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A real-time method for estimating time-varying aircraft frequency responses from input
and output measurements was demonstrated. The Bat-4 subscale airplane was used with
NASA Langley Research Center’s AirSTAR unmanned aerial flight test facility to conduct
flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine
inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The
aircraft was tested in its normal configuration and with emulated failures, which included
a stuck left ruddervator and an increased command path latency. No prior knowledge of
a dynamic model was used or available for the estimation. The longitudinal short period
dynamics were investigated in this work. Time-varying frequency responses and stability
margins were tracked well using a 20 s sliding window of data, as compared to a post-flight
analysis using output error parameter estimation and a low-order equivalent system model.
This method could be used in a real-time fault detection system, or for other applications
of dynamic modeling such as real-time verification of stability margins during envelope
expansion tests.

Nomenclature

a sinusoid amplitude
az vertical acceleration, g units
b wingspan, ft
c̄ wing mean aerodynamic chord, ft
G frequency response
g acceleration due to gravity, ft/s2

h altitude, ft
I inertia tensor elements, slug·ft2
j imaginary number,

√
−1

k gain
L aerodynamic lift force, lbf
M aerodynamic pitch moment, ft·lbf
m mass, slug
N number of samples
q pitch rate, rad/s
S wing reference area, ft2

s Laplace variable
T record length, s
T time constant, 1/s
t time, s

tw window length, s
u input variable
V true airspeed, ft/s
y output variable
α angle of attack, rad
∆ change or perturbation
δ control input
ζ damping ratio
τ time delay, s
φ phase angle, rad
ω frequency, rad/s

Subscripts
cm center of mass
lat lateral
lon longitudinal
ped pedal
sp short period
x, y, z body axes
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I. Introduction

Faults in aircraft subsystems can result in catastrophic failures. A review of 126 aircraft accidents in
which loss-of-control was a factor1 found that 45% of the cases incurred system faults, failures, and errors,

and that 18% of the cases included vehicle damage. Identifying and addressing these factors is therefore
important for improving flight safety. Modern flight control systems typically employ redundant subsystems
to help reduce single-point failures, and fault-detection algorithms to alert the crew.

One problem that can arise when attempting to detect faults is the need for an accurate dynamic model
of the aircraft. This may be difficult because faults can be complex to model, exist in varying degrees, and
occur in multiple combinations. One solution, for example Refs. [2,3], is to use a Kalman filter for each fault
considered, resulting in a large bank of filters run in parallel during flight.

A different approach is to employ non-parametric modeling techniques. This can be advantageous because
only input and output variable measurements are needed, and no dynamic model is assumed. One technique
is to use direct adaptive neural-networks to identify the input–output dynamic relationship, as was done in
Ref. [4] with a model-following controller that improved handling qualities during a stabilator fault. Another
non-parametric technique is to use frequency responses, which are often computed in an off-line environment
using spectral density estimates, where averaging and windowing can be leveraged to reduce errors. One
work-around towards real-time estimation has been to process data using onboard computers or a ground
station immediately after a flight test maneuver in a quasi real-time fashion, while the aircraft is still in
flight.5,6 Other studies used simulations7 and piloted simulations8,9 to demonstrate time-varying frequency
response estimation with discrete wavelet transforms. Another study10 analyzed batch windows of data
sequentially with the discrete Fourier transform to estimate frequency responses.

In a related work, Grauer and Morelli11 presented a simple non-parametric method for computing fre-
quency responses in real time. Orthogonal phase-optimized multisine inputs were used to excite all axes of the
aircraft simultaneously, and a recursive Fourier transform was employed to continuously update frequency-
domain data, which were used to compute frequency responses and stability margins. A sliding window of
data facilitated the identification of time-varying dynamics, such as during aircraft faults.

This paper presents a flight test of an airplane using the method in Ref. [11] for dynamic modeling during
in-flight simulated faults. Three cases are considered here: the first is straight and level flight without any
failures, the second includes a stuck ruddervator control surface, and the third includes an added command
path latency. The aircraft and flight test are described in Section II. Methods for the data analysis are given
in Section III. Estimation results are presented in Section IV, and are further elaborated upon in Section V.
Section VI draws concluding remarks.

Software for the input design, post-flight data compatibility analysis, and the equation error and output
error parameter estimation used in this work are available in a MATLAB R© toolbox called System IDentifi-
cation Programs for AirCraft, or SIDPAC.12

II. Flight Test Experiment

II.A. Bat-4 Airplane

The aircraft flown was the subscale Bat-4 airplane, tail number N105BT. The Bat-4 is a fixed-wing,
remotely-piloted, unmanned aircraft. It has fixed tricyle landing gear, a twin-boom tail section, a single
fixed-pitch pusher propeller, and a 6.6 in3 two-stroke gasoline engine. It is manufactured by the MLB
Company and marketed as an aerial mapping, surveillance, and payload platform. Its maximum speed is
70 kt, and cruise speed is about 50 kt. Figure 1 shows a photograph of the Bat-4 during the flight test, as
well as a three-view technical drawing. Geometry and nominal mass properties of the airplane are given in
Table 1.

