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A real-time method was demonstrated for determining accurate uncertainty levels of
stability and control derivatives estimated using recursive least squares and time-domain
data. The method uses a recursive formulation of the residual autocorrelation to account
for colored residuals, which are routinely encountered in aircraft parameter estimation and
change the predicted uncertainties. Simulation data and flight test data for a subscale
jet transport aircraft were used to demonstrate the approach. Results showed that the
corrected uncertainties matched the observed scatter in the parameter estimates, and did so
more accurately than conventional uncertainty estimates that assume white residuals. Only
small differences were observed between batch estimates and recursive estimates at the end
of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a
small number of lags to minimize computation and memory storage requirements without
significantly degrading the accuracy of predicted uncertainty levels.

Nomenclature

ax, ay, az body-axis accelerometer output, g
b wing span, ft
Cl, Cm, Cn body-axis moment coefficients
CX , CY , CZ body-axis force coefficients
c̄ mean aerodynamic chord, ft
cov(.) covariance
D dispersion matrix
E[.] expectation operator
h altitude, ft
I identity matrix
I.. moment of inertia, slug·ft2

J cost function
K gain matrix
m mass, slug
N number of samples
p, q, r body-axis angular rate, rad/s
q̄ dynamic pressure, lbf/ft2

S wing reference area, ft2

S.. power spectral density
t time, s
V true airspeed, ft/s
X regressor matrix

y modeled output
z measured output
α angle of attack, rad
β angle of sideslip, rad
∆ perturbation
δ control surface deflection, rad
ε measurement equation error
θ model parameter vector
σ standard deviation

Subscripts
0 bias or trim value
a, e, r aileron, elevator, rudder
cm center of mass
T thrust

Superscripts
−1 inverse
T transpose
ˆ estimated value
˙ time derivative
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I. Introduction

Least-squares parameter estimation is a commonly-used method for building models from measured data
because of a number of appealing qualities including simplicity, efficiency, and extensibility. The recursive

form of this approach is an attractive option for estimating aircraft dynamic models in real time as flight test
data are being collected. Such a real-time analysis can enable rapid flight envelope expansion, control law
verification, input type or amplitude selection, or aerodynamic database identification. Real-time estimates
could instead update adaptive control laws during aircraft faults or loss-of-control type scenarios. These
algorithms are simple enough to run on low-cost systems aboard unmanned air vehicles.

However, recursive least squares is generally not favored and has instead been superseded by other
methods, such as in Ref. [1], for real-time estimation. One reason is that recursive least squares produces
inaccurate parameter uncertainty estimates, which is a primary indicator of estimation quality. One source of
error is colored modeling residuals, which violate the underlying theory and result in parameter covariances
that are too small. This error causes a misleadingly optimistic interpretation of the estimation results. For
these reasons, parameter uncertainty calculations are delayed until the end of the maneuver2 or are omitted
entirely.3

A residual sequence is said to be colored when it is correlated in time with itself. This occurs routinely
with aircraft flight test data because of model structure error, which can arise from numerous sources.
For example, turbulence, unsteady aerodynamics, and aeroelastic effects all create responses that are not
considered in typical modeling applications. Other neglected dynamics can include nonlinearities, cross-axis
coupling, and interactions with the propulsion system. Steps taken in the data reduction and analysis can
also potentially color the residuals.

Reference [4] identified colored residuals as the source of the discrepancy between predicted parameter
covariance and observed scatter in flight test results. The phenomenon was well-known at the time, and the
standard solution approach was to multiply the parameter stanadrd errors by an arbitrary “fudge factor” of
5 to 10. In Ref. [5], a batch correction for the uncertainty levels based on the coloring of the model residuals
was presented for maximum likelihood estimators, with least squares as a special case. This correction was
made recursive for real-time estimation in Ref. [6], and was applied to frequency response estimation from
input and output measurements.

This paper investigates the real-time method presented in Ref. [6] but for a different application, namely,
estimating accurate parameter uncertainties of aircraft stability and control derivatives. Estimation of sta-
bility and control derivatives from flight test data is a common task, and accurate results are essential
because they are used in important applications.7 The aerodynamic models containing these parameters
are described in Section II, along with the batch and recursive least squares algorithms. That section then
explains the recursive correction for colored residuals that enables accurate real-time parameter uncertainty
prediction. Section III describes the T-2 subscale jet transport aircraft used to study the methods, as well
as a linearized flight dynamics simulation model. Results using simulation data and flight test data for the
T-2 aircraft are then presented in Section IV, followed by conclusions in Section V.

