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Despite decades of development of unstructured mesh methods, high-fidelity time-accurate 

simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by 

using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes 

formed by their combinations.  In this work, the space-time conservation element solution element 

(CESE) method is used to simulate several flow problems including supersonic jet/shock interaction 

and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using 

tetrahedral meshes.  This paper provides a status report for the continuing development of the space-

time conservation element solution element (CESE) numerical and software framework under the 

Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale 

parallel performance of the numerical framework is assessed with the goal of providing a viable 

paradigm for future high-fidelity flow physics simulations. 

 

 

Nomenclature 
 

E =  turbulent kinetic energy 

F, G, H = flux vectors for compressible Navier-Stokes equations in three spatial directions 

 = flux in the joint space-time domain 

kx, ky, kz =  wave numbers in x, y, and z direction, respectively 

k0 =  the most energetic turbulent wave number 

M =    freestream Mach number 

M1,, M2 =    Mach numbers before and after the normal shocks 

Mt =    turbulent Mach number 

𝑛⃗  =    unit surface normal 

𝑒𝑥⃗⃗  ⃗,  𝑒𝑦⃗⃗⃗⃗  ⃗, 𝑒𝑧⃗⃗  ⃗, and 𝑒𝑡⃗⃗  ⃗ =   unit vectors along the x-, y-, z-, and t- directions 

p =  static pressure  

Re =    Reynolds number 

s = entropy  

 = surface normal vector in the joint space-time domain 

t = time 

T =    temperature normalized by the freestream value 

u =    streamwise velocity 
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U = dependent solution vector 

v =   wall-normal velocity 

V        =  space-time volume 

w =  spanwise velocity  

x =   streamwise coordinate  

y =    wall-normal coordinate 

z =    spanwise coordinate in direction parallel to leading edge 

γ =  ratio of the specific heats 

𝜆 =  turbulent Taylor microscale 

ρ =  density 

𝜔 =  vorticity 

 

Subscripts 

x, y, z, t =  derivatives in spatial and temporal directions 

∞ =  freestream conditions 

 

Superscripts 

i = number index elements 

 

 

I. Introduction 
 

After several decades of development, computational fluid dynamics (CFD) software is routinely 

used as a low-cost alternative to wind tunnel experiments.  In addition to integrating CFD tools in the 

design process, great deal of concept validations and pre-/post-experimental analyses have been carried out 

by computational tools.  The demand for high-fidelity, time-accurate computations for intricate flow 

physics has become the main theme for CFD development for the next few decades.1   Along this line, 

NASA has been focusing on the development of next generation CFD algorithms and software under the 

Revolutionary Computational Aerosciences (RCA) project. Potential numerical algorithms that possess 

high solution accuracy, robustness, and excellent parallel performance have been investigated vigorously in 

the past several years.  While no single algorithm could satisfy all the requirements, this paper focuses on 

time-accurate, unstructured-mesh numerical solutions of unsteady waves, their interactions with shocks, 

and the requirement to have good parallel scaling for large-scale computations.  Despite decades of CFD 

development, it is generally agreed that these issues are still very challenging for many numerical 

algorithms and CFD software. 

The importance of resolving waves and shock interactions goes without saying.  For transonic and 

supersonic flows, acoustic, vorticity, and entropy waves are generated regularly as a result of the 

environment and surface irregularities.  These waves interact with flow discontinuities that arise when 

supersonic flow adjusts its direction to comply with the surface geometries.  In turbulent flows with high 

enough turbulent Mach numbers, local flow acceleration causes shocklets to develop.  Accurately resolving 

small to medium turbulent structures interacting with shocklets is of fundamental importance to accurately 

simulating high-speed turbulent flows. The choice of unstructured meshes, in particular, triangular and 

tetrahedral meshes, stems from the requirement to handle more and more complex geometries in many 

realistic engineering problems.  The capability of local refinement without incurring additional overhead 

associated with topological constraints makes unstructured mesh generation more appealing than its 

structured counterpart.  Being able to handle corners, bumps, cavities and other geometric irregularities 

easily is another important reason to employ unstructured meshes for high fidelity computations.  For the 

simulation of turbulent flows, the isotropic nature of the tetrahedral mesh provides a discretized domain 

that is free of any orientation that could potentially influence the damping of mid to high wave number 

fluctuations.  For the resolved scales in typical large eddy simulations, the isotropic nature of unstructured 

mesh could also enhance un-biased energy transfer to smaller scales.   

Large-scale parallel performance depends on many factors.  Implicit schemes require iterative LU 

decomposition of a relatively large matrix.  Dimensional splitting and relaxation schemes are often used to 

reduce the matrix size.  For time accurate solutions of unsteady flows, the time step is often restricted by 

the physical resolution requirement rather than the convergence rate.  Explicit schemes are preferred in this 

regard because fewer operations are required to march the solution per time step.   The stability bound for 
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most explicit schemes is around CFL one, or the acoustic time scale.  For transonic or higher speed, this 

time step is appropriate to resolve instability or acoustic waves.  Communication latency is another major 

factor to gauge parallel performance.  Implicit schemes have the advantage of a large amount of 

computations per communication, especially when the total number of decomposed domains is relatively 

large.  The communication overhead is thus relatively smaller than the explicit schemes if the same number 

of parallel domains is used, despite the fact that overall computational time for implicit schemes may still 

be longer.  Explicit schemes, on the other hand, can be utilized by using a smaller number of domains with 

more elements in each domain.  GPU or multi-thread acceleration can further enhance the parallel 

performance.   For time-accurate computations, the smallest element in the mesh determines the time step.  

This implies that a large part of the computational domain has a CFL number much smaller than one.  

Latency effect is significant in these regions.  Dynamic domain decomposition in time2 can be used to 

improve such latency effects for elements running at very small CFL numbers. Alternatively, as in the 

space-time CESE method,3–5 a time-accurate local time stepping (TALTS) scheme  can be employed, with 

every element in a mesh, with large disparity is mesh size, marching at a uniform physical time step close 

to CFL number one and yet guaranteeing conservation in space  and time. This approach can be 

implemented without the costly approach of repartitioning large 3D meshes. 

