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Gradient-based sensitivity analysis has proven to be an enabling technology for many
applications, including design of aerospace vehicles. However, conventional sensitivity anal-
ysis methods break down when applied to long-time averages of chaotic systems. This
breakdown is a serious limitation because many aerospace applications involve physical
phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and
direct numerical simulations of turbulent aerodynamic flows. A recently proposed method-
ology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of
the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic
flow simulated with a large-scale computational fluid dynamics solver is presented. The
LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the
computational cost of the current LSS implementation is high.

Nomenclature

Â mn×mn Schur complement of Karush-Kuhn-Tucker (KKT) matrix
B̂ mn× (m+ 1)n forward time integration block in KKT matrix
b n× 1 explicit sensitivity of instantaneous spatial residual
b̂ mn× 1 vector of b at all time steps
Ĉ mn×m time dilation block in KKT matrix
D 1× p vector of design variables
D Drag
F, G n× n time integration matrices
f , F Objective function or instantaneous contribution to objective function
g n× 1 linearization of instantaneous contribution to objective function
ĝ (m+ 1)n× 1 vector of g at all time steps
h Time dilation instantaneous contribution to sensitivity of objective function
ĥ m× 1 vector of h at all time steps
L 3× 1 vector of nonlinear sources in Lorenz equation
L Lagrangian
M Mach number
m Number of time steps in time horizon
m0 Time step index at start of objective function averaging window
m1 Time step index at end of objective function averaging window
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n Number of grid points times number of conserved quantities
p Objective function exponent
Q n× 1 vector of conserved variables
Q′ Shadow trajectory for unsteady flow field
R n× 1 spatial residual vector
T0 Start of time-averaging window
t Time
U 3× 1 vector of Lorenz system states x, y, and z
U′ 3× 1 vector of Lorenz system shadow trajectory
V n× n diagonal matrix of dual volumes at a time step
V̂ (m+ 1)n× (m+ 1)n block-diagonal matrix of dual volumes at all time steps
V n× p tangent instantaneous solution matrix
V̂ (m+ 1)n× 1 vector of V at all time steps
W n× 1 instantaneous Lagrange multiplier for tangent LSS
Ŵ mn× 1 vector of W at all time steps
X nm× 1 vector to verify LSS
x, y n× 1 vectors
x, y, z Lorenz system states
α LSS time-transformation weighting
∆T Time-averaging window
∆t Time step
ε Design-parameter perturbation
ζ Additional shadow time
η Time dilation
η̂ m× 1 vector of η at all time steps
Λ n× 1 instantaneous adjoint field
Λ̂ mn× 1 adjoint field at all time steps
ρ, σ, β Lorenz system parameters
σ Standard deviation estimator
τ Transformed time for shadow trajectory
Φ Instantaneous adjoint for LSS
Φ̂ (m+ 1)n× 1 vector of Φ at all time steps
ψ Adjoint η for LSS
ψ̂ m× 1 vector of ψ at all time steps
ω Objective-function weighting parameter

Subscript
f n× 1 vector to be communicated
j jth column of a matrix
∞ Freestream value
∆T Time-averaged quantity with averaging window of length ∆T

Superscript
IF Initial flow field
i Time step
ˆ Indicates quantity related to all time levels
¯ Indicates time-averaged quantity

I. Introduction

Gradient-based sensitivity analysis is an important tool for high-fidelity design and optimization of com-
plex dynamical systems. The analysis computes sensitivities of objective functions to input and design
parameters. A forward (tangent) approach to computing sensitivities involves a small perturbation of one
parameter at a time and a simulation of the perturbed system to compute the corresponding values of the
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objective functions. This forward approach is cost effective for problems with many objective functions and
few design/input parameters. Typical high-fidelity aerospace applications involve many design parameters
and a high computational cost; for such applications, the forward approach becomes prohibitively expensive.
A reverse (adjoint) approach to computing sensitivities involves solving a linear adjoint problem for each
objective function. With the adjoint solution available, one can directly compute sensitivities of the corre-
sponding objective function with respect to many design parameters. The total cost of the adjoint-based
sensitivity analysis is similar to the cost of the baseline simulation. As a result, adjoint-based sensitivity
analysis becomes an enabling methodology for high-fidelity aircraft design.1–5

