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Real-Time Global Nonlinear Aerodynamic Modeling 
for Learn-To-Fly 

Eugene A. Morelli1 
NASA Langley Research Center, Hampton, Virginia, 23681 

Flight testing and modeling techniques were developed to accurately identify global 
nonlinear aerodynamic models for aircraft in real time. The techniques were developed and 
demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-
wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. 
Prediction testing was used to evaluate the quality of the global models identified in real 
time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and 
further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept 
flight demonstrations.  

Nomenclature 
x y za ,a ,a  = body-axis translational accelerometer measurements, g 

b = wing span, ft 
c  = wing mean aerodynamic chord, ft 

X Y ZC ,C ,C  = body-axis nondimensional aerodynamic force coefficients 

l m nC ,C ,C  = body-axis nondimensional aerodynamic moment coefficients 

{ }E ⋅  = expected value 

xx yy zz xzI , I , I , I  = inertia tensor elements, slug-ft2 
m = mass, slug 
N = number of data points 
p, q, r  = body-axis roll, pitch, and yaw rates, rad/s or deg/s 
q  = dynamic pressure, lbf/ft2 
s = standard error 
S = wing reference area, ft2 
T  = x body-axis component of engine thrust, lbf 
V = true airspeed, ft/s 
α  = angle of attack, rad or deg 
β  = sideslip angle, rad or deg 

a e r rv, , ,δ δ δ δ  = aileron, elevator, rudder, and ruddervator deflections, rad or deg 
2σ  = fit error variance 
, ,φ θ ψ  = Euler roll, pitch, and yaw angles, rad or deg 

Σ  = covariance matrix 

Subscripts 
cg = center of gravity 
L = left 
o = reference value or base term 
p = prior 
R = right 
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Superscripts 
T  = transpose 
 ̂  = estimate 
   = time derivative 
–1 = matrix inverse 
  = mean 

 

I. Introduction 
HE NASA Learn-To-Fly initiative seeks to autonomously develop a global aircraft model and full-envelope 
flight control in real time, with minimal ground testing, human interaction, and analysis time. This represents a 

new paradigm for developing and flight testing new or modified aircraft, as depicted in Fig. 1. The new paradigm 
replaces conventional ground-based testing and analysis with real-time methods applied in flight. The main payoffs 
are vastly improved efficiency in time and money, and the development of rapid adaptive processes that are 
generally applicable and globally valid. The Learn-To-Fly concept is an enabling technology for rapid aircraft 
prototyping and testing, but also has applications in the areas of fault detection, self-learning vehicles, flight 
envelope protection, safe and reliable flight operations for unmanned air vehicles, and rapidly generating or updating 
aerodynamic models for flight simulation, among others.  
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Figure 1.  Comparison of conventional aircraft development with the Learn-To-Fly concept 

 
 A key component of the Learn-To-Fly concept is real-time global nonlinear aerodynamic modeling based on 
flight data alone. The conventional state-of-the-art for global aerodynamic modeling typically involves iterative 
ground-based testing and analysis, numerous precisely-flown maneuvers, and significant efforts in post-flight 
analysis1-5, as shown in the upper part of Fig. 1. This approach is expensive and time-consuming, and the ground-
based tools have inherent fidelity limitations arising from factors such as wind-tunnel model scale and geometry 
differences relative to the full-scale aircraft, wind-tunnel wall and sting interference, wind-tunnel flow angularity, 
Reynolds number differences, flow modeling deficiencies, and grid geometry approximations for both the aircraft 
and the flow field. Using flight test methods to generate a global aerodynamic model directly avoids all of these 
problems, although the typical problems associated with any flight test still remain, e.g., sensor data quality, 
achieving adequate data information content from the flight test maneuvers, flight test risk and expense, and 
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practical constraints. Recent flight research6-10 has demonstrated that novel efficient flight test maneuvers (both 
automated and implemented by a pilot) can be combined with advanced nonlinear modeling techniques to achieve 
accurate global nonlinear aerodynamic models in near real time for all 6 rigid-body degrees of freedom 
simultaneously, based on flight data alone.  
 The goal of the current research is to further develop these flight test and modeling techniques to achieve 
real-time autonomous operation, and to examine practical issues involved in the flight testing and real-time 
modeling envisioned for the Learn-To-Fly initiative. The investigations described here include examining the data 
information content from a typical Learn-To-Fly flight experiment, investigating timing and practical issues 
associated with onboard autonomous software implementation, and evaluating the quality of the identified real-time 
models. The global aerodynamic modeling method developed in this work executes autonomously in real time with 
reasonable computational requirements, using flight data alone, and produces accurate global aerodynamic models 
with good prediction capability.   The next section describes the test aircraft. Section III contains a description of the flight test maneuvers, with 
some discussion and evaluation of the flight data. Section IV describes the real-time global aerodynamic modeling 
technique applied in flight, based on multivariate orthogonal function modeling7,9-12 and a recursive QR 
decomposition13-15. Results of the autonomous real-time global nonlinear modeling from flight data and associated 
prediction testing appear in Section V, and conclusions are presented in Section VI.  
 All of the real-time software used in this work was written in MATLAB®. Some of the software used for 
experiment design, real-time data analysis, and real-time multivariate orthogonal function modeling tasks came from 
the software toolbox called System IDentification Programs for AirCraft, or SIDPAC12,16.  

II. Bat-4 Aircraft 
 The test aircraft was a Bat-4 remotely-piloted airplane, shown in Fig. 2. The Bat-4 is a commercially-available 
fixed-wing airplane powered by a 110 cc gasoline engine driving a fixed-pitch pusher propeller. Cruising speed is 
approximately 50 kts, and maximum speed is 70 kts. The conventional tricycle landing gear is fixed and ruggedized. 
The test aircraft was equipped with pitot tubes and angle-of-attack and sideslip angle vanes mounted on wingtip 
booms. Control surfaces are conventional ailerons and trailing-edge flaps on the wings, along with ruddervators on 
each of two anhedral tail surfaces. Aircraft geometry and nominal mass properties are given in Table 1.  
 The control surface deflections were not measured directly, but instead were estimated using the control surface 
commands and an actuator model identified from flight data for the same actuators flown on a different aircraft6,7. 
The actuator model was a first-order dynamic system with break frequency at 5 Hz and a pure time delay equal to 
10 ms. This actuator model can be expressed in transfer function form as 

 
( )

0 0131 4
31 4

. s
c

. e
s .