In light of the discussion above, efficient simulations for unsteady flows hinge upon tailoring 

parallel computations with hardware architectures as well as accurate numerical algorithms.  With the 

success of pushing the state-of-the-art for structured-mesh simulations for decades, more work is needed to 

explore the use of unstructured meshes and the required numerical algorithms to improve accuracy, 

robustness, and parallel performance. Along this line, this paper investigates numerical simulations of 

unsteady flows using explicit, strongly conservation property preserving schemes with unstructured, 

tetrahedral meshes.  In particular, the space-time conservation element, solution element (CESE) method3–8 

is used for large-scale unsteady flow simulations with tetrahedral meshes. Time-accurate flow computation 

is investigated from the perspective of four unique aspects.  Firstly, the CESE method is formulated by 

enforcing the strong space-time unity integral form of the conservation laws.5–8 A high degree of 

conservation is in general a key aspect in preserving numerical accuracy for waves and turbulent flow 

simulations.  The flux conservation in time introduced in the CESE method, in particular, could offer 

appreciable advantages in time-accurate computations.  Secondly, as discussed above, the time-accurate 

local time-stepping (TALTS) scheme3–5 formulated based on the CESE method is appealing to improve the 

shortcoming of heavy latency effects for explicit schemes.  For flows with eddy shocklets at high turbulent 

Mach numbers, the range of temporal and spatial scales widens significantly owing to the fact that the 

energy containing eddies have a much larger length scale than the dissipation structures.9   Local time-

stepping algorithms allow larger time steps to be used for large flow structures away from the wall and in 

the quiet freestream regions. Thirdly, the CESE method is able to capture waves and flow discontinuities 

with high fidelity.4–5,10–11 Finally, due to its space-time conservation formulation, the CESE allows easy and 

efficient implementation of non-reflecting boundary conditions.13–15 For turbulent flow simulations, 

substantial savings and ease of implementation can be achieved without the need for a buffer domain in the 

outflow/farfield regions. The genuinely multi-dimensional formulation of the CESE method, which is free 

of approximate Riemann solvers and dimensional splitting, offers a distinctly different way to simulate 

turbulent flows interacting with shocks.  

 This paper presents a status report of the continuing development of the CESE numerical and 

software framework for high fidelity numerical simulations of general conservation laws. In the march 

towards development of a matured tool for time-accurate simulation of multi-physics problems using 

unstructured meshes, order of accuracy studies for several benchmark problems, large-scale computations 

of realistic configurations and canonical problems are discussed in detail.  Investigations of these problems 

are aimed at simulating more complex and realistic problems such as direct numerical simulations of 

turbulent boundary layer-shock interactions over a compression corner or other more complex geometries.  

 

 

II. Foundation Aspect of the CESE Numerical Framework—Conservation in space-time 

 
This section describes one of the key foundational ideas that went into the development of the 

CESE numerical framework—solving the space-time unity integral form of conservation laws. Most of the 

core design ideas of this numerical method have been expounded in detail in several works (see Refs. 6–8). 



 4 

It was felt that this particular aspect is substantially different from the mainstream ideas prevalent in the 

CFD community, and should be explained in a more thorough manner.  

CFD as a research field aims to develop the most accurate, robust, and efficient methods for 

simulating the conservation laws of fluid flows. As such, ideally the methods should be developed from the 

most fundamental and general form of these conservation laws. Unfortunately, most (if not all) of the 

established CFD methods are based on some special forms of conservation laws which are derived from the 

general form with restrictive assumptions. Not only do these assumptions make it impossible for these 

methods to strictly enforce mass, momentum and energy conservation in unsteady flows, thus causing a 

serious loss of accuracy in unsteady flow simulations, but they also have a negative impact on the 

robustness and efficiency of these methods.16,17 In this section, we attempt to explain why the space-time 

unity integral form of the conservation laws is the most general form and why it would be better for a 

numerical scheme to be developed starting with this form rather than the differential form of conservation 

laws. In Ref. [16], Roe himself talked about the strengths of developing a numerical scheme on the basis of 

a space-time unity integral form. In other branches of physics (particularly electromagnetics) there have 

also been efforts17–18 that utilize the space-time unity integral form of conservation laws as the starting 

point in the development of a numerical method.  

 

 Consider the conservation laws governing 3D unsteady flows. Let (a) x, y, and z be the spatial 

coordinates, and t be the time coordinate; (b) 𝑥1 ≝ 𝑥, 𝑥2 ≝ 𝑦, 𝑥3 ≝ 𝑧, and 𝑥4 ≝ 𝑡 be the coordinates of a 

four-dimensional Euclidean space E4 ; (c) 𝑒𝑥⃗⃗  ⃗ , 𝑒𝑦⃗⃗⃗⃗  , 𝑒𝑧⃗⃗  ⃗ , and 𝑒𝑡⃗⃗  ⃗ be the unit vectors along the x-, y-, z-, and t- 

directions respectively; and (d) ℎ⃗ m ,  m = 1,2, 3, 4, 5, be the space-time mass, x-momentum, y-momentum, 

z-momentum, and energy flux density vectors respectively. Then ℎ⃗ m,  m = 1, 2, 3, 4, 5, can be expressed as   

 5 4, 3, 2, 1, ,  meHeGeFeUh zmymxmtmm  (1) 

where (a) (d) Um, m = 1, 2, 3, 4, 5, are the mass, x-momentum, y-momentum, z-momentum, and energy per 

unit spatial fluid volume respectively; and (b) each of   Fm, Gm, and Hm, m = 1, 2, 3, 4, 5,  is a 

differentiable functions of Um, 𝑚 = 1, 2, 3, 4, 5  for inviscid flows, while it is also a function of the spatial 

derivatives of Um,𝑚 = 1, 2, 3, 4, 5  for viscous flows. Then, the most fundamental and general form of the 

unsteady conservations laws applied over a space-time flow domain D in E4 can be cast into the following 

space-time unity integral form:  

 5 4, 3, 2, 1,   ,in  subdomain  time-spaceany for  0d
)(

 mDVsh
VS
m  (2) 

Here (a) S(V) is the boundary of the arbitrary space-time subdomain V in D, and (b) d𝑠 = d𝜎𝑛⃗  with dσ and 

𝑛⃗  , respectively, being the area and the outward unit normal vector of a surface element on S(V) . Note that 

ℎ⃗ m ⋅ d𝑠  is the space-time flux of ℎ⃗ m leaving the space-time subdomain V through the surface element d𝑠 . 
Thus, for each subdomain V of the space-time flow domain D, Eq.(2) imposes the conservation condition 

that the total space-time flux of ℎ⃗ m leaving V through its boundary is zero. This form of the conservation 

law is valid for all 3D unsteady flows, including those with solution discontinuities, such as shocks and 

contact discontinuities and is the form employed by the space-time CESE schemes.  