The adjoint-based design and optimization methodology has been successfully applied to complex steady
and unsteady aerodynamic flows, including flows governed by the Reynolds-Averaged Navier Stokes (RANS)
equations.4,5 Adjoint-based methods have also benefited other areas beyond high-fidelity sensitivity analysis.
In particular, many aerospace computations use adjoint-based methods for mesh adaptation,6 error estima-
tion,7 flow control,8,9 and uncertainty quantification.10,11 However, conventional gradient-based sensitivity
analysis breaks down when the objective function is a long-time average of a chaotic flow solution. This is a
serious limitation because practical aerospace problems involve physical phenomena that exhibit chaotic dy-
namics, most notably high-resolution large-eddy simulations (LES) and direct numerical simulations (DNS)
of turbulent flows. Long-time averages of aerodynamic forces, such as lift or drag, or heat transfer are ex-
amples of important optimization metrics for aerospace applications. New approaches are needed for robust
adjoint-based sensitivity analysis of highly-resolved turbulent flows.

The breakdown of conventional sensitivity analysis can be traced to certain fundamental properties of
chaotic systems. Specifically, Lorenz’s butterfly effect implies that the time evolution of a chaotic system is
highly sensitive to initial conditions.12 A small perturbation to initial conditions may grow exponentially
over time, resulting in large differences in instantaneous solutions. This high sensitivity is observed for all
chaotic systems. On the other hand, long-time averages have little sensitivity to initial conditions.

To illustrate the breakdown of conventional sensitivity analysis for chaotic systems, one can consider the
Lorenz-63 model,12 a three-degree-of-freedom model of the Rayleigh-Benard convection between hot and
cold plates:

dx

dt
− σ(y − x) = 0,

dy

dt
− x(ρ− z) + y = 0, (1)

dz

dt
− xy + βz = 0,

where x, y, and z are solution states, and t is time. For chaotic behavior, the parameters ρ, σ, and β are
chosen to be 28.0, 10.0, and 8/3, respectively.12

The sensitivity of the time-averaged solution state z to the parameter ρ is considered,

z̄∆T (ρ) =
1

∆T

∫ T0+∆T

T0

z(t, ρ) dt. (2)

Figure 1 shows the variation of z̄∆T (ρ) versus ρ for two different time averaging windows. The variation
is oscillatory. The amplitude of these oscillations decreases as the length of the averaging window, ∆T ,
increases. At the same time, the frequency of these oscillations increases with ∆T . The mean slope is
close to one for both averaging windows, which is consistent with past studies.13,14 Conventional sensitivity
analysis computes local derivatives that are unbounded in the limit of an infinite averaging window, and are
not representative of the mean slope. However, Ruelle’s linear response theorem15 indicates that, for many
chaotic systems, parametric variations of infinite-time-averaged quantities, such as

z̄∞(ρ) = lim
∆T→∞

1
∆T

∫ T0+∆T

T0

z(t, ρ) dt, (3)

are smooth, and the corresponding derivatives dz̄∞/dρ are well defined and bounded. Conventional sensitivity
analysis fails to approximate such derivatives.

The fundamental reason for this breakdown is that the infinite-time limit and the infinitesimal-perturbation
limit do not commute for time-averaged quantities in chaotic systems.
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(a) Averaging window: T0 = 0, ∆T = 10. (b) Averaging window: T0 = 0, ∆T = 100.