δ δ−=
+

 (1a) 

where δ  is the control surface deflection and cδ  is the corresponding command. The control surface deflections 
were calculated in real time using command data and the actuator model.  
 For the flight data analyzed in this work, only the ruddervators and ailerons were deflected. Symmetric 
ruddervator deflections were used for pitch control, and asymmetric ruddervator deflections were used for yaw 
control. Left and right ailerons were deflected asymmetrically, in the conventional way, for roll control. Definitions 
of the effective control surface deflections are given below. Trailing edge down is positive deflection for all control 
surfaces.  

 ( )1
2 R Le rv rvδ δ δ= +           ( )1

2 R Lr rv rvδ δ δ= −           ( )1
2 R La a aδ δ δ= −  (1b) 

 A research pilot executed the flight test maneuvers from inside a mobile control room, using a synthetic vision 
display drawn from telemetry data and a local terrain database, along with video from a camera in the nose of the 
aircraft. Inputs from the research pilot and a ground-based flight control system were used to generate control 
surface commands which were transmitted via telemetry to the aircraft. Control surface deflections were computed 
from command data telemetered to the ground along with the aircraft response data, to enforce uniform telemetry 
latency in the flight data.  
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 The flight control system has the capability to inject automated control surface perturbations to excite the aircraft 
dynamic response for modeling purposes. These control surface perturbations can have arbitrary waveforms, and 
can be applied to multiple control surfaces individually or simultaneously. The perturbations are summed with pilot 
and feedback control commands in the flight control system, just before the actuator command rate and position 
limiting. The research pilot flies the aircraft to the desired flight condition(s), then activates the automated control 
surface perturbations with a button on the throttle control.  
 

 
Figure 2.  Bat-4 aircraft 

(Credit : NASA Wallops Flight Facility) 
 
 The Bat-4 aircraft was equipped with a micro-INS, which provided 3-axis translational accelerometer 
measurements, angular rate measurements, estimated attitude angles, and GPS position and velocity. Air data probes 
attached to booms mounted on each wingtip (visible in Fig. 2) measured angle of attack, sideslip angle, static 
pressure, and dynamic pressure. Measurements from static pressure sensors and ambient temperature sensors were 
used to compute air density and altitude. Propeller speed was measured in rpm. Mass properties were computed 
based on measured fuel flow, pre-flight weight and balance, and inertia estimates made from a detailed 3D computer 
model of the aircraft and payload. Pilot stick and rudder pedal commands and throttle position were also measured 
and recorded. Flight data were telemetered to the ground in real time. Sampling rate for the flight data was 200 Hz, 
downsampled to 25 Hz for real-time data analysis and modeling.  
 
 

Table 1.  Bat-4 aircraft geometry and nominal mass properties 

c , ft 1.50 
b , ft 12.68 
S , ft2 19.02 

cgx , in 48.98 

cgy , in 0.036 

cgz , in 24.01 

m , slugs 3.593 

xxI , slugs-ft2 9.841 

yyI , slugs-ft2 8.861 

zzI , slugs-ft2 16.17 

xzI , slugs-ft2 -1.015 
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III. Flight Test Data 
 To enable accurate identification of the aircraft global aerodynamics, flight data must cover a wide range for the 
explanatory variables and have sufficient information content for accurate model identification. Prior research6,7 has 
demonstrated that applying automated orthogonal optimized multisine perturbation inputs to the control surfaces 
during slow transitions through a range of nominal flight conditions is an excellent method for collecting global 
aerodynamic modeling data with good information content.  
 A modified global maneuver of this general type was flown on the Bat-4. The maneuver was intended to 
simulate dropping an aircraft from altitude in a wings-level nose-up attitude, as might be done for a Learn-To-Fly 
scenario. Automated orthogonal optimized multisine excitations were applied to the control surfaces throughout this 
maneuver. The pilot flew the Bat-4 to a steady, slow, nose-high flight condition, then simultaneously released back 
pressure on the stick and held in the button on the throttle to implement the automated optimized multisine inputs in 
all axes. As the aircraft pitched forward to lower angles of attack, the pilot then slowly eased back on the stick until 
the aircraft again reached a slow speed, nose-high flight condition, then released back pressure on the stick, to repeat 
the maneuver. Automated excitation inputs were applied to the control surfaces continuously throughout the 
maneuver. Figure 3 shows flight data from four Learn-To-Fly maneuvers flown sequentially and continuously.  
 The Learn-To-Fly maneuver described here is a very high-efficiency global maneuver that provides multi-axis 
flight data with high information content and low correlations among the explanatory variables over a large range of 
flight conditions, as required for accurate and efficient global aerodynamic modeling. Such maneuvers are practical 
because the energetic multisine perturbation inputs excite the aircraft dynamics rapidly and effectively in all axes 
simultaneously, as the flight condition is changing slowly.  
 Figure 4 shows cross plots of selected explanatory variable data from the Learn-To-Fly maneuvers shown in 
Fig. 3. These plots demonstrate that a wide range of these explanatory variables was swept through during the 
maneuvers. Note also that the cross plots generally do not resemble straight lines, which means that the explanatory 
variable data from this maneuver had very low pairwise correlations. Low correlations mean that the dependencies 
of the aircraft aerodynamics on the explanatory variables can be identified accurately and without ambiguity. Cross 
plots for other aircraft states and controls typically used for global aerodynamic modeling were similar to Fig. 4 in 
that the plots indicated low correlations and wide ranges of coverage for the explanatory variables.  
 Local maneuvers were also flown, where automated orthogonal optimized multisine inputs were applied to the 
control surfaces at a single nominal flight condition. Multi-axis flight data from these maneuvers were used for 
global model validation and prediction testing. Table 2 contains a list of the research flight test maneuvers from Bat-
4 flight 3 that were used in this work for real-time global modeling and prediction.  
 