Software for the input design, real-time smooth differentiation, and batch least-squares estimation used
in this work are available in a MATLAB R© toolbox called System IDentification Programs for AirCraft, or
SIDPAC.2

II. Theoretical Development

II.A. Aerodynamic Modeling

Nondimensional aerodynamic force and moment coefficients cannot be directly measured in flight, and
are instead computed from flight test data and known quantities. Under typical simplifying assumptions,
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the nondimensional aerodynamic coefficients can be computed as2

CX =
1

q̄S
(max −XT ) (1a)

CY =
1

q̄S
(may) (1b)

CZ =
1

q̄S
(maz) (1c)

Cl =
1

q̄Sb
[Ixxṗ− Ixz(ṙ + pq) + (Izz − Iyy)qr] (1d)

Cm =
1

q̄Sc̄

[
Iyy q̇ + (Ixx − Izz)pr + Ixz(p

2 − r2)
]

(1e)

Cn =
1

q̄Sb
[Izz ṙ − Ixz(ṗ− qr) + (Iyy − Ixx)pq] (1f)

which are expressed in the body axes and retain the full nonlinearity of the aircraft motion. These equations
require the aircraft geometry and mass properties, thrust, and measurements of the motion. Time histories
of the rotational accelerations are often obtained by smoothly differentiating angular rate data.2,8

The aerodynamic coefficients can be modeled using linear expansions in the aircraft states and controls,
assuming small excursions from a reference flight condition and short durations of time. These models can
be simplified to include only the most dominant on-axis effects, for example9

CX = CX0
+ CXα∆α+ CXδe∆δe (2a)

CY = CY0
+ CYβ∆β + CYr

b

2V
r + CYδr∆δr (2b)

CZ = CZ0
+ CZα∆α+ CZδe∆δe (2c)

Cl = Cl0 + Clβ∆β + Clp
b

2V
p+ Clr

b

2V
r + Clδa∆δa + Clδr∆δr (2d)

Cm = Cm0
+ Cmα∆α+ Cmq

c̄

2V
q + Cmδe∆δe (2e)

Cn = Cn0
+ Cnβ∆β + Cnr

b

2V
r + Cnδr∆δr (2f)

The bias terms, for example CZ0
, subsume all the steady portions of the signals, including aerodynamic

biases and non-zero trim contributions. These terms, sometimes referred to as “nuisance parameters,” are
estimated but are not of primary interest.9 The quantities multiplying the normalized state and control
variables are the nondimensional stability and control derivatives.

II.B. Least Squares Parameter Estimation

In the equation-error formulation, which is essentially the least-squares problem, the dependent or re-
sponse variables are the aerodynamic coefficients computed using Eqs. (1), the regressor or explanatory
variables are the normalized state and control measurements in Eqs. (2), and the unknown parameters to be
estimated are the corresponding stability and control derivatives. The estimation is decoupled in that each
aerodynamic coefficient can be modeled separately, instead of all together. Each analysis has the form

z = y + ε

= Xθ + ε (3)

where z and y are the N ×1 time histories of the measured and modeled dependent variable, respectively, X
is a N ×nθ matrix of independent variable or regressor time histories, θ is an nθ×1 array of unknown model
parameters, and ε is an N × 1 array of the measurement equation errors. For example using the vertical
force coefficient,

z =
mg

q̄S


az1
az2
...

azN

 , X =


xT1
xT2
...

xTN

 =


1 α1 δe1
1 α2 δe2
...

...
...

1 αN δeN

 , θ =

 CZ0

CZα
CZδe

 (4)
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When the regressors are all measured, contain no error, and form an adequate model structure, least squares
can be applied to match the aerodynamic coefficient time histories and accurately estimate the stability and
control derivatives.

The least-squares cost function

J(θ) =
1

2
(z− y)

T
(z− y) (5)

represents the total generalized distance between the measured and modeled dependent variable. This cost
function is minimized by equating the cost gradient to zero and solving for the optimal model parameters as

θ̂ =
(
XTX

)−1
XT z

= DXT z (6)

where D is the dispersion matrix and is related to the information content in the data. The difference
between the dependent variable and the model output

v = z− y (7)

are called the model residuals.
The uncertainty in the model parameter estimates is quantified by the parameter covariance matrix,

which simplifies in this case as

cov(θ̂) = E
[
(θ̂ − θ)(θ̂ − θ)T

]
= E

[(
XTX

)−1
XT (z− y)(z− y)TX

(
XTX

)−1
]

= DXTE[vvT ]XD (8)

because the regressors are assumed to be deterministic. The square root of the diagonal entries of the
parameter covariance are the Cramér-Rao bounds, which provide a lower bound on the parameter standard
error. The middle term in Eq. (8) is the autocorrelation matrix of the residual, defined as

E[vvT ] =


R(0) R(1) . . . R(N − 1)

R(1) R(0) . . . R(N − 2)
...