Figure 1. Parametric variation of the time-averaged solution, z̄∆T (ρ), of Eq. (1) for the initial conditions x(0) = 1, y(0) =
0, z(0) = 28.

lim
∆ρ→0

lim
∆T→∞

1
∆T

∫ T0+∆T

T0

z(t, ρ+ ∆ρ)− z(t, ρ)
∆ρ

dt 6= lim
∆T→∞

1
∆T

∫ T0+∆T

T0

lim
∆ρ→0

z(t, ρ+ ∆ρ)− z(t, ρ)
∆ρ

dt (4)

or

dz̄∞
dρ
6= lim

∆T→∞

dz̄∆T

dρ
. (5)

A number of sensitivity analysis modifications have been proposed to avoid the breakdown faced by
conventional methods. One such approach is the ensemble-adjoint method.13,16 This method has been
applied to an ocean circulation model with some success.17 The ensemble-adjoint method involves averaging
over a large number of ensemble calculations. It was found that the sample mean of sensitivities computed
with the ensemble adjoint converges slower than N−0.5 in the cases considered, where N is the number of
samples.16 This method is less efficient than a brute-force Monte-Carlo approach. More recently, an adjoint
approach for climate sensitivity analysis has been derived.18 This approach involves finding a probability
density function that satisfies a Fokker-Planck equation to model the climate. The adjoint of this equation
has been used to compute derivatives with respect to long-time-averaged quantities. However, this method
requires a phase-space discretization, making it computationally infeasible for systems with a high number
of dimensions, such as high-fidelity aerodynamic simulations. Methods based on the fluctuation dissipation
theorem have been successful in computing climate sensitivities for complex chaotic dynamical systems.19

However, this approach has different variants for different types of chaotic systems, most of which have
excessive computational costs.

The Least Squares Shadowing method (LSS) avoids many of these difficulties and is able to compute
sensitivities of long-time averages for chaotic dynamical systems, including aerodynamic simulations. LSS
relies on the shadowing lemma,20 an important result from the theory of dynamical systems, and on the
ergodicity assumption that the long-time averages of a chaotic solution are independent of the initial con-
dition. The concept of shadowing has previously been applied in continuation methods to find homoclinic
and heteroclinic orbits of dynamical systems21,22 and for noise reduction.23 Recently, LSS has been ap-
plied to sensitivity analysis of a number of chaotic systems, including the Lorenz-63 system,14 a modified
Kuramoto-Sivashinsky equation,24 and a DNS of homogeneous isotropic turbulence.25 This paper presents
the first application of LSS to chaotic solutions computed by an adjoint-enabled large-scale computational
fluid dynamics (CFD) solver.26 As computational capabilities expand and become more accessible, LSS may
enable sensitivity analysis for applications requiring the higher resolution of LES or DNS.
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The test case considered in this paper is a two-dimensional airfoil flow exhibiting chaotic vortex shedding.
The main goal of this study is to demonstrate that LSS can compute an accurate sensitivity of a long-time-
averaged quantity of a chaotic flow. Additionally, a methodology to verify the LSS implementation is
presented, and the computational cost of LSS sensitivity analysis is assessed. The paper is organized as
follows. Section II presents the baseline CFD and sensitivity analysis solvers. Section III discusses the
LSS methodology. The verification of the LSS implementation is shown in Section IV. The application of
LSS sensitivity analysis to a flow with chaotic vortex shedding is presented in Section VI, followed by some
concluding remarks in Section VII. Three appendices present detailed mathematical derivations related to
LSS.

II. Baseline Solvers

II.A. CFD Analysis

The CFD analysis solver used in the current study solves compressible and incompressible, steady and
unsteady, inviscid, laminar, and turbulent flow equations discretized on unstructured grids.26 The unsteady
governing equations can be written as

∂Q
∂t

+ R(Q,D) = 0, (6)

where Q, R, and D are vectors of solutions, spatial residuals, and design parameters, respectively. The
governing equations are discretized using a node-based finite-volume scheme in which the solutions are stored
at the vertices of meshes comprised of any arbitrary combination of tetrahedral, prismatic, pyramidal, and
hexahedral elements.