Table 2.  Bat-4 Flight 3 Research Flight Data 
Maneuver Maneuver Description and Objective 

29a Multi-axis orthogonal optimized multisine, nominal flight condition, low amplitude, 
input evaluation and local prediction 

29b Multi-axis orthogonal optimized multisine, nominal flight condition, medium amplitude, 
input evaluation and local prediction 

29c Multi-axis orthogonal optimized multisine, nominal flight condition, medium amplitude, 
input evaluation and local prediction 

39a Multi-axis orthogonal optimized multisine, Learn-To-Fly maneuver, 
global aerodynamic modeling 

39b Multi-axis orthogonal optimized multisine, Learn-To-Fly maneuver, 
global aerodynamic modeling 

39c Multi-axis orthogonal optimized multisine, Learn-To-Fly maneuver, 
global aerodynamic modeling 

39d Multi-axis orthogonal optimized multisine, Learn-To-Fly maneuver, 
global aerodynamic modeling 
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Figure 3.  Bat-4 flight data for Learn-To-Fly global aerodynamic modeling maneuvers 
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Figure 4.  Bat-4 flight data cross plots for Learn-To-Fly global aerodynamic modeling maneuvers 
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IV. Real-Time Global Aerodynamic Modeling 
 The objective is to identify a global nonlinear model in real time for each nondimensional aerodynamic force and 
moment coefficient as a function of explanatory variables that can be measured, such as angle of attack, sideslip 
angle, body-axis angular rates, and control surface deflections. There are two main difficulties in doing this: 
1) designing an experiment to collect informative dynamic data over large ranges of the explanatory variables, 
which was addressed in Section III, and 2) identifying an accurate global nonlinear model in real time, which is the 
subject of this section.  
 One approach to global aerodynamic modeling that has been successful in offline and quasi-real time 
applications is orthogonalizing candidate linear and nonlinear multivariate modeling functions to isolate and 
quantify the modeling capability of each individual model term, then applying a statistical metric computed from the 
data to select which of the terms should be included in the final model7,9-12. The multivariate orthogonal function 
modeling used in this work employs this general approach to identify compact global nonlinear models valid over 
large ranges of the explanatory variables. However, to use this modeling approach in real time, a method for 
recursively orthogonalizing arbitrary data vectors is required. Once that problem is solved, the same computational 
methods used successfully in the past for global nonlinear model identification can be applied in real time. The 
method for recursive orthogonalization of arbitrary data vectors (i.e., arbitrary multivariate modeling functions) is 
given later in this section.  
 For very large ranges of the explanatory variables, or severe local nonlinearities, using orthogonal multivariate 
polynomial functions for the modeling sometimes compromises local model fit in order to achieve a better global 
model fit. This can happen because orthogonal multivariate polynomial functions do not have the ability to change 
locally without modifying the entire model. The problem can be remedied by also including spline functions of the 
explanatory variables in the modeling process7,10,17, which can provide the required local nonlinear modeling 
capability, while retaining clear physical interpretation of the model and the automated selection of optimal model 
complexity necessary to accurately characterize the functional dependencies. Considering spline functions (or any 
other multivariate function) as candidate model terms can be done recursively in the same way as any other arbitrary 
modeling function of the explanatory variables.  
 The next subsections describe the general nonlinear aerodynamic modeling problem using nondimensional 
aerodynamic coefficients, model quality metrics used to evaluate the success of the modeling, and the method 
developed for real-time global aerodynamic modeling.  

A. Nondimensional Aerodynamic Coefficient Modeling 
 For global aerodynamic modeling from flight data, nondimensional aerodynamic force and moment coefficients 
were used as the response variables (also called the dependent variables) for the modeling problem. A separate 
modeling problem was solved for each force or moment coefficient, corresponding to minimizing the squared 
equation error in each individual equation of motion for the six rigid-body degrees of freedom of the aircraft12. 
Values for the nondimensional aerodynamic force and moment coefficients cannot be measured directly in flight, 
but instead must be computed from measured and known quantities using the following equations12 

 
( )x

X
m a T

C
q S

−
=         y

Y
ma

C
q S

=         z
Z

m aC
q S

=  (2) 

 ( ) ( )zz yyxx xz
l

xx xx

I II IC p pq r qr
qSb I I

 −
 = − + +
  
   (3) 

 
( ) ( )2 2yy xx zz xz

m
yy yy

I I I IC q pr p r
qSc I I

 −
= + + − 

  
  (4) 

 ( ) ( )yy xxxzzz
n

zz zz

I IIIC r p qr pq
qSb I I

 −
 = − − +
  
    (5) 
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These expressions retain the full rigid-body nonlinear dynamics in the aircraft equations of motion.  
 The result is N values of the nondimensional force and moment coefficients, where N is the number of data 
points for a particular maneuver or series of maneuvers. Such data are often called measured force and moment 
coefficient data, even though the data are not measured directly, but rather computed from other measurements and 
known quantities. Data for explanatory variables such as angle of attack, sideslip angle, body-axis angular rates, and 
control surface deflections come from direct measurements.  
 Because angular accelerations ( )p,q,r    were not measured, a smoothed local differentiation method12,18 was 
applied to the measured angular rate data to compute angular accelerations in real time. The data smoothing required 
to keep noise levels low for the computed angular accelerations used both past and future samples of the angular 
rates relative to the data point being smoothed, causing a delay of two time samples in the real-time results. Using 
25 Hz data, this amounted to an 0.08 s delay in the modeling results.  
 The desired form of the global aerodynamic model is a mathematical model structure with estimated model 
parameter values and associated uncertainties, relating the nondimensional aerodynamic force and moment 
coefficients to aircraft states and controls that can be measured. All of the global modeling was based on 
equation-error least-squares in the time domain. In this formulation, the dependent variable z, which is one of the 
nondimensional force or moment coefficients, is modeled using an expansion of generally nonlinear model terms 
composed from the explanatory variables, which are nondimensional aircraft states and control surface deflections. 
This leads to an over-determined set of algebraic equations for the unknown model parameters, which can be solved 
using a standard least-squares method.  
 For example, the equation-error least-squares problem for the pitching moment coefficient mC  could be 
formulated using the model structure 

 
2q oe em m m m e m e m

o

qcC C C C C C
Vα δ α δ

α δ αδ= + + + +  (6) 

Equation (6) can be rewritten as 

 z Xθ ε= +  (7) 

where 

 ( ) ( ) ( )1 2 1 vector of values computed from Eq. (4)T
m m mC C C N N= = ×  z   

 5 1 vector of unknown parametersθ
q oe e

T
m m m m mC C C C C

α δ α δ
 = = ×
   

 5 matrix of modeling function or regressor vectors
2

1qX α δ αδe e
o

c N
V

 
= = × 

 
 