...
. . .

...

R(N − 1) R(N − 2) . . . R(0)

 (9)

which is symmetric about the diagonal. Entries in this matrix are approximated by the discrete sample
autocorrelation function of the residual

R̂(i) =
1

N

N−i∑
j=1

vi+jvj , i = 0, 1, . . . , N − 1 (10)

taken at different lag indices i. The autocorrelation function is even, so that R(i) = R(−i). The definition
used in Eq. (10) is biased because it does not consider the statistical degrees of freedom. However, this
form can have less mean square error than other definitions, and the bias is negligible for typical flight test
sampling rates and record lengths. The parameter covariance in Eq. (8) can alternatively be expressed using
summations as

cov(θ̂) = D

 N∑
i=1

N∑
j=1

xiR(i− j)xTj

D (11)

If the model residuals can be assumed to have constant variance σ2 and are uncorrelated in time, which
is the conventional assumption of white residuals, then

R(i) =

σ2, i = 0

0, otherwise
(12)
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and the parameter covariance reduces to

cov(θ̂) = D

 N∑
i=1

N∑
j=1

xi(σ
2I)xTj

D

= D
[
σ2
(
XTX

)]
D

= σ2D (13)

It is usually necessary to estimate the residual variance from the data because accurate values from prior or
repeated experiments are difficult to obtain. One technique is to use the fit error variance

σ̂2 =
1

N
vTv (14)

which is based on the model residuals and is therefore dependent upon the accuracy of the model structure and
parameter estimates. When the residuals are significantly colored, Eq. (13) will underpredict the parameter
uncertainties, and the more general expression in Eq. (11) is needed for accurate results.5

II.C. Recursive Least Squares

The previous formulation of least squares is for batch estimation, after all the data from an experiment
has been collected. In the recursive version, estimates are updated as each new set of measurements are
obtained, viz.2

Kk = Dk−1xk
[
1 + xTkDk−1x

T
k

]−1
(15a)

Dk =
[
I−Kkx

T
k

]
Dk−1 (15b)

θ̂k = θ̂k−1 + Kk

[
zk − xTk θ̂k−1

]
(15c)

where the subscript k is used to denote the sample index. With each sample, a new set of regressors xk
and a new measurement zk are obtained. This information is used to compute a gain matrix Kk and the
dispersion matrix Dk. The parameter estimate is then updated, based upon the previous estimate and the
weighted residual.

Assuming white residuals, the parameter covariance in Eq. (13) is updated using the recursive dispersion
matrix and a recursive estimate of the fit error variance

σ̂2
k =

1

k

(
v2

1 + v2
2 + . . .+ v2

k−1 + v2
k

)
=

(
k − 1

k − 1

)(
1

k

)(
v2

1 + v2
2 + . . .+ v2

k−1

)
+

1

k
v2
k

=

(
k − 1

k

)
σ̂2
k−1 +

1

k
v2
k (16)

There is a subtle difference in how the batch and recursive methods compute the parameter uncertainties.
The batch algorithm uses all the data to estimate one estimate of the model parameters, from which the
residuals and parameter uncertainties are computed. The recursive algorithm uses the most recent sample
to update the parameter estimates, but does not recompute the residual history using these new estimates.
Although the parameter estimates will match at the end of the maneuver using either algorithm, the residuals,
and thus parameter uncertainties, are not expected to be the same. Additionally, when there is little
information content in the data, such as early in the data record, parameter estimates are poor, which then
make the residuals and parameter uncertainties also incorrect. Accuracy is sacrificed here for the sake of
real-time estimation. Colored residuals will also increase the error in the recursive parameter uncertainties
computed in this way.

II.D. Recursive Parameter Covariance With Colored Residuals

The batch algorithm for parameter covariances considering colored residuals given in Eq. (11) can be
made recursive, as described in Ref. [6]. The first step is to write the residual autocorrelation in a recursive
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form, as

R̂k(i) =

(
k − 1

k

)
R̂k−1(i) +

(
1

k

)
vk−ivk (17)

Equation (17) produces the same values as the analogous equation given in Ref. [6], but is expressed in
a different, and perhaps simpler, form which was derived in a similar manner as Eq. (16). The residual
autocorrelation function depends on past autocorrelation values and past residuals, which are both functions
of past parameter estimates. This expression is not expected to give the same numerical values as a batch
estimate, although they should be similar once parameter estimates begin to converge.