Convective fluxes are discretized in an upwind manner and second-order accuracy is achieved using an un-
structured reconstruction procedure.27 Viscous terms are formed using an approach equivalent to a Galerkin
finite-element procedure.27 For non-simplicial element types, these terms are augmented with edge-based
gradients to improve the h-ellipticity of the operator.28 Several classes of temporal discretizations are avail-
able, including conventional backwards difference formulae (BDF), as well as various multistep/multistage
schemes.28

A broad range of gas dynamics models may be used, including a classical perfect gas assumption and
considerably more complex models encompassing thermochemical nonequilibrium effects.29 Available turbu-
lence closures range from the one-equation model of Spalart and Allmaras30 to full Reynolds stress models
and hybrid RANS-LES approaches.26 These models use spatial and temporal discretizations consistent with
the mean flow.

Dynamic mesh computations are accommodated using either rigid or deforming-mesh paradigms, or
combinations thereof. The global computational domain may consist of any number of overset component
meshes. Each individual mesh may be assigned a specific mesh motion or deformation schedule; alternatively,
such attributes may be driven by external models representing complementary disciplines such as aeroelas-
ticity, six degree of freedom motion, or ablation.28 To leverage massively parallel hardware architectures,
domain decomposition approaches are combined with message passing techniques.26

II.B. Sensitivity Analysis

The baseline solver offers extensive sensitivity analysis capabilities. Sensitivity analysis computes derivatives
of an objective function

f = f(Q,D) (7)

with respect to design parameters, D. For reverse (or adjoint) sensitivity analysis, a discretely-consistent
adjoint implementation is available.4 For forward (or tangent) sensitivity analysis, the CFD solver may be
converted to a complex-variable formulation using an established scripting procedure.31,32 In this approach,
the sensitivity of the objective function to a selected input parameter, Dj , is readily computed by perturbing
the imaginary part of the parameter and executing the complex-valued CFD analysis. The objective function
is evaluated for the complex-valued solution, and the sensitivity is obtained as follows:
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df

dDj
≈ Im [f(Q,Dj + iε)]

ε
. (8)

The advantage to this approach is that the perturbation size may be chosen arbitrarily small without concern
for round-off errors that are typically present in real-valued divided differences. For the current study, a
perturbation of ε = 10−50 is used, so that the resulting sensitivities are accurate to machine precision.
Complex-variable simulations are critical for verification of real-valued sensitivity analysis implementations.

Sensitivity analysis methods can be applied to steady and unsteady flows. For steady flows, Eq. (6) may
be written as

R(Q,D) = 0. (9)

To compute sensitivities, Eq. (7) is differentiated with respect to Dj ,

df

dDj
=

∂f

∂Q
Vj +

∂f

∂Dj
, (10)

where Vj ≡ dQ
dDj

is the solution sensitivity vector, which satisfies the tangent equations

∂R
∂Q

Vj +
∂R
∂Dj

= 0. (11)

Forward sensitivity analysis uses Eqs. (10) and (11) to compute the sensitivity of the objective function.
To derive the discretely-consistent adjoint formulation, one can consider the Lagrangian functional

L = f + ΛTR, (12)

where Λ is a vector of Lagrange multipliers (adjoint solutions) and the superscript T denotes the transposition
operation. Differentiating Eq. (12) with respect to D leads to

df

dD
=
dL

dD
=

∂f

∂D
+ ΛT ∂R

∂D
+
(
∂f

∂Q
+ ΛT ∂R

∂Q

)
dQ
dD

. (13)

Transposing the coefficient of dQ
dD and equating it to zero results in the adjoint equations[

∂R
∂Q

]T
Λ +

[
∂f

∂Q

]T
= 0. (14)

If Λ is the solution of Eq. (14), then the sensitivity to all design parameters D is computed as

df

dD
=

∂f

∂D
+ ΛT ∂R

∂D
. (15)

Conventional sensitivity analysis for time dependent governing equations on stationary grids,