 ( ) ( ) ( )1 2 1 vector of equation errorsε TN Nε ε ε= = ×    

 The matrix X  is assembled using measured data, with each column representing a modeling function, also 
called a regressor. The best estimator of θ  in a least-squares sense comes from minimizing the sum of squared 
differences between the dependent variable measurements z  and the model, 

 ( ) ( ) ( )1
2

θ z Xθ z XθTJ = − −  (8) 

The least-squares solution for the unknown parameter vector θ  is found by taking the derivative of the cost function 
in Eq. (8) with respect to θ , setting the result equal to zero, and solving for θ ,12 
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 0T TJ ˆ∂
= − + =

∂
X z X Xθ

θ
 (9a) 

 T Tˆ =X Xθ X z  (9b) 

 ( ) 1T Tˆ −
=θ X X X z  (9c) 

The estimated parameter covariance matrix is computed from12 

 ( ) ( ) ( ) ( ) 12 1 2
T T

ij
ˆ ˆ ˆ ˆE i, j , , ,nσ Σ

−   ≡ − − = ≡ =   
Σ θ θ θ θ θ X X   (10) 

The model output is 

 ˆˆ =y Xθ  (11) 

and the model fit error variance estimate is 

 ( ) ( )
( )

2
Tˆ ˆ

ˆ
N n

σ
− −

=
−

z y z y
 (12) 

where n  is the number of unknown parameters, so that 5n =  for this example. The standard errors of the estimated 
parameters are given by the square root of the diagonal elements of the covariance matrix, 

 ( ) 1 2j jj
ˆs j , , ,nθ Σ= =   (13) 

 This approach allows modeling functions that are nonlinear in the explanatory variables (such as eαδ  in 
Eq. (6)), but the solution in Eqs. (9)-(13) involves non-iterative linear algebra, which can be done very rapidly. This 
is because the model outputs are linearly related to the unknown parameters, cf. Eq. (11), which means the least-
squares cost function is quadratic in the unknown parameters. For global aerodynamic modeling, a main issue is 
identifying which modeling functions should be used for the aerodynamic coefficients, or equivalently, determining 
which functions should appear on the right side of model equations like Eq. (6). This important issue is addressed in 
subsequent sections describing multivariate orthogonal function modeling.  

B. Modeling Metrics 
 Two modeling metrics were used to quantify the success of the global aerodynamic modeling. The modeling 
metrics were: 

1. Coefficient of determination 2R  

 
( )

( )

( ) ( )

( )

( ) ( )
2 2

2 1 1
22 2

1 1

1 1
z

z y z y
z z zz z

N N

T
i i
N N T

i i

ˆ ˆy i z i y i
ˆ ˆ

R
Nz i z i

= =

= =

− −       − −
= = − = −

−
− −      

∑ ∑

∑ ∑
 (14) 

The 2R  metric quantifies the fraction of the variation in the dependent variable about its mean value that is 
explained by the model, so that 20 1R≤ ≤ . Often, 2R  is given as a percentage. 2R  is a model fit quality measure.  
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2. Predicted Squared Error PSE 

 ( ) ( ) 21 T
max

nˆ ˆPSE
N N

σ= − − +z Xθ z Xθ  (15) 

or 

 ( ) 22
max

nˆPSE J
N N

σ= +θ  (16) 

 The PSE metric quantifies expected squared prediction error for an identified model when applied to data not 
used in the model identification process. The constant 2

maxσ  is an upper-bound estimate of the squared error between 

future data and the model, i.e., the upper-bound squared error for prediction cases. A simple estimate of 2
maxσ  that is 

independent of the model structure can be obtained in real time by computing a running average of squared high-
pass filtered dependent variable data. This simple quantification of the dependent variable noise variance can then be 
multiplied by a factor to implement a conservative estimate for 2

maxσ . The process is analogous to choosing a 
confidence level for an F-ratio test in model structure determination, as will become clear in the later discussion on 
model structure determination. In this work, a second-order Butterworth high-pass filter with break frequency set at 
2 Hz was applied to the dependent variable data, and the result was squared and averaged in real time to obtain a 
real-time noise variance estimate. That value was multiplied by a factor of 25 to obtain a conservative estimate of 

2
maxσ , 

 
( )2 2 2

1

2 2

1

25    or    5      

i i i

max max

ˆ ˆ i v i

ˆ ˆ ˆ ˆ

σ σ

σ σ σ σ

− = − + 

= =
 (17) 

where iv  is the high-pass filtered dependent variable data at the ith time step. Using a conservative upper bound 

estimate for 2
maxσ  means the PSE metric will tend to overestimate actual squared prediction errors for new data. 

Therefore, the PSE metric conservatively estimates the squared error for prediction cases. Various high-pass filter 
designs and break frequencies could be used as well. The objective of the high-pass filter design is to isolate 
components of the dependent variable data that can be used to characterize the magnitude of the noise for model 
structure determination. The PSE metric is a combination of a model fit quality measure (the first term on the right 
side of Eq. (16), proportional to the least-squares cost function) and a model complexity penalty (the second term on 
the right side of Eq. (16), proportional to the number of terms in the model, n).  

C. Multivariate Orthogonal Function Modeling 
 The multivariate orthogonal function modeling was based on previous work7,9-12, with modifications to achieve 
real-time operation. The technique begins by generating candidate multivariate functions of the selected explanatory 
variable data, up to a selected maximum model complexity. Although any function of the explanatory variables 
could be used, multivariate polynomials and spline functions are preferred because of their similarity to a truncated 
Taylor series and their easy physical interpretation. These ordinary functions are then orthogonalized, so that each of 
the resulting orthogonal functions retains only the explanatory capability that is unique to that modeling function. 
With this data transformation, it is a straightforward process to select which of the orthogonal modeling functions 
are most effective in modeling the measured data for the dependent variable, and how many of these orthogonal 
functions should be included to identify a model that exhibits both a good fit to the modeling data and good 
prediction capability for other data. The final steps are an error-free transformation from the selected orthogonal 
modeling functions back to physically-meaningful ordinary functions of the explanatory variables, and calculation 
of the uncertainties for the associated model parameter estimates.  