The next step is to write the parameter covariance considering colored residuals in a recursive form. By
expanding the summand and regrouping terms, Eq. (11) can be rewritten as

cov(θ̂) = D

[
N−1∑
i=0

R(i)Λ(i)

]
D (18)

where

Λ(i) =



N∑
j=1

xjx
T
j , i = 0

N−i∑
j=1

xi+jx
T
j + xjx

T
i+j , i > 0

(19)

where the index i here represents the relative lags between samples. The first definition for Λ(0) represents
the diagonal products involving the zero-lag autocorrelation, and the remaining definition is for the products
involving non-zero lag indices. The recursive parameter covariance update is then

cov(θ̂k) = Dk

[
k−1∑
i=0

Rk(i)Λk(i)

]
Dk (20)

where

Λk(i) =


Λk−1(i) + xkx

T
k , i = 0

Λk−1(i) + xk−ix
T
k + xkx

T
k−i, i > 0

(21)

and can be used for accurate real-time estimation of the parameter uncertainty levels.
Note that as more data are collected, the summation in Eq. (20) operates over a growing number of

indices. More computations and more memory storage are required as the autocorrelation matrix increases in
size. The autocorrelation function can, however, be truncated after a finite number of lag terms because only
proximate residuals are correlated in typical flight test data. Computation and memory storage requirements
would then be reduced and bounded. This approximation can be visualized as cropping the autocorrelation
function around the zero-lag index, or equivalently by thinning the autocorrelation matrix in Eq. (9) about
its diagonal. Retaining only the first nτ lags, the truncated parameter covariance is

cov(θ̂k) = Dk

[
nτ∑
i=0

R̂k(i)Λk(i)

]
Dk (22)

Retaining only one term, i.e. nτ = 0, corresponds to the conventional uncertainty estimate which assumes
white residuals. There is no procedure for selecting how many lags to maintain. For batch analysis, N/5
lags was suggested.2 For the real-time analysis, Ref. [6] used 11 lags. This number also varies according to
aircraft scale, dynamics of interest, and sampling rate.

III. T-2 Aircraft

The estimation methods were applied to the airplane known as the T-2, which is a 5.5% dynamically
scaled version of a generic transport aircraft. The T-2 has retractable tricyle landing gear, two jet engines

6 of 20

American Institute of Aeronautics and Astronautics



Figure 1. T-2 airplane (credit: NASA Langley Research Center)

mounted under the wings, and a conventional tail configuration. Figure 1 shows a photograph of the airplane
in flight, and Table 1 lists airplane geometry and nominal mass properties.

Control surfaces for the T-2 are left and right ailerons, left and right inboard and outboard elevators,
upper and lower rudders, left and right inboard and outboard trailing-edge flaps, and left and right inboard
and outboard spoilers. This configuration amounts to 16 control surfaces, all of which can be moved inde-
pendently. For the maneuvers examined here, only the elevators, ailerons, and rudders were deflected. The
individual elevator surfaces were moved together as a single elevator surface, and similarly for the rudders,
whereas the ailerons were moved asymmetrically, in the conventional way. Trailing-edge down is consid-
ered positive deflection for wing and elevator surfaces, and trailing-edge left is positive for rudder surfaces.
Definitions of control surface deflections are

δe =
1

4
(δelo + δeli + δeri + δero) (23a)

δa =
1

2
(δar − δal) (23b)

δr =
1

2
(δru + δrl) (23c)

The T-2 was outfitted with a variety of research-quality hardware. A micro-INS provided tri-axial
translational accelerometer measurements, angular rate gyroscope measurements, estimated Euler angles,
and GPS-derived position and velocity. Air data probes on both wing tips measured angle of attack, sideslip
angle, static pressure, and dynamic pressure. Measurements from static pressure sensors and outside air
temperature sensors were used to compute air density and altitude. Engine speeds were measured and
used in a thrust model which was identified from ground test data and augmented with adjustments for
ram drag identified from flight data. Potentiometers on the rotation axes of the control surfaces measured
control surface deflections. Mass properties were computed based on measured fuel flow, pre-flight weight and
balance, and body-axis inertia measurements done on the ground for the aircraft without fuel. Measurements
were sampled at 200 Hz.

The aircraft was flown using the NASA Langley AirSTAR (Airborne Subscale Transport Aircraft Re-
search) flight test facility. This capability includes a mobile control station, which houses telemetry equip-
ment, computational hardware, a pilot station, and stations for flight test personnel and researchers. A
research pilot flies the aircraft from inside the control station, using synthetic vision drawn from telemetry
data and a database of the local terrain. Control deflections are generated by the pilot and the ground-based
flight control system. The AirSTAR flight control system has the capability to inject arbitrary inputs at
the actuators, just before position and rate limiters. These inputs were engaged by the pilot pressing and
holding a button on the thrust levers. Telemetered data, downsampled to 50 Hz, is available to researchers
inside the control station through the internal ethernet network. For more information on AirSTAR, see for
example Ref. [10].