The Bat-4 has controls for throttle, flaps, ailerons, and ruddervators. Each control surface can be actuated
independently, for research purposes. Pilot inputs were passed through command-shaping filters and were
added to trim values set by the pilot to generate conventional elevator, aileron, and rudder commands.
The aileron command was also fed through to the pedal command shaper to help coordinate turns. These
commands were then allocated to the different control surfaces, and passed through position and rate limiters
before being sent to the actuators. Pilot inputs moved ailerons asymmetrically to control roll moments, and
ruddervators both symmetrically and asymmetrically to control pitch and yaw moments, respectively. The
sign convention is that positive pilot inputs (stick forward, stick left, left pedal down) create negative angular
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(a) flight over Wallops Island (credit: NASA Wallops Flight Facility) (b) three-view drawing

Figure 1. Bat-4 airplane

rates (nose down, right wing up, nose left). The airplane was flown open loop, without any feedback control.
The airplane was fit with custom hardware and sensors for research flight testing. Onboard sensors

included but were not limited to rate gyros, linear accelerometers, outside air temperature sensors, GPS,
and estimated Euler angles. Vanes on dual wing-tip mounted air-data booms provided angle of attack and
sideslip angle measurements. Pressure taps on the booms also delivered static and total pressures, from
which airspeed and altitude were computed. Fuel flow measurements were combined with a CAD model of
the aircraft and a pre-flight weight and balance test to model the changing mass properties during flight.
All measurements were sampled and transmitted to the ground at 200 Hz.

II.B. Operation

The data in this work is from a single flight of the Bat-4, conducted on April 16, 2015 at NASA Wallops
Flight Facility, on Wallops Island, Virginia. The vehicle was flown using the NASA Langley AirSTAR
(Airborne Subscale Transport Aircraft Research) flight test facility. A research pilot flew the aircraft from
inside a ground control station using a synthetic vision display drawn from telemetry data and a local
terrain database, along with video from a camera mounted in the nose of the aircraft. Pilot inputs and other
commands were transmitted to the aircraft flight control system via a command and control telemetry link.
References [13,14] provide additional details about the flight test and the AirSTAR flight test facility.

Research maneuvers were executed by the pilot flying to a specified flight condition and applying
computer-generated inputs, referred to as wavetrains. These inputs were added either to control surface
deflection commands just upstream of the servos, or to the pilot stick and pedal commands just upstream of
the command shapers. To accommodate other test objectives, wavetrains in this flight were stored onboard
the aircraft instead of uplinked from the control station. Wavetrains were engaged by the pilot pushing and
holding a button on the thrust lever. Similarly, simulated faults were engaged by the flight test engineer
engaging switches inside the control station. This setup has proven invaluable for flight testing feedback
control and system identification technologies in a rapid and cost-efficient manner.

Inside the control station, flight data downsampled to 50 Hz was available to research engineers through
the internal ethernet connections. An existing graphical user interface,15 written in MATLAB R©, was mod-
ified for computing and viewing real-time frequency response estimates. An example screenshot is shown
in Fig. 2. The first column shows input and output perturbation signals, the second column shows Fourier
transforms of the data, and the third column shows estimated frequency response and stability margin
estimates.
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Figure 2. Screenshot of a real-time display

II.C. Maneuvers

Three of the research maneuvers completed in this flight are examined in this work. Each of these three
maneuvers began in straight and level trimmed flight, and included a 40 s wavetrain input added to the pilot
stick inputs. The wavetrain was an orthogonal phase-optimized multisine. These inputs were developed
at NASA Langley16,17 and have been used successfully in flight conditions such as high sideslip, stall and
post-stall, hypersonic, and normal flight; in hazardous weather such as in-flight icing and turbulence; and
for vehicles including airplanes, rotorcraft, and aeroelastic vehicles. Each multisine input has the form

u(t) = a
∑
k

ak sin

(
2πk

T
t+ φk

)
(1)

where a is the aggregate amplitude, ak are the sinusoid amplitudes, T is the excitation record length, and
φk are the phase angles. Choice of the record length determines the excitation frequencies ωk = 2πk/T .
Selection of the sinusoid amplitudes can be used to tailor the power spectrum of the inputs. Phase angles
are optimized for minimium relative peak factor (RPF) of the sum u(t), which creates small perturbation
responses. The aggregate amplitude is used to scale the resulting waveform to achieve good signal-to-noise
ratios.