 Let (a) t1 and t2 be any two real parameters with 𝑡1 < 𝑡2, (b) V be a fixed and bounded spatial 

domain (hereafter referred to as the control volume) in the x-y-z  space denoted by E3, and (c)  

      21

def

21  and ,,,,,;, tttVzyxtzyxVttC   (3) 

 By definition, C(t1,t2+;V) is a space-time cylinder/hyper-volume E4 which : (a) is sandwiched 

between two planes defined by t = t1 and t = t2 , respectively; and (b) has the property that V  is the 

common (spatial) projection onto E3 of any cross-section of C(t1,t2+;V) cut by any t = t0  plane where t0 is 

any constant meeting the condition 201 ttt  . Note that, for the special case 𝑉 = C(t1,t2+;V), Eq. (2) 

reduces to  
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   

VttCS
m msh

;, 21

5 4, 3, 2, 1,= ,0d  (4) 

Let 

 S1 C t1, t2;V( )( ) =
def

x, y, z, t( ) x, y, z( ) ÎV  and t = t1{ } (5) 

 S2 C t1, t2;V( )( ) =
def

x, y, z, t( ) x, y, z( ) ÎV  and t = t2{ } (6) 

 S0 C t1, t2;V( )( ) =
def

x, y, z, t( ) x, y, z( ) Î S V( )  and t1 < t < t2{ }  (7) 

 

where S(V) is the boundary of the control volume V in E4 . The hypersurface S(V) can be defined by  

 S V( ) =
def

x, y, z( ) e x, y, z( ) = 0{ }  (8) 

where e(x,y,z) is a continuous and piecewise smooth real function defined on a subdomain of E3, such that 

  0,, zyxe represents a closed surface in E3. With the aid of Eq.(8), Eq. (7) implies  

        21

def

210  and 0,,,,,;, tttzyxetzyxVttCS   (9) 

As a consequence, it is clear that the hypersurfaces S1(C(t1, t2;V)), S2(C(t1, t2;V)), and S0(C(t1, t2;V)) (see 

Eqs. (5) - (7)) are respectively the bottom face, top face and side faces of S(C(t1, t2;V)). In fact, their union 

is the boundary of C(t1, t2;V); i.e.,   

      
2

0

2121 ;,;,





l

l VttCSVttCS  (10) 

The outward normals for these hypersurfaces can be given as:  

  (11) 

Note that in Eq.(11), the unit outward normal vector 𝑛⃗  has no component in (x, y, z) direction for surfaces 

S1(C(t1, t2;V)), and S2(C(t1, t2;V)), while it has no component in the t- direction for the surface 

S0(C(t1, t2;V)). With these basics, now consider the mass conservation equation component (m = 1) of 

Eq.(4). Let (i) ρ be the mass density; (ii) u, v, w be the velocity components in the x-, y-, and z- directions 

respectively; and (iii) ℎmass be the mass flux current density vector defined by  

  (12) 
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Using Eq. (12), and Eq(10), Eq. (4) implies,  

  (13) 

and 

 (14) 

Utilizing Eq.(11), we have  

  (15) 

where (a) dv is the volume of a volume element in the spatial domain V , (b) , and 

(c) d𝜎 ≝ the area of a spatial surface element on S(V). With the aid of Eqs.  (12) - (14), we have:  

  (16) 

In Eq. (16), the first two terms on the left hand side are the total mass in the control volume V at t = t2 and 

t = t1 respectively. The terms on the right hand side represent the total mass entering the control volume V 

through its boundary S(V) during the time interval (t1, t2). Thus Eq. (16) states the obvious mass 

conservation law. Consider the special case with t1 = t and t2 = t+ dt . Then Eq.(16) reduces to  

  (17) 

If the derivative ∂ρ(x,y,z,t)/∂t exists for a time t for all the spatial points (x, y, z) in V , we have  

  (18) 

 

Then, by defining d𝑠 ≝  𝑛⃗ d𝜎 , Eq.(17) can be cast in the form:  

  (19) 

Eq.(19), a mixed differential-integral equation, is often referred to as the integral form of mass conservation 

law, in finite-volume schemes. Since it only involves a volume and surface integral in E3, it is easier to 

visualize than the space-time unity integral form of mass conservation law, Eq.(13), that is defined in E4. 

However, Eq.(19) is not applicable for a flow with discontinuities such as shocks and contact 

discontinuities, since it requires the existence of ∂ρ ∕ ∂t for every point (x, y, z) in V . Even if ∂ρ ∕ ∂t exists 

for every point (x, y, z) in V, Eq.(18) is based on the assumption:  
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  
   

t

tzyxttzyx
tzyx

t t 










,,,,,,
lim,,,

0

def 
 (20) 

and this assumption can never be fully realized by a numerical simulation, which can only be specified at 

discrete time levels. As a result, equivalency between Eq.(13) and Eq.(19) can never be fully realized in a 

numerical solution, even if the physical solution possesses the required analytical properties.  

 Now, let us additionally assume that the spatial vector field , introduced in Eq.(13), satisfies 

the analytical conditions that allow the applicability of Gauss-Divergence theorem in E3. Then,  

  (21) 

 

where,  

  (22) 

Then, Eq.(17) can be cast into the form:  

 
     

0d 


























 v

z

w

y

v

x

u

tV


 (23) 

 

As V can be any subset of E4, within the interior of the space-time domain E4, one has,  

 
     

0



















z

w

y

v

x

u

t


 (24) 

Eq.(24) is the differential form of the conservation law. The additional analytical requirements imposed in 

deriving this form makes this form even more limited in its applicability than the mixed differential-integral 

form, Eq. (19).  

  Based on the discussion above, we hope we have elucidated the benefits of starting from the space-time 

unity form of conservation laws over any form derived with restrictive assumptions. A discrete system 

evolving from such an approach is expected to be a much richer system and closer to the physical 

phenomenon being described. For a more thorough exposition on the limitations of starting computational 

physics from differential equations, the reader is referred to Ref. [17]. 

 
III. Results 

 
 The CESE numerical framework has been implemented for general conservation laws as the ez4d 

software at NASA Langley Research Center.  The ez4d software framework has been developed using a 

combined object-oriented and generic programming paradigm in the C++ programming language.  Light-

weight object-oriented hierarchy is used in conjunction with heavy use of template classes and functions to 

allow compile time polymorphism.  Different conservation laws can be plugged in with templates that 

represent physics.  Currently, the software supports either triangular/tetrahedral or quadrilateral/hexahedral 

unstructured meshes.  Both multi-thread (based on low-level POSIX thread) and MPI parallel computations 

are used to facilitate large-scale computations.  Each MPI process within a computational node can be 

executed in multi-thread mode to further enhance parallel performance, especially for a memory bound 

multi-domain layout.  A communication map is used for data transfer among interface zones.  For a large 

mesh in the order ofa  billion elements, each unstructured block can be built with its own connectivity and 
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nodes.  A global communication map is then used to join all the independent blocks in the parallel 

computations.  This arrangement allows the grid generation process to always have a low memory 

requirement.   The interfaces among blocks can be continuous or discontinuous.  A continuous interface 

mesh ensures better solution accuracy for unsteady flow computations.  Both second- and fourth-order 

CESE numerical schemes are implemented for general conservation laws including Euler and Navier-

Stokes equations in the software framework. As discussed above, the TALTS scheme is used to enhance 

parallel performance for elements running at CFL numbers much smaller than one.  Load balance for such 

runs can be improved via volume-weighted domain decomposition offered in the Metis utility.  For Navier-

Stokes simulations, the Sparlart-Allmaras and Mentor’s SST models19 are implemented in the ez4d 

framework.   