For the results examined here, the excitation inputs applied were orthogonal phase-optimized multisines.
This type of input was developed at NASA Langley11,12 and has been used for highly-efficient excitation of
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different types of vehicles in a variety of unusual flight conditions. Each multisine input has the form

u(t) = a
∑
k

ak sin

(
2πk

T
t+ φk

)
(24)

where a is the aggregate amplitude, ak are the normalized relative sinusoid amplitudes, T is the excitation
record length, and φk are the phase angles. Choice of the record length determines the available excitation
frequencies ωk = 2πk/T . Selection of the sinusoid amplitudes and harmonic indices k can be used to tailor
the power spectrum of the inputs. The first few harmonic indices are usually discarded to ensure that the
data record contains repeated cycles of each excitation frequency. Phase angles are optimized for minimum
relative peak factor (RPF) of the waveform to create small perturbation responses. The aggregate amplitude
is used to scale the resulting waveform to achieve good signal-to-noise ratios. Multisine input parameters
used here are given in Table 2.

IV. Results

IV.A. Simulation Results

A simulation model of the T-2 longitudinal short-period dynamics was first used to test the method. The
state-space perturbation model was[

∆α̇(t)

∆q̇(t)

]
=

[
q̄S
mV CZα 1
q̄Sc̄
Iyy

Cmα
q̄Sc̄
Iyy

c̄
2V Cmq

][
∆α(t)

∆q(t)

]
+

[
q̄S
mV CZδe
q̄Sc̄
Iyy

Cmδe

]
∆δe(t) (25a) ∆α(t)

∆q(t)

∆az(t)

 =

 1 0

0 1
q̄S
mgCZα 0

[ ∆α(t)

∆q(t)

]
+

 0

0
q̄S
mgCZδe

∆δe(t) (25b)

The reference flight condition simulated was straight and level flight with 134 ft/s airspeed, 1370 ft altitude,
and 4.8 deg angle of attack. Values for the stability and control derivatives were taken from a separate
analysis using flight test data in calm air, and are given as the true values in Table 3. The simulation model
was excited using the elevator multisine specified by Eq. (24) and given in Table 2. Angular accelerations
were computed using a fixed-lag smooth differentiation method.8,2

The colored noise added to the measurements was simulated by summing together two noise sequences:
a wide-band noise contribution from 0 Hz to the 25 Hz Nyquist frequency, and a band-limited contribution
from 0–2 Hz. The wide-band component was realized using a normally-distributed pseudorandom number
generator. Signal-to-noise ratios for the elevator, angle of attack, pitch rate, and vertical acceleration were
40, 12, 30, and 40, respectively. These values were also determined from flight test data in calm air. The
band-limited component was realized by passing a different white Gaussian noise sequence through a fifth-
order Chebyshev filter with a 2 Hz corner frequency. This method of generating colored noise is known to
be representative of typical flight test data.4,5 This range is appropriate for this scale of aircraft because it
extends slightly beyond the rigid body dynamics at 1.1 Hz. The colored noise therefore contains the dynamics
of interest and the bandwidth of the input, and is expected to color the modeling residuals. Simulations
were run for band-limited noise set between 0% and 20%, in 5% increments, where the percentage pertains
to the root mean square of the signal variation. Note that 0% band-limited noise means that only wide-
band Gaussian white noise was added the measurements, and that the model residuals should then be white.
Band-limited noise levels greater than 20% were not attempted because these are generally not representative
of aircraft system identification scenarios. Simulations were repeated 250 times for each level of band-limited
noise using unique noise sequences each time.

A summary of parameter estimation results, obtained at the end of the maneuver and averaged over all
250 simulation runs for each level of band-limited noise, is given in Table 3. For 0% band-limited noise, the
parameter estimates are accurate, parameter uncertainties are small, and results are in statistical agreement
with the true values. As the level of band-limited noise increases, the mean estimates become more biased and
the mean parameter uncertainties increase. For all cases with band-limited noise, the corrected uncertainties
match the observed scatter in the parameter estimates well, and does so more closely than the conventional
uncertainty estimates that assume white residuals.
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In the remaining discussion, results will be illustrated for the 20% band-limited noise case, because
it represents a somewhat exaggerated scenario of what is usually encountered. Of these results, the CZα
estimates will be highlighted, because it is an important parameter that is usually estimated well. For this
case, the conventional standard error was too small by a factor of four, whereas the corrected standard error
was consistent with the observed scatter in the estimate. The measurements from the last simulation run
are shown in Fig. 2.