During past experiments with AirSTAR, requirements on range restricted wavetrains to 10 s in duration.
Because the test volume was expanded in this experiment, the wavetrain record length was increased to 40 s
to include more time on condition and significantly lower excitation frequencies. This duration corresponded
to a resolution of 0.025 Hz for the excitation frequencies, which was finer than in previous experiments. The
input bandwidth was selected as 0.050 Hz to 1.525 Hz to encompassed the expected rigid body modes of
interest. Excitation frequencies were assigned in an alternating manner amongst four inputs, so that each
input had a wide-band spectrum and 15 excitation frequencies. In this work only three of those four designed
inputs were used, and these were summed with the pilot longitudinal stick, lateral stick, and pedal inputs.
The longitudinal stick input was assigned the multisine with the lowest excitation frequency to help excite
the phugoid mode, which was not possible in previous experiments with AirSTAR. Because prior information
on the aircraft dynamics was not available, a uniform power spectrum which excited each frequency equally
was chosen. Flight test results showed that the phugoid mode was indeed well excited, and ramifications
of this for frequency response estimation are discussed later. Ten wavetrains, with different combinations
of “low” and “high” aggregate amplitudes, were stored in the aircraft onboard flight computer. During a
brief in-flight trial-and-error procedure, the combination referred to as Wavetrain 21 was selected for the
remaining maneuvers. This wavetrain is shown in Fig. 3 and parameterized in Table 2. Pilot stick and
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pedal deflections measurements are normalized by their maximum values, so that each of these inputs have
amplitude equal to approximately 10% of the available travel.
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Figure 3. Multisine inputs, Wavetrain 21

III. Methods

III.A. Model Forms

Low-Order Equivalent System (LOES) models are employed to approximate nonlinear and higher-order
aircraft responses from pilot inputs in terms of conventional aircraft modes and equivalent time delays.18,19,20

This is in contrast to bare-airframe models, where the inputs are the control surface deflections. These model
structures are fixed and are usually restricted to the typical pilot input bandwidth 0.1 rad/s to 10 rad/s. An
example of a LOES model is the state-space equation for the short period approximation[

α̇(t)

q̇(t)

]
=

[
−Lα 1

Mα Mq

][
α(t)

q(t)

]
+

[
0

Mδlon

]
δlon(t− τlon) (2a) α(t)

q(t)

az(t)

 =

 1 0

0 1

−V Lα/g 0

[ α(t)

q(t)

]
+

 0

0

0

 δlon(t− τlon) (2b)

In Eq. (2), states and controls represent perturbations from trim values, and the parameters that multiply
them are assumed to be constants. The traditional terms Lq and Lδlon have been neglected, and effects due
to actuators, filters, command shapers, etc. have been subsumed into the remaining terms.20

Equations (2) can be expressed as a transfer function matrix, by means of the Laplace transform and
Cramer’s rule, as

α(s)

δlon(s)
q(s)

δlon(s)
az(s)

δlon(s)

 =
e−τlons

s2 + (Lα −Mq)s− (LαMq +Mα)


Mδlon

Mδlons+ (LαMδlon)

−V LαMδlon/g

 (3)
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Because stability and control derivatives in LOES models describe different physics than in bare-airframe
dynamics, it is often useful to write Eq. (3) using modal parameters, as

α(s)

δlon(s)
q(s)

δlon(s)
az(s)

δlon(s)

 =
e−τlons

s2 + 2ζspωsp + ω2
sp


kθ̇

kθ̇(s+ 1/Tθ2)

kaz

 (4)

III.B. Recursive Fourier Transform

Data in the time domain is converted into the frequency domain using the Fourier transform. Its defini-
tion, applied to the input signal over a finite period of time, is

u(t) =

∫ T

0

u(t)e−jωtdt (5)

For equally-spaced time samples of data and a set of discrete analysis frequencies, Eq. (5) can be approximated
as

u(jωk) =

N−1∑
n=0

u(tn)e−jωktn∆t (6)

Errors due to this approximation are negligible when the sampling rate is significantly higher than the
frequencies of interest, as is the case here, although straightforward corrections can be applied.

Equation (6) is applied to data over the time interval [0, T ]. Because it is a simple summation of terms,
Eq. (6) can be manipulated to evidence its prior value at any time tn as

un(jωk) = un−1(jωk) + u(tn)e−jωktn∆t (7)

In this way, Fourier transforms are updated with information from each new measurement in a recursive
fashion. These operations are simple and fast, consisting only of additions and multiplications, and can be
performed for many signals and frequencies without much processing time.