 In the next several sub-sections, order of accuracy studies and some recent efforts on exploratory 

flow physics computations are discussed in detail.   

 

A.  Order of Accuracy Studies 

 High-order accuracy of the CESE method has been established for the linear advection equation, 

and the linearized and non-linear Euler equations in the literature.5, 20–21 Good agreements with published 

results for acoustic waves interacting with shocks have also been established recently.22 Here, we discuss 

three additional cases. 

a. Transonic Ringleb Flow  

This test case corresponds to a smooth inviscid transonic flow through a curved channel, where the 

exact solution is known through a hodograph transformation.23 The flow is initialized with the analytical 

solution and the L2 norm of the residuals is monitored for convergence to the steady-state solution. The L2 

norm of the entropy error, defined below, is used as an indicator of accuracy. 

                  Entropy error (𝐿2) = [
∑ ∫ (𝑠−𝑠𝑒𝑥𝑎𝑐𝑡)

2d𝑉𝑉𝑖

𝑁
𝑖=1

∑ |𝑉𝑖|
𝑁
𝑖=1

]

1/2

                      (25)     

                                           

In the above equation, s stands for entropy, N for the number of elements, and Vi is the volume of element i. 

All the computations were performed in serial on a Linux desktop machine with an Intel Xeon processor X-

5560 (Gainestown) and 48GB of RAM. The machine produces a Taubench24 time that varies between 

8.719 - 8.748 seconds, with an average of about 7.349 seconds.  The time for performing 100 residual 

evaluations with degrees of freedom (DOF) = 250,000, for the 2nd-order accurate and 4th-order accurate 

schemes are summarized in Table 1. The residual evaluation is performed on a mesh with 6144 triangular 

elements and the times are scaled to 250,000 DOFs. The CESE solver for flows in two spatial dimensions 

has 1 DOF per element per equation for the 2nd-order accurate scheme and 4 DOFs per element per 

equation for the 4th-order accurate scheme respectively. The times reported have been normalized by the 

Taubench time and this unit is henceforth referred to as a work unit.  

 

Table 1. Time taken for 100 residual evaluations with 250,000 DOFs. 

 

Order of Accuracy Time (work unit) 

2 6.06 

4 27.79 

 

The domain was discretized into uniform isotropic triangular elements (linear elements) using 

Pointwise® with four levels of resolution. The standard boundary conditions (BC) to be enforced for this 

problem are either, subsonic inflow and outflow along with inviscid treatment (slip wall) at the two walls or 

by imposing the analytical solution at all the four boundaries. The latter procedure is adopted in this order 

of accuracy study.  The mesh contained 96, 384, 1536, and 6144 triangular elements, respectively. The 

level 1 (96 elements) and level 4 (6144 elements) meshes are shown in Fig. 1, along with the computed 
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Mach number contours using the Level 4 mesh. Each level of mesh refinement was achieved by halving the 

average edge lengths of the previous level mesh.  In contrast to most high-order-schemes investigations,25 

linear boundary elements were used throughout for both 2nd and 4th-order computations shown here.  The 

piecewise linear boundary elements are widely available in most grid generation tools.  Such computations 

provide a good assessment of accuracy using linear boundary elements. 

  

 
  

 

(a) Level 1 Mesh (b) Level 4 Mesh (c) Mach Contour (Level 4 mesh)  

Figure 1. Meshes with two different resolutions used for the Ringleb flow computations. 

 

 The error norm convergence obtained is shown in Fig. 2. The length scale utilized is = 1.0 / 

√𝐷𝑂𝐹𝑠. The order of convergence for the 4th order scheme is one-order lower than its design order. This is 

somewhat better than expected given the fact that only linear elements are used in the entire domain. Other 

studies25 have shown that 4th or even higher-order convergence is achievable when higher-order schemes 

are used in conjunction with high-order elements throughout the entire domain.  Another factor that could 

affect the overall accuracy of a CESE scheme, is that high-order derivatives at boundaries must be specified 

in the high-order CESE schemes.  For the ringleb flow, there is a weak singularity in the third derivatives 

along the left and right streamline boundaries when the flow accelerates from subsonic to supersonic flows.  

High-order boundary treatments for the CESE method are currently being investigated and will be 

discussed in a future paper.  The convergence versus work unit is shown in Fig. 2(b) for both 2nd and 4th-

order schemes.  For this benchmark problem, the high-order code does not appear to gain performance, 

partially due to the fact that the computer-generated high-order terms in the high-order code are not fully 

optimized by the compiler due to the length of some of the statements (those containing long expressions). 

 

 



 10 

  
(a) Entropy error vs. length scale (b) Entropy error vs. work units 

Figure 2. L2 entropy error convergence for the half-domain computations. 

 

b. Convecting Isentropic Vortex 

 The second test case chosen for assessment of accuracy of the CESE scheme is the horizontal 

convection of a 2-D isentropic vortex embedded in a uniform free stream. As vortical structures are part of 

many realistic flows (especially turbulent flows) and also play a critical role in many applications, it is 

important that the numerical scheme utilized to predict such flows convect and preserve the vortical 

structures accurately at all speeds.  

 

 The conditions used in the set-up of this problem are based on Ref. 26 and are slightly different 

from thode utilized in the international workshop on higher-order CFD methods.25 Let the free stream 

conditions be such that it has a mean flow velocity, u  and v ; and temperature T¥ . As an initial 

condition, an isentropic vortex with no perturbation in entropy is embedded into the mean flow field. The 

perturbation values are given by:  
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where   is the vortex strength.  
00

, vv yx  are the initial coordinates of the vortex center, and 4.1 . The 

entire flow field is also required to be isentropic, so for a perfect gas, we have the relation 

 constant/ p  (29)  
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The free-stream conditions (non-dimensionalized) are assumed to be such that 𝑇∞ = 1 and    0,1,  vu . 

In this study, vortices that convect fast with 𝑀∞ = 0.8415, and slowly with 𝑀∞ = 0.05 are studied. The 

computational domain is covered by the region 100  x and 55  y , with the vortex being placed at 

location,    0,5, 00 vv yx . The vortex strength 𝛽 is assumed to be 5.0 for the fast vortex and 0.25 for the 

slow vortex. Non-reflecting boundary conditions are enforced at the top and bottom boundaries, while 

periodic boundary conditions are enforced at the left and right boundaries respectively.  

 The computational domain consists of uniform isotropic triangular elements (linear elements) 

using Pointwise®, with four levels of resolution. The mesh contains 3,804, 15,000, 61,506, and 262,280 

triangular elements, respectively. Each level of mesh refinement was achieved by halving the average edge 

lengths of the previous level mesh. The L2 norm of the error (with respect to the exact solution) in u- 

velocity is shown after 5 time periods for the fast vortex and 1 time period for the slow vortex in Figs. 3(a) 

and (b). The 2nd-order code gives 2nd order convergence for the fast-vortex and slightly better than 2nd 

order convergence (~2.5) for the slow vortex. The 4th order code gives close to  4th order convergence for 

the fast and slow vortex, with the order of convergence slightly dipping below 4 (~3.7) for the final mesh in 

the fast-and slow vortex transport cases.  