The recursive least-squares fits for CZ and Cm in this simulation example are shown in Fig. 3. The fits
had coefficients of determination of 0.93 and 0.87, respectively, which indicate good fits considering this level
of noise. The model residuals are shown in Fig. 4, first as time histories and then as power spectra. The
time histories show that the residual is small, and contains both coherent and incoherent content. The power
spectra show the the larger band-limited noise, its roll off at 2 Hz, and the wide-band noise floor at higher
frequencies. These characteristics are particularly clear for the vertical force coefficient. Some amplification
of the residual around 10 Hz is visible in the pitching moment residual power spectrum, which is due to the
real-time differentiation of angular rate data. Overall, these plots agree with those shown later for the flight
test results and are similar to those reported previously,4,5 which indicates a realistic simulation.

The autocorrelation estimates for the CZ coefficient residual are shown in Fig. 5. For clarity, only
positive lags are shown since autocorrelation is an even function. Figure 5(a) shows the time history, with
a decreased temporal resolution for additional clarity. Figure 5(b) shows the final recursive estimate, along
with the batch estimate and the ±2σ uncertainty bound of the autocorrelation, given2 as R̂(0)/

√
N . If the

residual were white, the autocorrelation would have a large peak at the zero-lag index equal to σ2 and be
zero otherwise. Because there are lagged autocorrelations outside the ±2σ bound, this is not the case and
the residual is colored. Most of the residual coloring is due to the large autocorrelations near the zero-lag
index. Note the similarity between the final recursive estimates and the batch estimate, particularly for the
higher autocorrelations. This indicates that not much accuracy was scarified by using a recursive method.

The evolving time history of estimation results for the model parameter CZα , averaged over all 250
simulation runs, is shown in Fig. 6(a). On average, the parameter estimate converged by 2 s, which was 1.5
s after the elevator excitation began. By 6 s, there was enough data information content and good enough
parameter estimates that the corrected parameter uncertainty envelope enclosed the observed scatter in the
parameter estimate. This means that on average, the recursive estimate is slightly conservative, which is
safer in modeling applications than having it too optimistic. The conventional estimate of the parameter
uncertainty was too small by a factor of 3.3, and was not in statistical agreement with the true value. Similar
time histories were observed for the other model parameters. Batch and recursive estimates, obtained at
the end of the maneuver, are compared for conventional and corrected parameter uncertainties in Fig. 6(b).
In both cases, the corrected uncertainties are in statistical agreement with the true value, whereas the
conventional estimates are not. There was a 1% difference in the size of the corrected error bounds, again
meaning that not much accuracy is sacrificed by using a recursive technique.

Figure 7(a) shows the impact of reducing the number of lags retained in the residual autocorrelation.
Using only the zero lag, the parameter uncertainty is too small. Only two lags were required for statistical
agreement with the true value in this example, although more lags were needed in other runs having the same
level of band-limited noise. For roughly 10–200 reatined lags, the parameter covariance overshoots its final
value by about 12%. A safe number of lags to retain would be about 50. This would reduce computation
and memory, safeguard against selecting too few lags, and provide a conservative estimate of the parameter
covariance. Figure 7(b) illustrates the autocorrelation time history with 50 lags. A timing test conducted
on a 2.6 GHz Intel Core i7 laptop computer using MATLAB R© R2015a showed that 20% of the available 50
Hz frame rate was needed to compute the full autocorrelation function in real time for this 12 s maneuver,
but only 4% of the frame rate was needed when the autocorrelation was truncated to 50 lags. Note that
this number is dependent upon the aircraft, sampling rate, and the dynamics of interest. For example, a full
scale aircraft and/or lower sampling rates would require many fewer lag terms, and thus less computation,
to achieve the same level of accuracy.