III.C. Real-Time Frequency Response Estimation

Frequency responses can be computed from transfer function models, such as Eq. (3), by setting s = jω
and taking the form

y(jω)

u(jω)
= G(jω) (8)

Frequency responses can also be computed directly from measured steady-state response data, without
requiring a transfer function model. Some methods for doing this include single-frequency sine-dwell tests,
correlation methods, and spectral estimation methods.21,22,23

Another approach for frequency response estimation is to directly evaluate Eq. (8). This is done by trans-
forming input and output data into the frequency domain using the Fourier transform, and then computing
their ratios at frequencies where the input has sufficient power. This approach is sometimes referred to as the
Empirical Transfer Function Estimate,22 though it was well established before this coinage.24 In general, this
approach yields an inconsistent estimate of the frequency response because the steady-state variance of the
estimates is equal to the corresponding signal-to-noise ratio at that frequency. Furthermore, estimates can
be arbitrarily biased when the input, appearing in the denominator of Eq. (8), has low power. Consequently
additional steps, such as windowing or binning, are typically applied to smooth these frequency response
estimates.22,25

However for periodic inputs, such as the multisine inputs described in Section II.C, Eq. (8) is an unbiased
and consistent estimator of the frequency response, with errors proportional to 1/N . The input power exists
only at a finite set of frequencies, which are the excitation frequencies and are known. Effects of measurement
noise on the frequency response estimates are usually small because the response is only evaluated at the
excitation frequencies, which have high signal-to-noise ratios. Because there are typically only modest
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numbers of excitation frequencies in most flight tests, computation requirements are small. Another benefit
is that multisine inputs encourage the development of steady-state perturbation responses, which are sought
in frequency response estimation. This is similar to the traditional single-input sine dwell tests, except that
multiple frequencies on multiple different control effectors can be excited simultaneously. Another advantage
of this approach is that no additional analyst judgment, for example choosing bin or window sizes used in
other methods, is needed.

When the recursive Fourier transforms are used, for example Eq. (7), the frequency responses can be
estimated in real time using this approach. Errors due to spectral leakage and partial-period evaluations of
the Fourier transforms can be minimized by only updating the frequency response estimates at times that
are integer multiples of the corresponding half period. Doing so increases the accuracy of the estimates
and further decreases computational requirements. Because computations are not intensive, many frequency
responses at many frequencies can be computed quickly and in real time. Stability margins can be computed
from real-time frequency response estimates, which can help determine stability and detect changes in the
input–output relationships.

III.D. Adaptation and Data Forgetting

As described so far, the real-time method uses the entire history of past data, up to the current sample,
to compute the frequency response estimates. Changes in the physical process require enough new data to
overwhelm past records and be reflected in the frequency response estimate. One approach to adapting to
changing dynamics is to systematically forget past data in the analysis. In this way, the frequency response
estimates can continuously adapt to current conditions in a straightforward manner.

There are several approaches to data forgetting; one method that has worked well with frequency response
estimation is to use a sliding window of data.11 This is implemented with the input, for example, by
appending an extra term to Eq. (7) as

un(jωk) = un−1(jωk) + u(tn)e−jωktn∆t− u(tn − tw)e−jωk(tn−tw)∆t (9)

Similar to the way that each new measurement adds a contribution to the Fourier transform, the last term
in Eq. (9) then subtracts the contribution from a past measurement as it traverses the sliding window. This
process uses only the last tw seconds of data in the real-time analysis. As there are no practical methods for
selecting the data forgetting parameters, this is currently based on experience and simulation.

IV. Results

In this section, the results of applying the real-time frequency response estimation method to three cases
are presented. The first case was straight and level flight for the baseline configuration and no failures. The
second case included a stuck left ruddervator fixed at the trim setting. The third case included an additional
latency added in the command path. Flight conditions were similar for each case, and a summary is given
in Table 3.

The pilot was instructed to minimize his inputs while the wavetrains were engaged; any additional inputs
should be low in amplitude and frequency, and should be applied only to keep the aircraft from nearing test
limits. Measurements were passed through a fourth-order Butterworth high-pass digital filter with a 0.01
Hz cutoff frequency to effectively detrend the data before applying the Fourier transform. A 20 s sliding
window was used for the recursive Fourier transform, as in Eq. (9), during each maneuver.