 

  
(a) Fast vortex transport (b) Slow vortex transport 

Figure 3. L2 error convergence for the vortex transport computations. 

 

c. Supersonic Isothermal Boundary Layer 

Surface heating prediction has been one of the most important topics in many supersonic or 

hypersonic computational investigations.  Accurately predicting the surface heat flux in a highly cooled 

boundary layer has important implications in vehicle thermal shield and aerodynamic design.  Of interest is 

the isothermal boundary layer developing behind the leading-edge bow shock of a blunt body.  To isolate 

the boundary layer from shocks for numerical accuracy studies, a Mach 3 flow (with a free-stream 

temperature of 200 K) over a highly cooled boundary layer with 𝑇𝑤 𝑇𝑎𝑑𝑤 = 0.2⁄  is numerically computed.  

Due to the presence of the boundary layer, there is a weak leading edge shock that would make the free-

stream conditions of the boundary layer deviate slightly from the Mach 3 conditions.  The computational 

domain is a 1.2 m × 0.1 m rectangle (the height is about 5 boundary-layer thicknesses at the exit). A 

structured quadrilateral mesh with different sizes is sliced to form triangular elements for computations.  

The computed velocity and temperature profiles (with the 4th-order scheme and a sliced 41 × 321 quad 
mesh and geometric stretching factor of 1.04 along the wall-normal direction) at the location of Re = 105 

are compared with compressible similarity boundary layer solutions in Fig. 4.  Due to the slight differences 

in free-stream conditions and boundary-layer assumptions, both the velocity and temperature profiles show 

some small discrepancies around the boundary-layer edge and the free-stream.  
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(a) (b) 

Figure 4. Comparison of Navier-Stokes solutions with compressible boundary-layer solutions at Re = 

105  for a Mach 3 flate-plate flow with 𝑻𝒘 𝑻𝒂𝒅𝒘 = 𝟎. 𝟐⁄  : (a) streamwise velocity (b) temperature. 

 

 

Table 2. Grid convergence study for the Mach 3 isothermal boundary layer 

Triangular Mesh (𝝈 = geometric 

stretching factor) 

Velocity L2 error 

norm 

Temperature L2 error 

norm 

1. Sliced 41 × 81, 𝜎 = 1.04 mesh 0.0409296 0.0340573 

2. Sliced 41 × 81, 𝜎 = 1.05 mesh 0.00725355 0.00406225 

3. Sliced 41 × 81, 𝜎 = 1.06 mesh 0.00508539 0.00272823 

4. Sliced 41 × 161, 𝜎 = 1.06 doubled mesh 0.00226095 0.00132477 

5. Sliced 161 × 161 uniform mesh 0.0516967 0.0323901 

 

A sequence of grid refinement studies was used to assess the order of accuracy of the Navier-

Stokes solver with this more realistic viscous solution (as opposed to other manufactured solutions). As can 

be seen from Fig. 4, both the near-wall velocity and temperature gradients agree quite well with the 

boundary-layer solutions. To better measure the accuracy, the entire profile at Re = 105 as shown in Fig. 4 is 

used as exact solutions to compute L2 error norm with different grids, instead of comparing just the surface 

heat flux.  Table 2 summarizes the accuracy and grid convergence for the 2nd-order scheme.  As mentioned 

previously, the high-order derivative temperature boundary conditions are still under development and 

convergence of high-order schemes will be reported when the new boundary conditions are ready.  In 

general, it was found that uniform grid refinement does not produce grid converged solutions for this highly 

cooled isothermal boundary layer.  Computed error norms shown in Table 2 indicate that by pushing the 

grid non-uniformly (with a geometric stretching factor) toward the wall results in better accuracy with the 

same grid dimensions.  There is a big jump in accuracy by going from a stretching factor of 1.04 to 1.05.  

The convergence rate slows down when 𝜎 is increased from 1.05 to 1.06.  In the next mesh (denoted mesh 

4 in Table 2), mesh 3 is doubled only in the wall-normal direction.  The error continues to drop.  The error 

norm ratio between mesh 3 and 4 is about 2.1, slightly faster than second-order.  In contrast, a uniform and 

more refined mesh 5 gives an error that is even higher than the geometrically stretched coarser mesh 1.  

These results indicate that to resolve surface heat flux in an isothermal boundary layer, the first mesh from 

the wall plays a crucial role in the solution accuracy.  From the standpoint of flux boundary conditions used 

in the CESE method, this is to be expected because the temperature gradient at the wall determines how 

much energy is being propagated into the computational domain.  A smaller mesh near the wall, apparently, 

resolves the energy flux imposed at the wall and thus improves the accuracy of the entire thermal boundary 

layer.  This observation is in line with other hypersonic surface heating investigations where designed order 

of accuracy can only be substantiated by non-uniform, adaptive grid refinement.27  
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B. Supersonic Jet-Shock Interaction Applied to Launch Vehicle Acoustics 

As an example of the robustness and ease of application of the ez4d code and CESE method, we 

consider a set of simulations performed in late 2011 in support of the analysis of abort motor aeroacoustics 

on the Orion/MPCV vehicle.  The abort-motor configuration for the Orion vehicle is a tractor type, 

meaning that the solid rocket abort motor is mounted ahead of the crew module (CM), and its exhaust 

plume envelops the CM boost-protection cover (BPC) surface, creating very high levels of surface 

fluctuating pressure (SFP).  The internal vibration and acoustics created by this SFP must be accurately 

predicted in order to establish vibration qualification specifications for equipment which must survive an 

abort in order to function reliably during later stages of the abort and recovery of the CM.  To this end, the 

Orion program conducted a series of wind tunnel tests and motor test firings, culminating in a complex 

transonic wind tunnel test in which the abort-motor plumes were simulated using helium jets exhausting 

from a model instrumented with 237 fluctuating-pressure sensors.28  A shadowgraph from that test is shown 

in Fig. 5.  The general conclusion from that test was that the plume-induced SFP was the greatest when the 

plume boundary was distinctly off the surface, e.g., when the plume was not impinging directly on the 

surface.  In general, plume impingement increased with Mach number, when the momentum of the 

freestream flow deflected the plumes aft, and with altitude, as reduced freestream static pressure caused 

increased plume expansion.  However, it was found that a region of the BPC just aft of a compression 

corner in the outer mold line (OML) saw significantly increased SFP at low supersonic Mach numbers, in 

contrast with the general Mach trend.  One of the authors had earlier conjectured that interaction of the 

plume turbulence with the oblique shock created by the compression corner in the OML would cause such 

a local SFP increase, based on analysis by Ribner.29  In order to assess the impact of such an effect, a series 

of simulations were quickly conducted.  While a number of other CFD codes are certainly capable of 

performing such simulations, the robustness and accuracy of the ez4d code for time-dependent problems 

involving strong shocks and large-amplitude wave propagation gave confidence that the exploratory 

simulations could be conducted rapidly and with minimal difficulty. 