These results were obtained using degraded residuals from intermediate parameter estimates that were
not fully converged, and an approximated recursive correction for colored residuals. In the past, these
two factors have been primary obstacles to successfully applying recursive least squares in aircraft system
identification. The method presented in Ref. [6] and used here is a simple and effective method of mitigating
those previous challenges.
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Figure 2. Measurements from simulation data (20% band-limited noise, Run 250)
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Figure 3. Recursive fitting using simulation data (20% band-limited noise, Run 250)
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Figure 4. Model residuals using simulation data (20% band-limited noise, Run 250)
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IV.B. Flight Test Results

Flight test data for the T-2 airplane was also used to demonstrate the method. A set of 14 repeated
maneuvers were analyzed from Flight Number 15, conducted on 23 April 2010 at Blackstone Army Airfield in
Virginia. These maneuvers were conducted under severe turbulence. As turbulence manifests as an unmea-
sured input and excites unmodeled dynamics, the residuals were expected to be colored. The trim condition
was approximately the same as used for the simulation, and the same excitation input was commanded of
the actuators. The measured flight test data from Maneuver 14, which is highlighted as a representative
example, is shown in Fig. 8. Some attenuation of the higher frequencies is seen in the elevator deflection
due to the actuators and flight control software. The responses contain higher frequency content, due to the
turbulence, but amplitudes are about the same as in the simulation.

Recursive least-squares fits to the aerodynamic coefficients, shown in Fig. 9, were generally good and
had coefficients of determination of 0.98 and 0.90 for CZ and Cm, respectively. Model residuals are shown
in Fig. 10, again as time series and power spectra. The flight data residuals have approximately the same
amplitude wide-band noise, but less band-limited noise than used in the simulation example. Residuals were
again small relative to the measurements, and displayed the same spectral characteristics. The recursive
autocorrelation for this data is shown in Fig. 11.

Parameter estimation results, obtained at the end of the maneuver, are shown for all 14 maneuvers
in Fig. 12 for both conventional and corrected uncertainties. The corrected parameter uncertainties exhibit
better statistical agreement than the conventional uncertainties. Only 50 lags were retained for the corrected
parameter uncertainties, based on the simulation analysis. This truncation resulted in a 13% error in the
parameter standard error. However, this truncation enabled faster computation for real-time execution, and
did not significantly impact the results because they remained in agreement with the observed scatter of the
parameter estimates. The time history of the CZα estimate, using 50 lags, is shown in Fig. 13. Conventional
estimates at the end of the maneuver were smaller by a factor of 3.

A summary of mean results is given in Table 4, where each table entry was averaged over all 14 maneuvers.
The columns show the mean estimates, the uncertainties using the conventional recursive method, the
uncertainties using the corrected recursive method (both for all the available lags and for only 50 lags),
and the observed scatter in the parameter estimates. The corrected uncertainties were larger than the
conventional uncertainties, and were more accurate. Not much error was incurred from approximating
the autocorrelation with 50 lag terms, as seen by comparing the two columns of corrected results. The
corrected uncertainties agreed with the observed scatter in the parameter estimates, except for the angle of
attack derivatives, which were too low by a factor of two. However, these were still more accurate than the
conventional estimates, which were too low by a factor of four. This discrepancy could be due to the fact
that the turbulence most directly affects angle of attack, and that only a small ensemble of maneuvers was
used. However, the overall approach is verified here using the flight test data. Notice that the values of the
mean estimates, particularly the CZ derivatives, are significantly different than those estimated from flight
test data in calm air. This does not disprove the method, because the estimated uncertainty matches the
observed scatter. For example, the elevator lift slope CZδe decreases from +0.215 in calm air data to +0.031
in the turbulent data. This parameter typically has low sensitivity, making it harder to estimate accurately.
In addition, the effects of the elevator on lift and the turbulence (which is not measured) on lift are no longer
easily distinguishable to the estimator. This is a problem with the experiment and model structure, and not
with the recursive uncertainty correction presented.

V. Conclusions

This paper demonstrated a recursive correction to conventional parameter covariances for recursive least-
squares estimates of aircraft stability and control parameters considering colored residuals. Colored residuals
are not assumed in the underlying theory of ordinary least squares, but are routinely encountered in aircraft
system identification from various sources of model structure error. The method was demonstrated using
simulation runs and flight test data from repeated maneuvers using the T-2 airplane.

The discrepancy between predicted uncertainty levels and observed scatter in parameter estimates was
identified in Ref. [4]. A solution was developed in Ref. [5] for batch analysis. Reference [6] extended
this method for recursive estimation, and employed it in frequency response identification. This paper
demonstrated that method for estimating stability and control derivatives, which is a common application
of aircraft parameter estimation. A comparison was also made with batch and conventional estimates, and
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the effects of approximating the autocorrelation function by truncating the summation were explored.
The short period simulation results showed that the method obtains accurate estimates of the parameter

covariances in the presence of colored residuals. Parameter uncertainties need to be corrected when colored
residuals are present, which is usually the case in practice. Errors in the parameter standard deviations
up to a factor of 3.6 were observed using conventional parameter uncertainty estimates when the band-
limited noise was 20% of the root mean signal variation. Only 1% error was observed by correcting the
errors recursively, instead of in a batch analysis at the end of the maneuver. Timing tests showed that
for longitudinal short-period dynamic maneuvers, the method can run in real time in MATLAB R© on a
common laptop computer. Computations were computed 5 times faster when the autocorrelation function
was limited to 50 lag terms, compared to using all available lag terms. This truncation resulted in a 13% error
in the parameter uncertainty, but flight test data with repeated maneuvers showed this was still statistically
consistent with the observed parameter estimate scatter. Flight test data also showed that the conventional
estimates of the parameter covariance were optimistic and inaccurate, as expected.

