_1_))

% Invariants for variable p (from scheme exp2_mult_recur):

% p_1_ = m_0_ * n_0_ - floor((m_0_ / (2 ^ k_1_))) * (2 ^ k_1_) * n_0_

% Values of dynamic variables on (normal) loop exit:

k_2_: nat

d_3_: nat = 0

y_3_: int = n_0_ * (2 ^ k_2_)

p_4_: int = n_0_ * m_0_

Fig. 7. Invariants derived for example of Fig. 6.

A third feature adds a category of auxiliary facts to the solution part of
iteration schemes. This is intended for facts that follow directly from recurrence
solutions, so they can be proved without the usual inductive reasoning. A typical
use of such facts (shown below) is to deduce final variable values when the loop
exit condition is reached.

(final_func_expr, d = 0 IMPLIES p = y0 * d0)

The last feature concerns the additional exit paths created when loops are
exited via return and break statements. In some contexts, loop exits can induce
useful invariants. For exit condition P (e), we can often infer cases e′ where
¬P (e′) holds at the top of every iteration. One sufficient condition is that the
loop index is the only dynamic variable P references. This allows us to conclude
an invariant such as ∀ j < k : ¬P (j). An iteration scheme covers this case.
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4 Deductive Evaluation

Given C code transformed to ASTs and rendered as s-expressions, the deductive
evaluator attempts to infer effects produced by the code when executed. The
evaluator works in units of individual C functions. Each will have its effects
modeled symbolically via a PVS theory. Much of the processing draws from
established techniques; the novel parts concern loop handling.

4.1 Path Analysis

A C function is analyzed in stages: 1) formal parameters, 2) local variable decla-
rations, 3) statement block, and 4) returned result and call-by-reference parame-
ters. For a C function F, a PVS theory named F deval will be built incrementally
to record the evaluation results and provide declarations usable when evaluating
other functions.

Evaluation proceeds in a forward direction, in the same manner as symbolic
execution or strongest-postcondition analysis. Function parameters and local
variables are represented by parameters and constant declarations in PVS theory
F deval. The initial value of v is named v 0 . Values at later execution points
are represented by new constants with higher suffixes.

C data types and expressions are mapped into semantic equivalents in PVS,
except that unbounded integers are used instead of machine integers. Arrays are
represented by functions from {0, . . . , N} into a base type (currently integers).
Relational and logical expressions produce numeric results, as per C semantics.
State vectors of variable values are maintained and updated as statements are
processed. Values are symbolic expressions in PVS notation.

Statements are processed in order along each execution path. Assignments
cause the allocation of new constants to theory F deval and the updating of
state vector(s). Array assignments make use of “function update” expressions in
PVS. Assignment A[i] = A[j] leads to a declaration such as:

A_3_: int_array(A_size_) = A_2_ WITH [(i_1_) := A_2_(j_3_)]

Conditional statements cause path branching in the usual way, along with the
accumulation of new conjuncts for path conditions. Unlike symbolic execution,
however, the paths are unified at the close of a conditional statement. Because
PVS provides conditional expressions, a symbolic value after an if-statement can
have the form, IF a THEN b ELSE c ENDIF.

Control transfer statements such as return and break can create extra paths
with cloned state vectors. A return statement at the end of a function also
invokes return-value processing. A call to function G makes use of G’s previous
evaluation saved in theory G deval.

Throughout the evaluation process, small deduction steps are carried out
to check conditions or simplify expressions. The PVS theorem prover, invoked
programmatically, is used for this purpose.
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4.2 Loop Processing

Deducing the effects computed by loops requires the application of proof rule (1)
as well as the generation of invariants for dynamic variables. During the AST
stage, for-loops are translated to while-loops, so we assume each loop has the
general form, while (B) S, where the body S is a statement or block. Processing
begins by identifying static and dynamic variables, and noting initial value I of
the dynamic variables. There is also an attempt to identify a loop index variable
(loop counter) among the dynamic variables.

The evaluator first creates a state vector U to represent values at the start
of an arbitrary iteration of the loop. Supplying fresh PVS constants for dynamic
program variables serves this purpose. Next, the evaluator is run on condition B

to yield expression B, then run on loop body S, resulting in state vector V . Due
to the way conditional statements are handled, all iterating paths are merged
into a single path having a single state vector. Values in V include cumulative
updates to dynamic variables that result from all statements in S.