 

 
Figure 5.  Shadowgraph from Orion hot-helium abort-motor noise wind-tunnel test, showing plume-

oblique shock interaction. 

 
The layout of the simulations conducted is shown in Fig. 6.  The simulations were conducted 

using the inviscid Euler equations in two dimensions for very rapid turn-around using a workstation 

computer, and for more direct linkage with Ribner’s theoretical analysis. 29  Once a relatively stationary 

state was reached using steady boundary conditions (Fig. 7), unsteady perturbations were imposed on the 

part of the inflow boundary corresponding to the jet; perturbations in normal velocity, temperature, and 

density were imposed in separate simulations to investigate the strength of effect of each mode.  Density 

and temperature perturbations were defined to be isobaric and satisfied the equation of state, whereas 

normal-velocity perturbations maintained constant density and temperature.  For example, imposition of a 
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simple low-amplitude normal-velocity perturbation at a single frequency gave rise to strong fluctuations in 

the jet after interaction with the shock; see Fig. 8.  Note the occurrence of multiple eddy-shocklets in the 

post-shock region, exiting cleanly from the simulation domain. 

 
 

Figure 6.  Schematic of jet-shock interaction simulations. 

 
Next, simulations were conducted with random spectra of normal velocity, temperature, and 

density fluctuations imposed in the jet inflow.  In order to ensure that the inflow spectrum was broadband 

rather than containing discrete frequencies, inflow perturbations were defined as a series of dozens of 

concurrent packets of random length and oscillation frequency pulled from a uniform distribution over 

predefined ranges.  The relative strengths of the responses to normal-velocity and temperature inflow 

perturbations are illustrated in Fig. 9 in terms of the pressure fluctuations measured at four locations in the 

simulation.  Since the temperature inflow perturbations were defined to be isobaric, the pressure 

fluctuations measured in the middle of the jet at inflow and just upstream of the shock are very small for 

that case in comparison to those from the normal-velocity perturbation case (green and magenta traces in 

Fig. 9), the SFP response is more than 2.5 times larger post shock (red and blue traces).  This effect is also 

seen in the pressure power spectral density (PSD) plots in Fig. 10 (trace colors in Fig. 10 correspond to the 

same locations as in Fig. 9).  Finally, in Fig. 11 pressure-fluctuation histograms for the two cases are 

compared. The histograms were derived from the pressure histories taken at the downstream-surface 

location (blue arrow in Fig. 9. Note that the high-level tail for the temperature-perturbation case is 

considerably fuller and longer than for the normal velocity-perturbation case. 
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Figure 7.  Mean temperature (top) and density (bottom) from jet-shock interaction simulations. 

 
Figure 8.  Density contours for simulation with single normal-velocity perturbation imposed at jet 

inflow. 

 
The conclusions which was drawn from this rapidly-conducted exploratory investigation was that: (i) 

velocity fluctuations in the form of plume turbulence could indeed give rise to the SFP-augmentation 

effect, as observed for supersonic cases during the Orion helium-plume abort-motor noise test; and (ii) this 

effect would likely be significantly magnified in the actual situation of a solid rocket-motor plume 

interacting with an oblique shock, since the plume of a solid rocket motor contains modest levels of 

velocity fluctuations but very high levels of temperature fluctuations. 

 



 16 

 
Figure 9. Pressure fluctuation histories, inflow perturbations of normal-velocity (left) and 

temperature (right). 

 

 
Figure 10.  Pressure PSD's, inflow perturbations of normal velocity (left) and temperature (right). 
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Figure 11. Pressure-fluctuation histograms, inflow perturbations of normal velocity (left) and 

temperature (right). 

 

C. Canonical Isotropic Turbulence-Normal Shock Interaction  

In this study the focus is on the most fundamental problem in shock/turbulence interaction, namely 

that of isotropic turbulence passing through a nominally normal shock. A cubic domain of length 4π in the 

streamwise direction and 2π in the transverse directions was used in the computations.  The normal shock 

with M1 = 1.5 was located at 𝑥 = 𝜋. Unstructured meshes containing isotropic tetrahedrons generated using 

a commercial grid generation tool are used for the solutions presented in this section.  Several meshes were 

tested, with all of them having no clustering of mesh points around the shock region.  As part of the 

ongoing grid-sensitivity studies and to assess the actual grid resolution required by the 2nd order CESE 

scheme to capture the essential features of the flow, an initial set of computations was made with meshes 

containing ~ 6 Million tetrahedral cells (average edge length, Δ𝑠 = 2π /64), ~9 Million cells (Δ𝑠 = 2π /75), 

and ~33 Million cells (Δ𝑠 = 2π /128), respectively. Periodic boundary conditions are used at the boundaries 

on the y- and z- planes. At the inflow plane, isotropic turbulent structures are superimposed using a 

procedure outlined in Ref. 30. Two important non-dimensional parameters characterizing the state of the 

flow are (i) turbulent Mach number, 𝑀𝑡, and (ii) Reynolds number based on the Taylor microscale, 𝑅𝑒𝜆. 
They are defined as follows: 

 𝑀𝑡 =
√〈𝑢𝑖𝑢𝑖〉

〈𝑐〉
 ;  𝑅𝑒𝜆 =

〈𝜌〉𝑢𝑟𝑚𝑠𝜆 

〈𝜇〉
   (30) 

where, 

  𝒖𝑟𝑚𝑠 = √
〈𝑢𝑖𝑢𝑖〉

3
  ;  𝜆 =

〈𝑢1
2〉 

〈(𝜕𝑢1 𝜕𝑥⁄ )2〉
 (31) 

In the above equations, the symbol 〈 〉 stands for ensemble average and 𝜆 represents the Taylor 

microscale. The flow field is initialized by setting up a random velocity field, 𝑢𝑖,0, that is solenoidal and 

also satisfies a chosen energy spectrum and the initial turbulent Mach number: 

 𝐸(𝑘)~𝑘4 exp(−2(𝑘 𝑘0⁄ )2) ;   
3𝒖𝑟𝑚𝑠,0

2

2
=

〈𝑢𝑖,0𝑢𝑖,0〉

2
= ∫ 𝐸(𝑘)𝑑𝑘

∝

0
  (32) 

where, k stands for the wavenumber magnitude. k0, the most energetic wavenumber, is taken as 4. For the 

chosen energy spectrum, the initial Taylor length scale, 𝜆0, is 2 𝑘0⁄ . The initial density and pressure fields 

are assumed to be constant and the remaining parameters are set based on 𝑀𝑡,0 = 0.22 and 𝑅𝑒𝜆,0 = 19.9. 
The approach of imposing inflow conditions, is adopted from earlier studies31–33 that specify the method of 
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generating inflow turbulence for studying spatially evolving turbulence and its interaction with a shock 

wave. Randomization of the phase factor (used to prescribe the energy spectrum) in time, which is needed 

to ensure that the signal generated at the inflow is not periodic,33 has not been done in this study. At the 

outflow boundary, subsonic conditions with a Mach number of M2 = 0.7011 are used without a buffer 

domain. In fact, all the computations performed in this study, unlike previous studies,31,32,34 did not need 

any special treatment of the outflow boundary condition (buffer domain or sponge region to damp any 

acoustic reflection) or clustering of the grid points around the shock to ensure that the shock was stationary 

and did not convect upstream, because of the features of the CESE method.  