To check and compare the real-time results, a post-flight analysis using output error (OE) parameter
estimation was performed, as described in Refs. [20, 26]. Although this analysis used the same flight data
as in the real-time analysis, perturbation values were computed by subtracting trim values, and frequency-
domain data was obtained using a a high-accuracy Chirp Z-transform.27,12 The analysis frequencies for
the transform were 0.125 Hz to 1.6 Hz, taken in 0.0125 Hz increments, which is finer than what was used
in the real-time analysis. Although computed and visible in Fig. 2, frequency response estimates in this
section are not shown for the lowest excitation frequency of 0.050 Hz. The OE results are well approximated
in this bandwidth using only the short period approximation, which is of primary interest for these fault
scenarios. The Gauss-Newton optimizer in SIDPAC was used to determine the dimensional stability and
control derivatives in Eq. (3), with initial values obtained from an equation-error analysis. Parameter
estimates and standard errors using output error are given in Table 4 for each maneuver.
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The angle of attack value used in the real-time analysis was the average of the measurements from the
left and right vanes. From comparing these time histories, it appeared that the left vane had appreciable
shaft friction, which then manifested in the α/δlon frequency response estimates as additional phase lag. For
the post-flight OE analysis, an additional parameter to the LOES model, τα, was added to account for this
delay. Alternatives such as time-shifting the data, using only the right-wing measurement, or discarding the
angle of attack measurement were considered but not pursued in order to use the same measurements in
both analyses.

IV.A. Baseline Configuration

The first case included the wavetrain excitation during straight and level trimmed flight. Output mea-
surements are shown in Fig. 4. Responses were good for linear modeling, having signal-to-noise ratios above
15 and small perturbations about the trim condition: approximately 2 deg angle of attack, 5 deg/s pitch
rate, and 0.2 g units of vertical acceleration. Airspeed varied between 89 ft/s and 112 ft/s, and ramifications
of this are discussed in the next section. Added inputs from the pilot were small in amplitude, comprising
less than 1% of the available travel, and were low in frequency.

Output error estimates were reasonable and had small uncertainties, under 10% of the parameter values,
which indicated the short period approximation was adequate for this data. Estimates of the neglected
Lq and Lδlon parameters were also reasonable, but were not retained because the minor gains in fit did
not justify the additional uncertainty in the remaining parameters. The equivalent time delay estimate is
reasonable for computation and communication delays involved with remotely flying this aircraft, and the
angle of attack measurement delay is consistent with a post-flight data compatibility analysis.

Frequency response estimates from the post-flight OE analysis and the real-time method, obtained at
the end of the maneuver, are shown as a Bode plot in Fig. 5. Note again that for a more direct comparison
between the real-time and post-flight analyses, the frequency response estimates at 0.050 Hz are not shown.
Some differences between the two results can be seen, particularly in the Bode magnitude, but in general
the two methods show good agreement. A phase margin is observed within the frequencies analyzed for the
az/δlon frequency response. Because of this margin, the az/δlon transfer function is of particular interest
and will be examined in the cases with simulated faults.

Time histories of the real-time frequency response estimates are shown in Fig. 6. A copy of Fig. 5 is
overlaid on this plot at the maneuver terminus. Estimates were not started until an integer multiple of the
corresponding half period was reached, resulting in an initial staggering of the estimates in time. Frequency
responses were also updated at these multiples, resembling a zero-order-hold type process. Estimates ex-
hibited large variations at the start of the maneuver, as there was little information content and transient
responses in the data. As more data was collected and transient response measurements left the sliding
window, responses quickly converged.

IV.B. Ruddervator Fault

The second maneuver began as the first, but a fault was engaged at 9.36 s which fixed the left ruddervator
to its trim state at the beginning of the maneuver. Output measurements are shown in Fig. 7. Responses
were similar to those in Fig. 4 until the fault, and then different afterwards. One difference was due to the
changed trim condition. The stuck position of the left ruddervator created more negative lift on the tail and
resulted in approximately a 2 deg increase in the angle of attack and a 6 ft/s decrease in the mean airspeed.
Because ruddervators contain both longitudinal and directional commands, the failure of one surface creates
a cross-axis coupling in the responses. This was seen in the additional frequency content of the off-axis
responses at the pedal input frequencies, and a gain increase for the cross-axis frequency responses (not
shown).

Figure 8(a) shows the az/δlon frequency response estimates. The OE analysis was applied separately
to pre-fault and post-fault data. The estimated Bode phase remained approximately the same between the
two segments, whereas the Bode gain dropped about 6 dB. This observation is explained by the halving of
Mδlon due to the faulted left ruddervator, which is statistically consistent with the parameter estimates in
Table 4. The increased uncertainties after the fault is a result of unmodeled dynamics present in the data,
due to longitudinal responses created by directional inputs from the cross-axis coupling. Despite the model
structure error incurred from only using the short period approximation, expected results were still obtained,
albeit with higher uncertainty. The real-time estimates, obtained at the time the fault was engaged, match
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Figure 4. Output measurements, Maneuver 1
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Figure 6. Bode plot history, Maneuver 1
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the OE results well. A noticeable drop in the gain is observed at the end of the end of the maneuver, whereas
the phase remained approximately the same.