A significant negative attribute of the recursive least squares algorithm in the past has been inaccuracy
of the computed parameter uncertainty. This work successfully addresses that problem, removing a major
barrier to using recursive least squares for important practical problems such as adaptive control, fault
detection, and simulation database validation and updating from flight data. Retaining a small number of
lag indices and computing a recursive autocorrelation function can lead to significant gains in accuracy in
terms of the parameter covariance, which is an important indicator of model quality.
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Tables

Table 1. T-2 geometry and nominal mass properties

Parameter Value Unit

b 6.849 ft

c̄ 0.915 ft

S 5.902 ft2

xcm 56.63 in

ycm 0.000 in

zcm 11.43 in

m 1.585 slug

Ixx 1.179 slug·ft2

Iyy 4.520 slug·ft2

Izz 5.527 slug·ft2

Ixz 0.211 slug·ft2

Table 2. Multisine input design for the T-2 (T = 10 s)

Input a, deg RPF k fk, Hz ak, deg φk, rad

δe 1.0 1.03

3 0.3 0.316 2.948

6 0.6 0.387 0.601

9 0.9 0.447 3.584

12 1.2 0.447 4.632

15 1.5 0.387 2.690

18 1.8 0.316 2.087

21 2.1 0.316 3.421

δa 1.0 1.15

4 0.4 0.378 1.544

7 0.7 0.378 4.642

10 1.0 0.378 1.201

13 1.3 0.378 1.077

16 1.6 0.378 3.946

19 1.9 0.378 3.951

22 2.2 0.378 3.523

δr 1.0 1.14

2 0.2 0.316 2.844

5 0.5 0.387 2.526

8 0.8 0.447 2.756

11 1.1 0.447 5.770

14 1.4 0.387 5.540

17 1.7 0.316 2.396

20 2.0 0.316 5.525
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Table 3. Mean estimation results using simulated data and varying levels of band-limited noise

Band-limited noise level

Parameter True Value 0% 5% 10% 15% 20%

CZα −3.911 −3.888 −3.870 −3.841 −3.774 −3.710

(0.013)a (0.019) (0.029) (0.038) (0.048)

[0.015]b [0.049] [0.088] [0.123] [0.158]

{0.012}c {0.049} {0.085} {0.129} {0.146}

CZδe +0.215 +0.225 +0.227 +0.232 +0.243 +0.260

(0.011) (0.017) (0.025) (0.034) (0.043)

[0.013] [0.042] [0.075] [0.106] [0.138]

{0.012} {0.039} {0.075} {0.108} {0.138}

Cmα −1.481 −1.521 −1.515 −1.507 −1.486 −1.468

(0.021) (0.023) (0.025) (0.029) (0.033)

[0.014] [0.027] [0.044] [0.060] [0.079]

{0.007} {0.026} {0.041} {0.063} {0.074}

Cmq −53.25 −54.73 −54.28 −53.15 −51.94 −49.90

(1.581) (1.670) (1.863) (2.095) (2.349)

[1.149] [2.230] [3.674] [5.052] [6.485]

{0.598} {2.009} {3.447} {4.806} {6.478}

Cmδe −1.830 −1.912 −1.905 −1.885 −1.864 −1.834

(0.029) (0.030) (0.034) (0.039) (0.044)

[0.021] [0.041] [0.067] [0.092] [0.119]

{0.011} {0.038} {0.068} {0.090} {0.122}

aValues in parenthesis are conventional parameter standard errors
bValues in brackets are corrected parameter standard errors

bValues in braces are parameter estimate observed scatter standard deviations

Table 4. Mean estimation results using flight test data

Standard errors and deviation

Conventional Corrected, Corrected, Scatter

Parameter Mean estimate nτ ≤ N − 1 nτ = 50

CZα −3.535 0.020 0.040 0.047 0.085

CZδe +0.031 0.024 0.049 0.059 0.050

Cmα −1.275 0.026 0.043 0.046 0.121

Cmq −44.58 2.389 3.985 4.138 3.829

Cmδe −1.782 0.045 0.074 0.078 0.072
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