At this point, the evaluation process is ready to find invariants. For each
dynamic variable x, the invariant synthesizer is called with B, I, U , V , and
supporting information, where the searching and matching process described in
Section 3 is carried out. If it returns an invariant Q, it will be saved along with
some context information. If a candidate loop index variable exists, it is handled
first as a special case using a dedicated category of iteration schemes. Other
variables will be matched against a subset of invariant types as appropriate. If no
valid invariant can be inferred for a variable, its value will remain unconstrained.

After the generated invariants {Qi} have been gathered, they are used to
derive expressions for the final values of dynamic variables upon loop termina-
tion, the point where ¬B is assumed to hold. Some iteration schemes include
auxiliary facts to help infer final values. When applicable, final values of the loop
index variable and implicit index k are deduced. For example, if R is <, d = 1
and B is i < n, the following auxiliary fact allows us to deduce i = n.

(final_index_value,

R(0, d) AND NOT R(i, n) IMPLIES i = n + mod(i0 - n, d)),

These derivations, in turn, are used to help deduce final value expressions for
other dynamic variables. New final-value constants are generated, then substi-
tuted into each final expression.

Afterwards, the evaluator will have a new state vector W that character-
izes variable values immediately after termination of the loop. W will be used
to continue evaluation, should there be more statements on the path that con-
tains the loop. If loop exit paths exist due to break statements, these paths are
merged with the normal exit path. State vector merging requires conditional or
disjunctive expressions to describe variable values at the merge point.

4.3 Array Handling

Arrays are modeled using values of PVS function types. Computing with arrays,
however, modifies only one element at a time. This leads to loop invariants that
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quantify over array indices to describe work completed. In Fig. 8 is a function
that sets the first n elements of array A to v. After iteration k, the invariant
∀ q < k : A(q) = v holds. When k reaches n, we obtain the final quantified
expression shown for val A in the figure. This example shows how arrays, which
normally require predicates to describe their values, can be represented by named
declarations having predicate subtypes. Traditional assertions are thereby obvi-
ated with this technique.

void array_init(

int A[],

unsigned int n,

int v) {

int i;

int m;

for (i=0; i<n; i++)

A[i] = v;

}

array_init_deval

[ (IMPORTING iter_schemes@prog_types)

A_size_: posnat,

A_0_: int_array(A_size_),

n_0_: nat, v_0_: int ] : THEORY

BEGIN

%% Internal analysis details omitted.

val_A: {r_: int_array(A_size_) |

FORALL (q: below(n_0_)):

r_(q) = v_0_}

final: return_values =

(# A := val_A #)

WFO: boolean = n_0_ <= A_size_

END array_init_deval

Fig. 8. Initialization of n array elements.

To ensure well-formedness, array index expressions must be within bounds.
Consider two types of parameter declarations: 1) int A[N] and 2) int A[].
(1) triggers a check for each index expression i that i < N (well-formedness
condition, WFC). (2) is handled by introducing an implicit size parameter S
for function F and generating a well-formedness obligation (WFO) that implies
i < S. Appended to the PVS theory, a WFO needs to be established in the call-
ing environment. Invariants help constrain what is known about array accesses
within loops. If we can infer i < m for all iterations, we can generate the WFO
m ≤ S. Special schemes are provided to help establish these bounds. Fig. 8
illustrates this technique.

4.4 Array Examples

Fig. 9 collects the evaluation results for three common types of array algorithms.
These illustrate further how final array values are characterized using subtypes.
With traditional verification tools, these would take the form of postconditions,
although the essential constraints would be the same.

Note that the bubble sort example has nested loops. Generally these can be
handled by the evaluator without special techniques, provided there are iteration
schemes that deduce outer loop behavior from inner loop effects. Note also the
appearance of the PVS function, permutation of?, which is found in NASA
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int array_min(

const int A[],

unsigned int nm1) {

int i;

int m;

m = A[0];

for (i=1; i < 1+nm1; i++)

if (A[i] < m) m = A[i];

return m;

}

. . .

val_result_: {r_: int |

((FORALL (l: below(1 + nm1_0_)):

(r_ <= A_0_(l))) AND

(EXISTS (j: below(1 + nm1_0_)):

A_0_(j) = r_))}

final: return_values =

(# result_ := val_result_ #)