 

 

(a) (b) 

Figure 12. Solutions for interaction of isotropic turbulence (Mt = 0.22) with a normal shock (M1=1.5), 

showing isosurfaces of Q-criterion shaded with the local Mach number. Shock surface is represented 

by isosurface of dilatation. (a) Side view; (b) top view (x-y plane).   

 

The instantaneous solution after approximately four flow-through times is shown in Fig.12.  The 

Q-criterion isosurfaces have been color shaded by the Mach numbers, showing pre- and post-shock regions 

with supersonic and subsonic colors, respectively.  Isosurfaces of dilatation are used in these plots to help 

visualize the instantaneous shock surface in the middle of the domain. The isotropic nature of the incoming 

turbulence is indicated by the random orientation of the vortex cores upstream of the shock surface. The 

shock compresses the turbulence in the streamwise direction, distorts the vortices, and in the meantime, 

makes them predominantly align in y-z plane (see the top view, Fig. 12). For the normal shock conditions 

studied here, the level of turbulence in the inflow causes a weak distortion of shock surface, putting it under 

the category of “wrinkled shock regime” (Ref. 34).  

The streamwise and transverse components of the Reynolds stresses, along with the transverse 

vorticity variances (normalized with their values just upstream of the shock) are shown in Figs. 13(a)–(c). 

In all of the above-mentioned plots, the streamwise coordinate has been non-dimensionalize,d using the 

wavenumber of peak energy k0, for facilitating comparison with linear theory35 when possible. Furthermore 

the non-dimensionalized streamwise coordinates have been translated such that the shock is located at x = 

0. Averaging was performed over transverse direction and time using data obtained over four flow through-

times.  From Figs. 13(a)–(c), it is evident that the grid resolution for the meshes utilized in the study are 

still not sufficient for achieving truly grid converged solutions. However, they seem to display the correct 

trend based on the qualitative behavior of the results.  
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(a) (b) 

 
(c) 

Figure 13. Evolution of Reynolds stresses and vorticity variances obtained from the computations of 

normal shock-turbulence interaction, using meshes with different resolutions: (a) Streamwise 

Reynolds stress component, (b) transverse Reynolds stress component, and (c) transverse vorticity 

variance. 

 

Both streamwise (Fig.13(a)) and transverse (Fig.13(b)) Reynolds stresses increase at the shock. 

The transverse stress decays almost monotonically behind the shock, while there is a rapid increase of the 

streamwise component behind the shock before it begins to decay slowly. The level of fluctuation in the 

streamwise component just behind the shock is in general larger than the transverse component because of 

the contribution from the acoustic waves that are generated when the vortical waves interact with the shock. 

The post-shock increase of the streamwise component of the Reynolds stress is not predicted by the linear 

theory and can only be explained by nonlinear effects.31,32,34   The behavior of the Reynolds stresses 

observed in this study has also been well-investigated in the literature.31,32,34 From Fig. 13(c), the 

amplification of the transverse component of the vorticity variance directly behind the shock is evident. 

Thereafter it begins to decay. The amplification factor of the transverse vorticity is close to that predicted 

by linear theory35 (~3.1, see Fig. 5(b) of Ref. 32). It is expected that with increased mesh resolution it 

should grow and converge to the correct value. Towards this end, a finer grid in the vicinity of the post-

shock region, as opposed to the uniform grid spacing that was used in this study, is expected to be 

advantageous in resolving the dissipative scales in the post-shock turbulence.  With use of unstructured 

tetrahedral elements, this could bring about a substantial saving in the overall grid count for DNS studies, 
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as it is free of any topological constraints when mesh adaptation is required. These issues will be 

investigated over the next few months and reported in a future work. 

D. Blast Wave Propagation in Test Facilities and Parallel Scaling Study 

In this section, we assess the scalability of the ez4d software framework for large-scale 

computations. Both strong and weak scaling are investigated. The test problem considered for this study is 

the numerical simulation of the blast/acoustic wave propagation in NASA Stennis Space Center’s E-1 test 

facility.  The work was carried out in support of NASA Engineering and Safety Center’s (NESC) 

independent assessment of the test facility. The E-1 test facility was originally developed as a facility with 

three test cells for testing rocket components by multiple users simultaneously. With time, the facility grew 

into a larger one, allowing for testing of engine systems, large thrusters, etc., in various orientations. These 

changes interfered with the original design and negated many of the design protections that were in place to 

protect the test cells from blast waves or acoustic disturbances. With demand from the commercial 

crew/cargo companies for use of the facility towards engine development and the needs of NASA’s own 

Space Launch System (SLS) engine-component development, the E-1 facility’s capability to 

simultaneously accommodate multiple tenants becomes critical. The NESC’s assessment study was aimed 

at identifying tools (analytical/empirical) that can characterize the blast/acoustic environment arising at 

certain locations surrounding the test-cell areas, determining potential mitigation methods that would be 

effective in making the environment suitable for clean tests, and minimizing the influence from 

blast/acoustic effects. 

 

  

   

 
(a) Side View 

 

 

(b) Probe Locations 

Figure 14. Geometry of a portion of the E-1 test facility utilized in the S-4 configuration, along with 

the location of the probes. 
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To facilitate the assessment of the computational tools and to determine the optimum grid 

resolution needed to model such problems, a series of experimental tests were conducted in the E-1 test 

facility using C-4 charges to create small blasts. However, given the size of the E-1 test facility (125’ × 

106’ × 57.5’) for CFD simulations, even a modest grid resolution of 2 inches results in about 600 million 

tetrahedral cells by conservative estimates. Given the project schedule and limitations on computational 

resources, it was decided that a smaller domain would be initially investigated to obtain an understanding 

of the mesh resolution requirements to achieve the desired numerical accuracy, as well as to identify the 

proper numerical approach by which the initial blasts can be modeled or represented in the CFD 

computations. As a result, additional experiments (hereafter designated as the S-4 configuration) were 

designed and carried out using a smaller C-4 charge (0.27 lbm) focusing on a critical region around test cell 

No. 3. The domain of interest is shown in Fig. 14(a). The C-4 charge was placed at a height of 510 inches 

above the ground near the corner of the domain (see Fig. 14(a)), coinciding with the height at which the test 

cell is also located. Overpressure signal data around the test cell of interest were obtained using pressure 

probes at various locations (see Fig.14 (b)). 