1. Generating Orthogonal Modeling Functions Recursively 
 In previous work7,9-12, multivariate orthogonal functions were generated from ordinary multivariate functions in 
the explanatory variables using a Gram-Schmidt orthogonalization procedure applied to all of the data at once. This 
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approach is not efficient enough for real-time operation. Instead, recursive orthogonalization can be implemented 
using a standard QR  decomposition of the matrix of candidate regressors, 

 =X QR  (18) 

where the columns of X  contain the candidate modeling functions, Q  is an orthonormal matrix with the same 
dimensions as X , and R  is a square upper triangular matrix. The recursive QR  decomposition process is 
initialized by applying a QR  decomposition algorithm to the X  matrix built from the first cn  data points, where 

cn  is the number of candidate modeling functions. Implementations of QR  decomposition algorithms are available 
in many numerical analysis software packages, including MATLAB®, which was used for this work. Substituting 
the decomposition in Eq. (18) into Eq. (9b), 

 T T Tˆ =R Rθ R Q z  (19) 

where T =Q Q I  for the orthonormal matrix Q . Assuming R  is nonsingular, 

 Tˆ =Rθ Q z  (20) 

From Eq. (20), the elements of θ̂  can be found by simple back substitution, because R  is an upper triangular 
matrix. Note that Eq. (20) is just an alternate form of Eq. (9b). However, Eq. (20) is convenient for recursion, 
because the R  matrix must be an upper diagonal c cn n×  matrix, and only the inner products of the orthonormal 
columns of Q  with the dependent variable vector z  appear in the equation, and not the Q  matrix itself. 
Consequently, the dimension of both sides of Eq. (20) is always 1cn × , regardless of the number of data points N.  
 Re-writing Eq. (20) in component form, 
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where jq , is the jth column of the matrix Q . The right side of Eq. (21) is a vector of projections of the dependent 
variable vector z  onto the orthonormal functions in the columns of Q . The absolute values of these quantities 
indicate the degree of correlation of the orthonormal functions in the columns of Q  with z , and consequently, the 
effectiveness of each orthonormal function in modeling the dependent variable data.  
 When new data arrive, Eq. (21) is augmented by appending the new data in the bottom row, 
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where 1 2 cnξ ξ ξ    is the new row of data for the X  matrix, and ζ  is the new dependent variable data. To 

maintain the QR  decomposition including the appended data, the matrix multiplying the parameter vector must be 
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transformed so that the last row contains all zeros. This can be done by applying Givens rotation matrices13-14. For 
example, to remove the value of 1ξ  from the bottom row, the Givens rotation matrix is 

 1

0 0
0 1  0
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s c
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 (23a) 

where 

 2 2 2 2
11 11 1 1 11 1              c r r s rξ ξ ξ= + = +   (23b) 

Applying the rotation matrix 1G  to Eq. (22) gives 
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which makes the lower left element in the matrix equal to zero. This process is repeated until the last row of the 
matrix on the left side contains all zeros, which indicates that the QR  decomposition has been updated. In general, 
this will involve cn  rotation matrices, which are applied to both sides of Eq. (22), resulting in 
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where the primed notation indicates the updated QR  decomposition, including the appended data. The value ε  
remaining in the bottom row on the right side of Eq. (25) is the residual for the appended data point, assuming a 
model that includes all the 1 2j c, j , , , n=q  . Equivalently, this is the portion of the appended dependent variable 
data that cannot be projected onto the updated orthonormalized candidate modeling functions. The combined 
rotation matrix for the orthonormalization update process is 

 2 1cn=G G G G  (26) 

 After all of the rotations have been applied to arrive at Eq. (25), the bottom row of zeros in the matrix on the left 
side is discarded. The residual ε  is squared and added to a running sum of squared residuals, then discarded. The 
entire process is then repeated as each new data sample arrives. The result is a recursive algorithm that efficiently 
updates the orthonormalization of the cn  candidate modeling functions using simple matrix multiplications after 
each new data point is appended to the result from the previous time step. The recursive orthonormalization is 
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implemented with cn  simple matrix multiplications, which can be done very efficiently. Note that the model 

parameters 1 2j c
ˆ , j , , , nθ =  , are associated with the original multivariate modeling functions in the columns of 

X , and not with the orthonormal functions in the columns of Q .  

2. Least Squares Parameter Estimation using Orthonormal Functions 
 The form of a multivariate orthonormal function model is 

 1 1 2 2 n na a ... a= + + + +z q q q ε  (27) 

where z  is an N-dimensional vector of dependent variable data (e.g., nondimensional force or moment coefficient 

data), [ ]1 2
T

Nz ,z ,...,z=z , modeled in terms of a linear combination of n mutually orthonormal modeling functions 
1 2j , j , ,...,n=q . Each jq  is an N-dimensional vector that in general depends on the explanatory variables. The 

1 2ja , j , ,...,n=  are constant model parameters to be determined, and ε denotes the modeling error vector.  
 Equation (27) represents a mathematical model for the dependent variable z in terms of orthonormal functions 
generated from the explanatory variable data. The important question of determining which modeling functions 
should be included in Eq. (27), which implicitly determines n , will be addressed now.  
 Assembling the n orthonormal modeling functions from Eq. (27) in the columns of an N n×  matrix Q , 

 [ ]1 2 n, , ...,=Q q q q  (28) 

and defining the unknown parameter vector [ ]1 2
T

na ,a ,...,a=a , Eq. (27) can be written as 

 = +z Qa ε  (29) 

Equation (29) is the same model equation discussed earlier (cf. Eq. (7)), except that the modeling functions are now 
orthonormal functions. In this case, it is easier to determine an appropriate model structure, because the explanatory 
capability of each modeling function is completely distinct from all the others, due to the mutual orthogonality of the 
columns of Q . This decouples the least squares modeling problem, as will be shown now.  
 For mutually orthonormal functions, 

 
1  for  

 1 2
0  for  

T
i j

i j
i, j , , ..., n

i j
=

= = ≠
q q  (30) 

and TQ Q  is the identity matrix. Using Eq. (30) in the least-squares solution from Eq.(9c), the jth element of the 
estimated parameter vector â  is given by 

 T
j jâ = q z  (31) 

The least-squares cost function using orthonormal functions is then 

 ( ) ( )2

1

1 1
2 2

n
T T T T

j
j

ˆ ˆ ˆJ
=

 
   = − = −    

∑a z z a a z z q z  (32) 