WFO: boolean = 1 + nm1_0_ <= A_size_

END array_min_deval

int linear_search(

const int A[],

unsigned int n,

int v) {

int i = 0;

while (i < n) {

if (A[i] == v) return i;

i += 1;

}

return -1;

}

. . .

val_result_: {r_: int |

(((r_ = -(1)) AND

(FORALL (j: below(n_0_)):

NOT A_0_(j) = v_0_)) OR

(A_0_(r_) = v_0_ AND

(r_ < n_0_)))}

final: return_values =

(# result_ := val_result_ #)

WFO: boolean = n_0_ <= A_size_

END linear_search_deval

void bubble_sort(int A[],

unsigned int nm1) {

unsigned int i = 0;

unsigned int j = 0;

int t;

while (i < nm1) {

j = i + 1;

while (j < 1 + nm1) {

if (A[j] < A[i]) {

t = A[i]; A[i] = A[j];

A[j] = t; }

j++; }

i++; } }

. . .

val_A: {r_: int_array(A_size_) |

((FORALL (p: below(nm1_0_)):

(r_(p) <= r_(1 + p))) AND

permutation_of?(r_, A_0_))}

final: return_values =

(# A := val_A #)

WFO: boolean =

(nm1_0_ <= A_size_) AND

(1 + nm1_0_ <= A_size_)

END bubble_sort_deval

Fig. 9. Evaluation results for common array algorithms.

Langley’s PVS library collection [20]. Relying on the extensive formalizations in
such libraries enhances the feasibility of the iteration scheme approach.

4.5 End-to-End Verification

Under investigation is a means to extend the evaluation machinery so end-to-end
properties of inverse operations can be established automatically. Consider the



14

problem of showing that two functions achieve lossless data compression. We
could construct a C function to represent their combined effect, in a manner
similar to how one might construct a test case:

void data_compression(int n) {

int A[1000], B[1000], C[1000];

compress(A, B);

decompress(B, C); }

We would like to infer that A = C when execution of this function ends.
Furthermore, it is desirable to prove the overall property without the user ever
having to construct specifications for compress and decompress, or to reason
explicitly about their interaction. If this can be done in a fully automatic way,
it would constitute a form of “don’t-care verification,” where only the high-level
result is of interest and all the lower-level formalization and proof is left as an
exercise for the tool.

Although this work is still in progress, the outlook is promising. Assume
the evaluator has derived P (A,B), the behavior of compress. Doing the same
for decompress is problematic because the function does not process arbitrary
values of array B. Analyzing decompress requires that we restrict B’s values
according to the data format computed by compress. Conventional verification
tools use preconditions for this purpose, although they generally must be pro-
vided by users. What we hope instead is to work from P (A,B).

Two approaches are under study. The first would create a modified form
of the decompress function in which the type of input array B is constrained
by P (A,B) using a predicate subtype. The second approach would evaluate
the function data compression after first performing an inline expansion of
decompress. This would cause decompress’s code to be evaluated under the
assumption P (A,B). Experiments with these two approaches are currently un-
derway for a simple data compression algorithm.

If end-to-end evaluation can be achieved, a valuable form of automated analy-
sis would result. Given that many low-level operations and services come in com-
plementary pairs, there would be ample opportunities to apply this technique.
Although it would not establish full functional correctness, it would provide
strong assurances nevertheless. Generalization to other function combinations
and properties should be feasible as well, effectively mimicking the concept of
algebraic specification directly in C code.

5 Related Work

Early work on invariant generation [25] began shortly after the seminal papers on
verification by Floyd and Hoare. The last 10–15 years have seen a wide variety of
investigations into loop invariant generation. Two broad categories of techniques
have been pursued.

The first category seeks to generate plausible invariant candidates using dy-
namic methods. Often these are not guaranteed to be invariants; they might fail



15

to hold in some cases. Daikon [6] is a leading tool of this type. InvGen [12] uses
dynamic techniques to improve the performance of its static techniques.

The second category uses logical and mathematical techniques to generate in-
variant formulas. One popular group of methods is based on the underlying idea
of predicate abstraction [11]. SMT-based implementations of invariant genera-
tion [24] sometimes couple this idea with templates to seed the search process.
An approach aimed at Frama-C likewise uses predicate abstraction [16] with
predicates supplied as hints.

First-order theorem provers such as Vampire provide the substrate for sev-
eral generation methods [18, 15]. Heuristics for extracting loop properties try to
identify key facts, for instance, the aggregate effects of array updates.