Generating the geometry of the S-4 configuration with appropriate simplifications, to ease the 

mesh generation process, was one of the challenging tasks of the project and the main focus of the initial 

efforts of NESC. Using the geometry provided by the NESC, the mesh was generated using the commercial 

software Pointwise. A good quality initial mesh, comprised of tetrahedrons with approximately 2-inches 
resolution throughout the domain, was obtained. The overall grid count was about 59 million tetrahedral 

cells and this mesh will be henceforth referred to as Mesh 1. Subsequently, two additional meshes with 

finer resolutions were generated to see further improvements in computational results. These contained 

approximately 81 million tetrahedrons (Mesh 2) and 177 million tetrahedrons (Mesh 3) respectively.  For 

the computation, all physical surfaces (ground, trusses, etc.) were modeled as inviscid slip walls. 

Remaining surfaces were treated as non-reflecting boundaries. Time-accurate inviscid computations were 

carried out using the second-order accurate (in both space and time) Euler solver in ez4d along with a 

perfect-gas assumption where the medium is modeled as air.  To avoid the issues of modeling the blast 

itself, the blast was modeled as a pressure source with its initial conditions being provided from a 1-D 

spherical solution of the blast at different time slices, which was obtained by one of the NESC members 

using Sandia National Laboratories’ Eulerian shock physics code CTH (CHART squared to the three 

halves).36  

The pressure-gradient contours obtained from the computation are shown at the plane of y = 510 

inch for three different time instances in Fig. 15. As seen from this figure, the blast wave interacts with the 

various surfaces as it propagates through the domain, resulting in several reflections and causing further 

distortion of the primary blast wave. Some of these reflected waves linger around the test-cell area for a 

long time and represent areas of concern, when actual engine tests are carried out. For further quantitative 

evaluation, the overpressure signatures at two different probes are shown in Fig. 16, along with their 

comparison against experimental data. As can be seen from Fig. 16(a), data from probe OP9 (that is in the 

line-of-sight of the blast wave) shows that the computations capture the timing of pressure peaks in the 

signals quiet well, although the magnitudes are under-predicted.  However, at the probe location OP14 (Fig. 

16(b)), the solution doesn’t identify the secondary peak, which follows the leading peak, as the dominant 

peak very well.  A similar trend was observed at a few other probe locations. The reason for this 

discrepancy can be attributed to the fact that, by modeling the initial blast wave as an initial condition, only 

the initial blast wave is permitted into the solution and thereby, the computation lacks information about the 

C-4 explosion products that trail the initial blast wave. The use of air as the medium also has a role in the 

discrepancy, as it is incorrect to approximate C-4 blast products as just air.  
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Figure 15. Snapshots of pressure gradient at two different time instances on the y = 510 inch plane. 

 

 

 

(a) Probe OP9 

 

(b) OP14 

Figure 16. Comparison of the time-history of overpressure signature (CFD) against experimental 

data for representative probes. 

 

 For the strong scalability performance study, the Mesh 1 was utilized, whereas all the three 

different meshes were utilized in the weak scalability study. The performance study was carried out on 

NASA’s Pleiades cluster using its Ivy Bridge (E5-2680v2) Intel Xeon processors. The Ivy Bridge nodes 

contain 2 ten-core processors per node with approximately 64 GB memory per node and has a clock speed 

of 2.6GHz. Towards the strong scalability study, the Mesh 1 was partitioned into various number of blocks 
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with the number of tetrahedral elements per block varying from ~290,000 elements to ~30,000 elements, as 

indicated in Table 3.  For this particular mesh, close to or better than linear scaling was achieved up to 1920 

cores, as seen from Table 3 and Fig 17.  The total time (wall-clock) to solution when utilizing 1920 cores 

was a little over two hours, making ez4d very efficient for studying such problems. However, as the 

partition size reduces to less than 10,000 elements per block, the performance is expected to reduce based 

on previous experience, as communication overheads would start to take precedence over computational 

efforts.  

  

Table 3: Details of the runs performed for the strong scaling study on Pleiades. 

No. of Elements / core No.of Cores 
Wall Clock time / iteration  

(sec) 
Speed-up 

290,000 200 3.09  

240,000 240 2.57 1.2 

120,000 480 1.48 2.08 

60,000 960 0.685 4.51 

30,000 1920 0.275 11.23 

 

 For the weak scalability study, the number of elements per partition was kept at a constant 

(~290,000 elements /core), while the problem size was scaled from 59 million elements to 177 million 

elements. The performance remains close to linear between 200 and 270 cores, but gains efficiency when 

590 cores are used. More data points need to be collected to obtain a thorough characterization of the weak 

scalability. This will be done by running even larger jobs that require many thousands of cores. In this 

regard, we are expecting to run a simulation using a mesh with ~1.5 billion tetrahedrons, which 

corresponds to the full E-1 test facility, in the coming months. That particular run will require at least 5000 

cores and will also help improve our study of the strong scalability performance. 

  

(a) Strong scalabilty study results 
(b) Weak scalability study results 

Figure 17. Scaling results for the 2nd order ez4d code on Pleiades cluster. 

 
 

IV. Summary 
 

 After decades of computational fluid dynamics research and development, it is generally agreed 

that future developments should focus on improving solution accuracy, robustness and performance, 

particularly for time-accurate, large-scale computations with unstructured meshes.  Along this line of 
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development, this paper discusses the current status of the NASA in-house space-time CESE numerical and 

software framework.  Continuing order-of-accuracy studies along with several numerical computations of 

practical engineering or canonical problems are reported.  Time accurate simulations using the developed 

software show promising results in large-scale parallel computing environments.  High solution fidelity 

obtained for flows with small turbulent structures and strong shocks using unstructured meshes helps 

establish confidence for more complex-geometry turbulent flow simulations in the future.  From the 

numerical stand point, the integral form of conservation equations solved in the CESE numerical 

framework is shown to provide several nice properties in reducing the need for extensive buffered domain 

or grid-adaptation around shocks.  The consistent numerical formulations closely mimic the physics and 

allow accurate computations of waves and shocks simultaneously.  A  potentially high-degree of savings in 

computational time could come from the smaller domain free of buffer zones, unstructured mesh free of 

topological constraints, and capabilities of time-accurate local time-stepping as demonstrated in the hot-

spot/shock and shock/turbulence interaction problems discussed in this and previous papers.  The CESE 

numerical and software framework under development is a viable tool for next-generation high-fidelity 

simulations of general conservation laws, and in particular, Navier-Stokes equations. 
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