 Equation (32) shows that when the modeling functions are orthonormal, the reduction in the least-squares cost 
function resulting from including the term j ja q  in the model depends only on the dependent variable data z and the 

added orthonormal modeling function jq . The least-squares modeling problem is therefore decoupled, which means 
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each orthonormal modeling function can be evaluated independently in terms of its ability to reduce the least-
squares model fit to the data, regardless of which other orthonormal modeling functions are already selected for the 
model. If the modeling functions were instead polynomials in the explanatory variables (or any other non-orthogonal 
function set), then the least squares problem would be coupled and iterative analysis would be required to find a 
subset of the candidate modeling functions for an adequate model structure.  
 The vector resulting from the recursive QR  decomposition in Eq. (21) contains exactly the quantities T

jq z  

appearing in Eqs. (31) and (32). These quantities are calculated for all cn  candidate modeling functions, and are 
used to identify the model structure, which involves selecting the functions to be included in the model from the 
pool of cn  candidate modeling functions.  

3. Model Structure Determination using Orthonormal Functions 
 The orthonormal modeling functions to be included in the model are chosen to minimize the predicted squared 
error metric PSE defined in Eq. (15) 

 ( ) ( ) 21 T
max

nˆ ˆPSE
N N

σ= − − +z Qa z Qa  (33) 

Combining Eq. (33) with Eqs. (16) and (32), 

 ( )2 2

1

1 n
T T

j max
j

nPSE
N N

σ
=

 
 = − +
  

∑z z q z  (34) 

The PSE depends on the mean squared fit error (MSFE), 

 ( ) ( ) ( )2

1

1 1 n
T T T

j
j

ˆ ˆMSFE
N N =

 
 = − − = −
  

∑z Qa z Qa z z q z  (35) 

along with a term proportional to the number of terms in the model, n . The latter term prevents overfitting the data 
with too many model terms, which is detrimental to model prediction accuracy12,19. While the mean squared fit error 

must decrease with the addition of each orthonormal modeling function to the model (because ( )2T
j− q z  is always 

negative), the overfit penalty term 2
max n Nσ  must increase with each added model term (n increases). Introducing 

the orthonormal modeling functions into the model in order of most effective to least effective in reducing the mean 

squared fit error (quantified by ( )2T
jq z  for the jth orthonormal modeling function) means that the PSE metric will 

always have a single global minimum. The recursive QR  decomposition described earlier computes T
jq z  for each 

of the orthonormalized candidate modeling functions 1 2j c, j , ,...,n=q .  

 Because the quantities Tz z , 2
maxσ  , and N depend only on the dependent variable data and therefore cannot be 

altered by the model, Eq. (34) shows that the criterion for including each jq  in the model can be reduced to 

 ( )2 2T
j maxσ>q z  (36) 

The criterion in Eq. (36) is the mathematical statement of a simple physical idea that only modeling functions that 
reduce the mean squared fit error by an amount that exceeds the maximum expected noise variance should be 
included in the model. This is the condition necessary for PSE to decrease when jq  is added to the model. 
Reference [19] contains further statistical arguments and analysis for the PSE metric, including justification for its 
use in modeling problems.  
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 Using orthonormal functions to model the dependent variable data makes it possible to evaluate the merit of 
including each modeling function individually, based on the PSE metric. The goal is to select a model structure with 
minimum PSE, and the PSE always has a single global minimum for orthonormal modeling functions. Model 
structure determination based on the PSE metric is therefore a well-defined and straightforward process that can be 
(and was) automated.  
 In addition to the PSE criterion, each selected orthonormal function jq  was required to model at least a selected 

fraction of the total variation about the mean for the dependent variable, quantified by the 2R  metric, 

 
( )

( )

2

2
T
j

minT
R

N
∆≥

−

q z

z z z
 (37) 

which can be computed from the results of the recursive orthonormalization and simple real-time calculations using 
the dependent variable data, 

 ( )1 1i i ii z i− = − + z z  (38a) 

 ( ) ( ) 2
1

T T
ii i

z
−

= +z z z z  (38b) 

 For this work, 2
minR∆  was selected as 0.005, which corresponds to requiring each selected orthonormal function 

to model at least 0.5 percent of the total variation in the dependent variable about the mean.  
 The model parameters associated with the original modeling functions in the columns of the X  matrix are 
determined from Eq. (20), using all rows and columns of the R  matrix up to and including the index associated with 
the last element of vector TQ z  selected for the model. Because the orthonormalization of the multivariate functions 

in the X  matrix is sequential according to the order of the columns in X , all prior rows and columns of ˆRθ  must 
be included in the calculation of the model parameter estimates for each selected jq . Accordingly, if the last 

element of vector TQ z  selected for the model is element m, only the elements 1 2j
ˆ , j , , ,mθ =   are estimated – the 

remaining elements of θ̂  are associated with candidate modeling functions that were not selected for the model, and 
were not involved in the orthonormalization of the selected orthonormal functions, so those parameters are zero.  
 The identified model output can be computed from 

 m m
ˆ=y X θ  (39) 

where mX  and mθ̂  include only the first m columns of X  and elements of θ̂ , respectively, and m is highest value 

of j for the orthonormal modeling functions selected for the model, or equivalently, the number of the last TQ z  
vector element selected for the model. Note that  

 cn m n≤ ≤   (40) 

because the number of orthonormal functions selected for the model, n, can be less than the highest index for 
selected orthonormal modeling functions, m, and both of these values can be (and usually are) less than the total 
number of candidate modeling functions, cn .  
 Model parameter uncertainty can be found from Eq. (10), 

 ( ) ( ) 12 T
m m m

ˆ σ̂
−

=Σ θ R R  (41) 



 
American Institute of Aeronautics and Astronautics 

 

16 

where mR  includes only the first m rows and columns of R , and m is the index associated with the last selected 

model term using vector TQ z . The fit error variance estimate is obtained from a running sum of the squared 
individual residuals left on the right side of Eq. (25) after each recursive orthonormalization, 