A few methods are designed to work backwards from postconditions or other
assertions. Heuristics that examine the detailed structure of postconditions [9]
can consider the role that variables and expressions play. Other ideas exploit
refinement and iterative invariant strengthening [22].

Recent verification tools for C have exploited the power of modern SMT
solvers to update the classic notion of program verifiers. VCC [2] and Frama-
C [5] both carry out functional verification with high automation, provided that
specifications and loop invariants are provided by users. A similar tool performs
the same tasks for the custom language Dafny [19].

Other tools have addressed lighter-weight forms of verification. ESC/Java [7]
uses deductive techniques, but only to verify selected properties. It relies on
some user annotations and hints. Verification using strongest postconditions was
proposed as a means to achieve reverse engineering of existing software [10].

A verification technique hosted within Java PathFinder [22] combines ideas
from symbolic execution, model checking and invariant generation. It was demon-
strated on several Java methods that compute using arrays or pointers.

A tool called Valigator [13] was developed as an automated program verifier
using SMT solvers for back-end deduction. It generates polynomial invariants
for loops that compute with numbers.

Abstract interpretation [3] can be used to derive conservative loop properties.
These constitute valid constraints, although they might not be as strong as
human-generated invariants. Nevertheless, leading tools in this category [4] can
conduct analyses on a realistic scale.

6 Conclusions

A preliminary framework for deductive evaluation and invariant synthesis has
been demonstrated. Improvements to both theoretical and implementation as-
pects are anticipated. The basic concepts should be portable to other theorem
provers having features comparable to PVS. An expanded tool configuration,
such as integration with SMT solvers or computer algebra systems, would likely
bring greater capabilities. Specialized invariant generation heuristics also could
be integrated to supplement the generic approach.
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The framework is still in an early stage of development. A more complete
implementation would have several potential uses. These include supplement-
ing or replacing unit testing, analyzing software component libraries, analyzing
software for specialized domains, and carrying out symbolic debugging. Using
the framework would yield results of varying utility, but given the high level
of automation, users should find the effort worthwhile. A favorable cost-benefit
tradeoff is likely, similar to that of some static analyzers.

Inherent limitations of the current prototype suggest several areas needing
improvement. These include expanding the language features supported, canoni-
calizing expressions to compensate for syntactic condition matching, populating
the iteration scheme library, improving the searching and matching efficiency,
identifying principles for orderly library development to minimize problems such
as overlapping schemes, and strengthening the theoretical justification for the
overall framework. As currently formulated, deductive evaluation would reach a
complexity ceiling as larger units of code are attempted. Methods to increase
modularity would therefore be valuable.

We speculate that hundreds of iteration schemes, possibly a few thousand,
would be needed for adequate coverage of common C functions. Our experi-
ence with the NASA PVS library [20] (over 1500 theories) suggests that such
a formalization effort is achievable. Moreover, any experienced PVS user can
create schemes; tool developers are not needed. Once the core engine is mature,
capability can grow as long as deduction-library developers remain active.

A more extensive version of the framework could be embedded within an
IDE and could generate results usable by developers without specialized train-
ing. In particular, the evaluator output presented to a user could take forms
different from that shown in the paper, likely using customization to make feed-
back more familiar and directly relevant to a user’s needs. While a deductive
evaluator would solve only a subset of verification problems, it could be coupled
with testing-based methods to achieve high levels of assurance. Alternatively,
the invariant synthesizer and evaluator could possibly function as external com-
ponents for verification tools such as VCC [2] and Frama-C [5].
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A Additional Material

This appendix contains optional material for discretionary use by the reviewers
and is not intended for the final paper. It shows two PVS theories: the iteration
schemes used for the inner and outer loops in the bubble sort example of Fig. 9.

exchange_order_recur [n: nat] : THEORY

BEGIN

IMPORTING prog_types

IMPORTING structures@permutations[n, int]

real_rel: TYPE = [real, real -> bool]

dyn_vars: TYPE = [int_array(n), nat]

stat_vars: TYPE = [nat, [nat -> nat], real_rel, real_rel]

IMPORTING recur_pred_defn[dyn_vars, stat_vars]

k: VAR nat

I,U,V: VAR dyn_vars

S,W: VAR stat_vars

recur_type: recurrence_type = var_relation

recurrence(I, S)(U, V, k): recur_cond =

LET (A0, j0_) = I, (i, f, R, Req) = S, (A, j) = U, (vA, vj_) = V IN

(# each := (: (iter_effect,

(in_bounds(i, n) AND in_bounds(j, n)) AND

vA = IF R(A(j), A(i))