The effects of the fault on the real-time results are perhaps easier to track using the temporal evolution
of a scalar quantity such as the phase margin, shown for this transfer function in Fig. 8(b). Before the fault,
the frequency response estimate was settling on a phase margin estimate of 50 deg at 6.4 rad/s, similar to
the OE results and those from the first maneuver. After the fault, the real-time estimates of the crossover
frequency decrease and settle around 2.5 rad/s at 26 s, with a phase margin of about 125 deg. The OE
estimates follow the same trend, but may be too low in cutoff frequency and too high in phase margin
because they extrapolate to lower frequencies where the phugoid mode resides. Also as shown in Table 4,
there is more uncertainty in the stability margins due to higher error bounds for the estimated stability and
contorl derivatives. However, the correct trend is observed in that a decrease in gain shifts the crossover
frequency lower, resulting in a larger phase margin.
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Figure 7. Output measurements, Maneuver 2, with ruddervator fault engaged at 9.36 s

IV.C. Latency Fault

The third maneuver was similar began as the first, but with a fault engaged at 14.26 s which added a
delay in the command path. This delay began at 0.025 s, and then increased by 0.010 s every 5 s until the
end of the maneuver, finishing at 0.075 s. Output measurements are shown in Fig. 9, which are only slightly
distinguishable from those shown in Fig. 4.

Figure 10(a) shows the Bode plot estimates. There was not enough information content to reliably
estimate parameters for each 5 s post-fault segment, even when including prior information from previous
data segments. Therefore the maneuver was analyzed separately as a pre-fault segment and a post-fault
segment, as before. Estimation results were reasonable, and a 0.036 s added delay was observed, which
approximately corresponds to the average time delay for the post-fault data. The OE estimates in Fig. 10(a)
show approximately the same Bode magnitude, and a small shift in the Bode phase due to the added delay.
Uncertainty estimates for the OE estimates given in Table 4 indicate accurate estimates of the model terms.
Similar results are observed in the real-time estimates.

Time histories of phase margin estimates are shown in Fig. 10(b). The OE models result in crossover
frequencies of about 5.6 rad/s, and phase margins of 58 deg before the fault and 45 deg after the fault. The
real-time results converged on 6.3 rad/s at 10 s, and then do not vary much until the end of the maneuver,
except for a few transients when the fault is engaged. The phase margin also converged after 10 s at 47
deg, and then decreased to 26 deg by the end of the maneuver. Each result follows the expected result that
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Figure 8. Results for az/δlon, Maneuver 2, with ruddervator fault engaged at 9.36 s

an increase in delay creates faster roll-off in the Bode phase, thereby reducing the phase margin for a given
crossover frequency.

V. Discussion of Results

This section elaborates on a few observations seen in the results. The first is that the real-time estimates
seem to exhibit some undesirable errors when compared to the OE estimates. This is despite good pertur-
bation signals, signal-to-noise ratios, low turbulence levels, and good theoretical convergence properties that
were demonstrated previously using flight test data.11 These errors were found to be due to the relatively
large variation in airspeed and dynamic pressure that resulted from exciting the phugoid mode. Specifi-
cally, airspeed changes about 12% and dynamic pressure changed about 24% during the maneuvers. These
changes violate the constant conditions inherently assumed in frequency response modeling. For reference,
it is recommended that no more than 10% variation in dynamic pressure can be tolerated when applying
output error with time-domain data for linear time-invariant models.28 Dimensional stability and control
derivatives include dynamic pressure effects, so that models using these parameters are sensitive to variations
in dynamic pressure. Other variations such as mass distribution and engine speed were under 0.05% and
5%, respectively, which were negligible.

To investigate the extent of the effect of changing airspeed and dynamic pressure on the real-time esti-
mation results, a separate analysis of Maneuver 1 was conducted. A state-space model of the short-period
approximation, similar to Eq. (2), was used to estimate the nondimensional stability and control derivatives
using an equation error analysis in the frequency domain. Values from the second column in Table 4 were
used for the time delays. Bode plots for the az/δlon transfer function were then computed for the trim
condition of Maneuver 1, but also for its maximum and minimum dynamic pressures. These plots are shown
in Fig. 11. The nominal transfer function is in good agreement with that shown in Fig. 5. A 2 dB variation,
corresponding to a roughly 25% change in magnitude of the az response, is seen in the Bode gain due to
the changes in airspeed and dynamic pressure. This is a significant variation, and can explain the scatter
seen in the real-time estimates, as compared with theory, simulation data, and previous results. The Bode
phase shows little variation, which is also consistent with the results presented. A slightly larger variation is
expected in Maneuver 2 due to larger variations in airspeed and dynamic pressure caused by the ruddervator
fault. A fourth maneuver (not shown), similar to the first maneuver but with 30% smaller input amplitudes,
exhibited only 5% variation in airspeed and 11% in dynamic pressure, and resulted in frequency responses
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more closely aligned with the OE estimates, which also had smaller uncertainty levels on the estimated
parameters. A redesign of the multisine input, having knowledge about the phugoid mode, would either
attenuate or discard the lowest frequencies.
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Figure 11. Variation in az/δlon due to dynamic pressure, Maneuver 1