 ( )2 2 2
1 1i i iˆ ˆ i iσ σ ε− = − +   (42) 

and 2σ̂  is initialized from the initial QR  decomposition applied to the first cn  data points. Note that the squared 
residual estimate from Eq. (42) assumes that all cn  candidate modeling functions are included in the model. When 

cn n<  modeling functions are selected for the model (the usual case), then this squared residual estimate must be 
augmented with the squared residual associated with the modeling functions that were not selected for the model. 
Fortunately, this is easy to compute, because the fit error variance reduction associated with each omitted jq  

function is simply ( )2T
jq z , from Eq. (35). So, the fit error variance from Eq. (42) is simply augmented by adding 

( )2T
jq z  for each jq  not selected for the model. Finally, corrections for colored residuals can be made post-flight12 

or using real-time estimates of the residual autocorrelation function20.  
 The recursive orthonormalization and automated model structure determination described here identifies which 
model terms from the candidate pool are necessary to characterize the functional dependencies, and estimates the 
associated model parameters and uncertainties. Because the approach is based on time-domain equation-error 
modeling, if data points are missed because of instrumentation or telemetry malfunction, or calculation delays, the 
modeling algorithm is unaffected (except for the small loss of information in the missed data points), because the 
equation-error approach in the time-domain does not depend on time sequencing of the data. Therefore, gaps in the 
real-time data stream can be tolerated without modification to the algorithm. However, large data values associated 
with dropouts will adversely affect the modeling, as is the case for all time-domain modeling methods.  
 There are no requirements regarding the form of the candidate modeling functions - they can be multivariate 
polynomials, multivariate spline functions, or any other linear or nonlinear function that can be computed from the 
explanatory variable data. Inputs required from the analyst relate only to the limits of what should be considered, 
such as which explanatory variables to consider, maximum order of multivariate polynomial functions to consider, 
spline knot locations, and so on. Obviously, the identified model is dependent on the candidate modeling terms 
available for selection. However, the pool of candidate modeling terms can be specified generously, subject to 
computational constraints, because the modeling algorithm automatically sorts out which terms are important, based 
on the data, and omits the rest. The result is a global parsimonious model that characterizes the functional 
dependencies accurately and predicts well.  

V. Flight Test Results 
 Flight testing was conducted at NASA Wallops Flight Test Facility in Wallops Island, VA, using the 
instrumented Bat-4 aircraft, shown in Fig. 2 and described in Section II. The flight tests were conducted using the 
NASA Langley AirSTAR flight testing capability. References [21]-[24] contain information on AirSTAR and 
associated flight test operations. An overview of the Bat-4 flight testing can be found in Ref. [24].  
 Real-time global modeling results from flight data for nondimensional aerodynamic force coefficient ZC  are 
shown in Fig. 5. This figure is a screen shot of the real-time display from a laptop computer inside the AirSTAR 
Mobile Operations Station (MOS) during flight testing. The top plot on the left shows the model fit to the 
nondimensional coefficient data as a function of time, and the lower plot on the left shows a three-dimensional plot 
of the model surface fit to ZC  data (indicated by + markers) as a function of selected explanatory variables, which 
are angle of attack and elevator deflection. The plots on the right side show time series data for selected explanatory 
variables. Figure 6 shows a similar display for nondimensional aerodynamic pitching moment coefficient mC  over 
the same time period. Figures 5 and 6 show the real-time modeling results at the end of the first two of the four 
sequential Learn-To-Fly maneuvers shown in Fig. 3. The real-time display continuously showed the time evolution 
of the data and the real-time global nonlinear aerodynamic modeling results.  
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Figure 5.  Data monitoring and real-time global modeling for the CZ coefficient, maneuvers 39a and 39b 

 
 

 
Figure 6.  Data monitoring and real-time global modeling for the Cm coefficient, maneuver 39a and 39b 

 
 
 Models for the longitudinal nondimensional aerodynamic coefficients were selected from a common pool of 
candidate longitudinal modeling functions: 

 21
2 2 2 2 2e e e e e
qc qc qc qc qc, , , , , , , , ,
V V V V V

α δ α αδ α δ δ δ  (43) 
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These candidate functions represent all multivariate polynomials up to 2nd order in the longitudinal explanatory 

variables  and 
2e
qc, ,
V

α δ . The second-order terms in nondimensional pitch rate and elevator deflection used 

absolute value for one factor, to enforce an odd function for these 2nd order terms. The pool of candidate modeling 
functions for the lateral nondimensional aerodynamic coefficients was: 

 1
2 2 2 2 2 2 2 2 2 2a r a r a a r r
pb rb pb rb pb rb rb rb pb pb, , , , , , , , , , , , , , ,
V V V V V V V V V V

β δ δ β δ β β δ δ δ βδ δ β β  (44) 