THEN A WITH [(i) := A(j), (j) := A(i)]

ELSE A

ENDIF),

(dep_index, j = f(k)),

(dyn_cond, i < j) :),

once := (: (stat_cond, R = reals.< OR R = reals.>),

(stat_cond,

FORALL (p, q: nat): p < q IMPLIES f(p) < f(q)),

(let_var,

Req = IF R = reals.< THEN reals.<= ELSE reals.>= ENDIF) :)

#)

solution(I, S)(U, k): invar_list =

LET (A0, j0_) = I, (i, f, R, Req) = S, (A, j) = U IN

(: (rel_val_expr,

in_bounds(i, n) AND all_in_bounds(f, k, n) IMPLIES

(FORALL (p: below(k)): Req(A(i), A(f(p))))

AND permutation_of?(A, A0)
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AND FORALL (p: below(n)):

(p < i OR f(k) - 1 < p) IMPLIES A(p) = A0(p))

:)

swap_is_perm: LEMMA FORALL (A: int_array(n)), (i,j: below[n]):

permutation_of?(A WITH [(i) := A(j), (j) := A(i)], A)

recur_satis: LEMMA sat_recur_rel(solution, recurrence)

END exchange_order_recur

sorted_array_recur [n: posnat] : THEORY

BEGIN

IMPORTING prog_types

IMPORTING structures@permutations[n, int]

real_rel: TYPE = [real, real -> bool]

dyn_vars: TYPE = [int_array(n), nat, nat]

stat_vars: TYPE = [nat, real_rel]

IMPORTING recur_pred_defn[dyn_vars, stat_vars]

k: VAR nat

I,U,V: VAR dyn_vars

S,W: VAR stat_vars

recur_type: recurrence_type = var_predicate

recurrence(I, S)(U, V, k): recur_cond =

LET (A0, i0_, j0_) = I, (m, Req) = S, (A, i, j) = U, (vA, vi_, vj_) = V IN

(# each := (: (iter_effect,

(in_bounds(i, n) AND m < n) AND

(FORALL (p: below(m-i)): Req(vA(i), vA(1+p+i))) AND

permutation_of?(vA, A) AND

(FORALL (p: below(n)):

(p < i OR m < p) IMPLIES vA(p) = A(p))),

(dyn_cond, i = k) :),

once := (: (stat_cond, Req = reals.<= OR Req = reals.>=) :)

#)

solution(I, S)(U, k): invar_list =

LET (A0, i0_, j0_) = I, (m, Req) = S, (A, i, j) = U IN

(: (rel_val_expr,

k <= m AND m < n IMPLIES

(FORALL (p: below(k)): Req(A(p), A(p+1))) AND

permutation_of?(A, A0)),
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(supporting_fact,

k <= m AND m < n IMPLIES

(FORALL (p: below(k)):

FORALL (q: subrange(k, m)): Req(A(p), A(q))))

:)

subarray_perm((A, B: int_array(n)), (i, j: below(n))): bool =

EXISTS (f: [subrange(i, j) -> subrange(i, j)]):

bijective?(f) AND FORALL (k: subrange(i, j)): A(k) = B(f(k))

perm_subarray_perm: LEMMA FORALL (A, B: int_array(n)):

n > 0 IMPLIES (permutation_of?(A, B) IFF subarray_perm(A, B, 0, n-1))

same_perm_subarray:

LEMMA FORALL (A, B: int_array(n)), (p: below(n)):

n > 0 AND subarray_perm(A, B, 0, n-1) AND

(FORALL (k: below(p)): A(k) = B(k))

IMPLIES subarray_perm(A, B, p, n-1)

same_perm_subarray_both:

LEMMA FORALL (A, B: int_array(n)), (p, q: below(n)), (d: nat):

n > 0 AND p <= q AND d = n - 1 - q AND

subarray_perm(A, B, 0, n-1) AND

(FORALL (k: below(n)): (k < p OR q < k) IMPLIES A(k) = B(k))

IMPLIES subarray_perm(A, B, p, q)

recur_satis: LEMMA sat_recur_rel(solution, recurrence)

END sorted_array_recur