Another source of error in the real-time estimates stems from nonlinear elements in the system, which
add harmonics that distort the frequency response. One such element was the the command shaping filter
just downstream of the pilot inputs. Figure 12 shows a frequency response estimate of the filter, using the
measured inputs for Maneuver 1 and the outputs of the filter, which were computed using the known filter
equations. Analytical linearization of the filter equations using the root mean square value of the inputs
as the perturbation size results in an expected 20 dB gain, which is confirmed by Fig. 12. Frequency-
dependent distortions to this result are seen in both the Bode gain and phase plots. These distortions are
then propagated downstream, and affect the resulting stick-to-response frequency response estimates. Using
inputs downstream of the command shaper resulted in slightly tighter frequency response estimates and were
considered, but were not pursued because they altered the equivalent time delay estimates.
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Figure 12. Frequency response estimates of longitudinal stick shaper, Maneuver 1

There is perhaps a tendency when examining the Bode plots in the previous section to trust the OE results
more than the real-time estimates, due to the smooth frequency responses shown. This may be misleading
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because the OE method is estimating parameters in a specified dynamic model. Uncertainties in the data
and model structure manifest as degraded fits to data, biased parameters, and increased uncertainty levels, as
in Maneuver 2. As elaborated in Ref. [20], parameter estimates in Eq. (3) are correlated and therefore more
difficult to discern. In this light, the real-time method can potentially provide a simpler and more accurate
measure of the frequency response. No model structure needs to be selected in this type of analysis. If the
experiment abides by the proper assumptions, the real-time estimates have excellent theoretical properties.
Estimates at each frequency depend only on the data at that frequency, whereas the model parameters
estimated by the OE method have wide-band sensitivities.

A 20 s sliding window of data was used for the real-time estimates. This type and length was selected to
demonstrate an adequate trade-off between accuracy and adaptation within the span on one 40 s maneuver.
Shorter window lengths and faster adaptation rates are possible at the expense of less data information
content.11 Frequency-dependent windows or other windowing functions may be beneficial, at the cost of
added complexity. An exponential forgetting method29 has been attempted in the past,11 but has displayed
poorer performance than a sliding window for frequency response estimation. Selection of the best data-
forgetting method for a particular situation is an open problem.

This study showed that a real-time modeling method could be used to identify faults in straight and level
flight. Aircraft in serious loss-of-control situations can experience nonlinear motions with rapidly-varying
flight conditions. In these cases it may not be possible to excite small perturbation maneuvers over 10 s or
20 s and achieve a reasonable frequency response estimate. It would be recommended then to only attempt
to excite short period, dutch roll, and roll modes to get a rough idea of time delays and if control surfaces
were stuck or damaged. Another possibility is that there could be enough excitation in the aircraft already
to estimate reasonable frequency responses, but this case is perhaps better analyzed using techniques that
employ averaging.

However, there are cases when this method is very applicable. One case is for aircraft that develop icing,
which occurs slowly over time and in steady conditions. A short multisine input, eliciting responses similar
to moderate turbulence, could identify faults with only minor irritation to occupants. Detection of changing
dynamics can be accomplished through monitoring stability margins and crossover frequencies. This type of
stability margin monitoring could have been useful for the study described in Ref. [4], where pilot-induced
oscillations were encountered as a result of the nonlinear adaptive controller.

VI. Concluding Remarks

A method for real-time frequency response estimation from measured time histories of input and output
data was demonstrated. Orthogonal phase-optimized multisine inputs were simultaneously applied to the
pilot longitudinal stick, lateral stick, and pedal inputs. A recursive Fourier transform updated frequency
domain data, and a simple method was applied for computing frequency response functions and stability
margins. A 20 s sliding window of data was used to facilitate identification of time-varying dynamics. No
model structure was required, and the only assumption involved was that the dynamics could be usefully
approximated as linear.

Three cases were investigated: straight and level flight, a stuck left ruddervator, and an added command
path latency. In each case, frequency response estimates adapted to the faults in the expected manners.
Results were in good agreement with those determined using a post-flight output-error analysis with a low-
order equivalent system model. The main differences were found to be due to a relatively large oscillation
in dynamic pressure, caused by excitation of the phugoid mode. To a lesser degree, differences are also due
to the nonlinear command shaper downstream of the pilot inputs.