This pool of candidates included all linear terms in the lateral explanatory variables 2  and 2a r, , , pb V , rb V ,β δ δ  
along with most of the 2nd order terms. Some 2nd order terms that were considered unlikely to be selected for the 
lateral models were omitted from the candidate pool, to save computation time.  
 Global models were identified for all six nondimensional aerodynamic coefficients simultaneously in real time. 
The pool of candidate modeling functions could be made larger and/or specific to each individual nondimensional 
force or moment coefficient, at the cost of more computation time and computer memory for the recursive 
orthonormalization and model structure determination.  
 Recursive orthonormalization of all candidate model terms was done at every time step (25 Hz), but the model 
structure determination and parameter estimation was done at a reduced 2 Hz rate, to save computation time and 
because models typically change at a relatively slow rate, provided the aircraft has not incurred damage. All of the 
data import, filtering, nonlinear modeling calculations, and plotting were done in real time on a Windows® laptop 
with a 2.7 GHz Intel i7-4800MQ processor running MATLAB® 2009b SP1, using an average 60 percent of the 
0.04 s (25 Hz) frame time. Approximately 95 percent of the total computation time was occupied with producing the 
real-time graphics. More efficient real-time graphics processing would have enabled the use of larger pools of 
candidate modeling terms; however, the candidate modeling terms specified in (43) and (44) proved adequate for 
modeling the aerodynamics of the Bat-4 aircraft.  
 Global models identified for all six nondimensional force and moment coefficients using flight data from the 
first two Learn-To-Fly maneuvers in Fig. 3 (maneuvers 39a and 39b, approximately 45 s of flight data) were used to 
predict the flight data for the last two Learn-To-Fly maneuvers shown in Fig. 3 (maneuvers 39c and 39d). The plots 
in Fig. 7 show the prediction results for all coefficients. The predictions shown in Fig. 7 demonstrate good global 
model prediction capability for data that were not used to identify the model, with some degradation apparent in the 
predictions for YC  and lC . The same identified models were also applied to predict data from local maneuver 29b, 
with results shown in Fig. 8. In this case, the XC  prediction is degraded because of uncommanded engine speed 
changes during the maneuver, which impacted the XC  data and were not included in the XC  model. Otherwise, the 
identified global model also exhibits good prediction capability for a local maneuver at a specific flight condition. 
Similar prediction results were obtained for the other local maneuvers 29a and 29c. The prediction results give 
confidence that the global model structure and associated model parameters were identified accurately. Tables 3 and 
4 provide the identified global model terms, model parameter estimates, and associated uncertainties. All angular 
quantities used in the modeling were expressed in radians. Note that none of the identified model structures included 
all of the available candidate model terms. The modeling algorithm automatically selected the important model 
terms, based on the real-time flight data.  
 Similar analyses were done using real-time modeling results from various combinations of single and multiple 
Learn-To-Fly maneuvers to predict the data from the remaining Learn-To-Fly maneuvers. Those cases produced 
similar results to those shown in Figs. 7 and 8, except that the predictions were degraded slightly when the global 
models were identified from only a single Learn-To-Fly maneuver. However, it was also found that using more than 
two Learn-To-Fly maneuvers made little improvement in the global model predictions, apart from a small decrease 
in the estimated parameter uncertainties. This might be because the data from the Learn-To-Fly maneuvers covered 
similar parts of the explanatory variable subspace, and once a certain level of data coverage was reached, little 
additional information was added by more Learn-To-Fly maneuvers.  
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Figure 7.  Aerodynamic predictions for global maneuvers 39c and 39d, 
using real-time global models identified from maneuvers 39a and 39b.  
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Figure 8.  Aerodynamic predictions for local maneuver 29a, 
using real-time global models identified from maneuvers 39a and 39b.  
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Table 3.  Model structure, parameter estimates, and uncertainties for global longitudinal aerodynamic models 
identified from Bat-4 flight data, maneuvers 39a and 39b 

XC  Model 
Parameter 

Estimate 
± Standard Error 

ZC  Model 
Parameter 

Estimate 
± Standard Error 

mC  Model 
Parameter 

Estimate 
± Standard Error 

oXC  −0.041 ±0.003 
oZC  −0.390 ±0.002 

omC  0.004 ±0.001 

XC
α

 0.263 ±0.052 ZC
α

 −3.858 ±0.024 mC
α

 −0.151 ±0.016 

eXC
δ

 −0.175 ±0.018 
eZC

δ
 0.141 ±0.035 

emC
δ

 −0.599 ±0.006 

qXC  −16.26 ±0.51 
qZC  −14.48 ±0.98 

qmC  −9.926 ±0.159 

2XC
α

 2.884 ±0.206   
2mC

α
 −1.015 ±0.064 

 
 

Table 4.  Model structure, parameter estimates, and uncertainties for global lateral aerodynamic models  
identified from Bat-4 flight data, maneuvers 39a and 39b 

YC  Model 
Parameter 

Estimate 
± Standard Error 

lC  Model 
Parameter 

Estimate 
± Standard Error 

nC  Model 
Parameter 

Estimate 
± Standard Error 

oYC  −0.0160 ±0.0003 
olC  0.0007 ±0.0000 

onC  0.0014 ±0.0000 

YC
β

 −0.5008 ±0.0214 lC
β

 −0.0306 ±0.0023 nC
β

 0.0264 ±0.0017 

aYC
δ

 0.2241 ±0.0182 
alC

δ
 −0.0615 ±0.0020 

anC
δ

 −0.0229 ±0.0015 

rYC
δ

 0.0943 ±0.0109 
rlC

δ
 −0.0097 ±0.0012 

rnC
δ

 −0.0609 ±0.0009 

pYC  0.4003 ±0.0763 
plC  −0.2224 ±0.0082 

pnC  −0.1634 ±0.0063 

rYC  1.2707 ±0.0542 
rlC  0.2148 ±0.0058 

rnC  −0.0047 ±0.0045 

aYC
β δ

 −10.296 ±0.987 
alC

βδ
 −0.8548 ±0.1062   

 
 

VI. Conclusions 
 Research was conducted to develop and demonstrate efficient, autonomous, real-time global nonlinear 
aerodynamic modeling for aircraft based on flight data alone. Flight data were obtained using flight test maneuvers 
that simulated dropping the aircraft from altitude, as would be done when implementing a Learn-To-Fly concept. 
Automated orthogonal optimized multi-axis perturbation inputs were applied throughout the maneuvers at varying 
flight conditions, resulting in data with rich information content for global nonlinear aerodynamic modeling. Flight 
data generated with this type of maneuver exhibited low correlations among explanatory variables, multi-axis 
excitation, and rapid coverage of a large portion of the explanatory variable subspace for aerodynamic modeling, 
corresponding to a large portion of the aircraft flight envelope. These characteristics make the maneuvers very 
effective and efficient for global aerodynamic modeling.  
 A real-time nonlinear global modeling technique was developed by combining multivariate orthogonal function 
modeling using statistical modeling metrics with real-time recursive modeling function orthonormalization based on 
the QR  decomposition and Givens rotations. The technique identified global aerodynamic models for all six rigid-
body degrees of freedom simultaneously in real time from flight data alone, and achieved excellent model fits to the 
data. The resulting global aerodynamic models exhibited good prediction capability for flight data from both global 
and local flight maneuvers that were not used in the modeling process.  



 
American Institute of Aeronautics and Astronautics 

 

21 

 Investigations will continue to evaluate data information content from global flight test maneuvers and the 
quality of the identified global aerodynamic models as a function of time and data information. These issues are 
important for successful integration with learning adaptive control and guidance, which will be critical for the 
success of the Learn-To-Fly concept. Learn-To-Fly technology will enable self-learning aircraft, resulting in reduced 
development cost for new aircraft, and more robust and safe flight operations. The flight testing and modeling 
techniques described in this work can also be applied to build high-fidelity, full-envelope nonlinear aircraft 
simulations from flight data, thus reducing or eliminating the need for extensive wind tunnel testing or aerodynamic 
calculations.  
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