This method is well suited to real-time modeling situations where a model structure may not be known
prior to flight testing. Some examples include flying new aircraft, such as in this study, or finding low-
order models of higher-order closed-loop aircraft. Another example is tracking stability margins for adaptive
control laws or time-varying pilot models. If multisine inputs could be applied, these techniques could also
be leveraged for detecting faults or changing dynamics, and thereby avoiding the onset of loss-of-control
situations. One advantage of this approach is that it relies only on measured data, and is applied in a
straightforward manner without introducing engineering judgment into the analysis.
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Tables

Table 1. Bat-4 geometry and nominal mass properties

Parameter Value Unit

b 12.68 ft

c̄ 1.500 ft

S 19.02 ft2

xcm 48.98 in

ycm 0.036 in

zcm 24.01 in

m 3.593 slug

Ixx 9.841 slug·ft2

Iyy 8.861 slug·ft2

Izz 16.17 slug·ft2

Ixz -1.015 slug·ft2
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Table 2. Multisine inputs, Wavetrain 21 (T = 40 s)

Input k fk, Hz ak, deg φk, rad

2 0.050 0.026 +0.391

6 0.150 0.026 +0.130

10 0.250 0.026 −2.111

14 0.350 0.026 +2.126

18 0.450 0.026 −0.422

22 0.550 0.026 −2.764

δlon 26 0.650 0.026 +0.224

a = 0.1 30 0.750 0.026 +2.244

RPF= 1.044 34 0.850 0.026 −2.414

38 0.950 0.026 +0.319

42 1.050 0.026 +0.023

46 1.150 0.026 −0.478

50 1.250 0.026 −0.473

54 1.350 0.026 −0.472

58 1.450 0.026 +1.335

3 0.075 0.026 −0.702

7 0.175 0.026 +0.009

11 0.275 0.026 +0.438

15 0.375 0.026 −1.935

19 0.475 0.026 −1.766

23 0.575 0.026 −0.390

δlat 27 0.675 0.026 +1.456

a = 0.1 31 0.775 0.026 +1.608

RPF= 1.185 35 0.875 0.026 +0.272

39 0.975 0.026 +1.864

43 1.075 0.026 −2.277

47 1.175 0.026 +1.018

51 1.275 0.026 −2.391

55 1.375 0.026 +0.607

59 1.475 0.026 −0.758

5 0.125 0.026 −2.690

9 0.225 0.026 +0.7155

13 0.325 0.026 +1.690

17 0.425 0.026 +3.012

21 0.525 0.026 +1.369

25 0.625 0.026 +3.134

δped 29 0.725 0.026 −2.415

a = 0.1 33 0.825 0.026 −0.609

RPF= 1.186 37 0.925 0.026 −2.585

41 1.025 0.026 +1.257

45 1.125 0.026 −1.770

49 1.225 0.026 −0.836

53 1.325 0.026 −2.329

57 1.425 0.026 +2.359

61 1.525 0.026 +2.913
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Table 3. Maneuver and flight condition summary

No. Description V , ft/s α, deg h, ft m, slug xcm, in Iyy, slug·ft2

1 straight and level flight 100.1 4.301 4001 3.525 49.03 8.857

2 stuck left ruddervator 100.2 4.141 3970 3.502 49.04 8.852

3 added command latency 99.97 4.091 4010 3.499 49.04 8.852

Table 4. Output error arameter estimates and standard errors

Parameter Maneuver 1 Maneuver 2 Maneuver 3

Before fault After fault Before fault After fault

Lα +2.797± 0.056 +3.298± 0.071 +2.801± 0.300 +2.999± 0.061 +2.786± 0.089

Mα −7.669± 0.474 −10.86± 0.421 −3.281± 1.886 −6.647± 0.686 −6.612± 0.852

Mq −5.170± 0.357 −3.785± 0.252 −4.620± 1.245 −7.738± 0.627 −5.559± 0.620

Mδlon −5.220± 0.216 −4.720± 0.160 −1.867± 0.279 −6.711± 0.378 −5.173± 0.356

τlon +0.062± 0.004 +0.051± 0.004 +0.058± 0.017 +0.086± 0.005 +0.122± 0.007

τα +0.061± 0.005 +0.054± 0.007 +0.065± 0.027 +0.065± 0.005 +0.053± 0.008

ωsp 4.704 4.832 4.028 5.464 5.275

ζsp 0.847 0.733 0.921 0.983 0.971

Tθ2 2.979 3.298 2.801 2.999 2.857
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