VQi −Qi−1

∆t
+ Ri(Qi,D) = 0, Q0 −QIF = 0, (16)

can be derived in a similar way. Here, Qi and Ri are vectors of solutions and discretized spatial residuals
at time step i, respectively, QIF is an initial flow field, V is a diagonal matrix with control volumes for each
unknown along the main diagonal, and ∆t is a time step. The first-order BDF1 temporal discretization is
shown for simplicity. The objective function f depends on solutions Qi defined at time steps 0 ≤ i ≤ m.
The sensitivity of the objective function is computed as follows

df

dDj
=

m∑
i=0

∂f

∂Qi
Vi
j +

∂f

∂Dj
, (17)

where Vi
j ≡

dQi

dDj
is the sensitivity of the solution at time step i to the design parameter Dj . The sensitivity

Vi
j satisfies the tangent equations that correspond to the forward time marching
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V0
j = 0

V
Vi
j −Vi−1

j

∆t
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj
= 0, i > 0. (18)

The discretely-consistent adjoint formulation is derived from the Lagrangian

L = f +
m∑
i=1

(
[Λi]T

(
VQi −Qi−1

∆t
+ Ri(Qi,D)

))
+ [Λ0]T (Q0 −QIF ). (19)

The adjoint solutions, Λi, satisfy the adjoint equations corresponding to reverse time marching,

Λm+1 = 0,

VΛi −Λi+1

∆t
+
[
∂Ri

∂Qi

]T
Λi +

[
∂f

∂Qi

]T
= 0, 1 ≤ i ≤ m, (20)

V−Λ1

∆t
+ Λ0 +

[
∂f

∂Q0

]T
= 0.

The sensitivity of the objective function to all design parameters D is computed as

df

dD
=

∂f

∂D
+

m∑
i=1

(
[Λi]T

∂Ri

∂D

)
− [Λ0]T

∂QIF

∂D
. (21)

The cost of conventional adjoint sensitivity analysis, Eqs. (20) and (21), is similar to the cost of CFD
analysis, Eq. (16).

In the current adjoint implementation, all components of the baseline solver are manually differentiated
and verified independently using the complex-variable approach outlined above. The implementation is valid
for the general unsteady form of the governing equations and includes additional grid adjoint equations for
the dynamic, deforming, and overset grid options.

For chaotic flows, one observes an unbounded exponential growth of the tangent solution, Eq. (18), in
forward time and the adjoint solution, Eq. (20), in reverse time. This growth is another indication of the
breakdown of conventional sensitivity analysis methods.

III. Least Squares Shadowing

III.A. Shadow Trajectory

LSS seeks tangent and adjoint solutions that do not exhibit exponential growth. The existence of bounded
tangent and adjoint solutions follows from the shadowing lemma.20 The shadowing lemma states that a
reference solution of a chaotic dynamical system has a shadow trajectory, i.e., a solution of a perturbed
dynamical system that remains close to the reference solution for all time.

The importance of shadow trajectories can be illustrated using the chaotic Lorenz system, Eq. (1). For
this system, the shadowing lemma states that for any δ and solution U(t) = (x(t), y(t), z(t))T corresponding
to a set of parameters (ρ, σ, β), there exists a small number ε, a smooth time transformation τ(t), and a
solution U′(τ(t)) = (x′(τ(t)), y′(τ(t)), z′(τ(t)))T corresponding to a set of parameters (ρ+ ε, σ, β) such that

‖U′(τ(t))−U(t)‖ < δ (22)∣∣∣∣1− dτ

dt

∣∣∣∣ < δ (23)

Here, ‖ · ‖ is the l2 vector norm. Figure 2 shows contours of the solution state z(t, ρ). The initial conditions
are the same for all values of the parameter ρ. At early times (t < 3), z(t, ρ) is smooth both in time and
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Figure 2. Contours of z(t, ρ). The initial conditions are fixed as x(0) = 1, y(0) = 0, z(0) = 28.

with respect to variations in ρ. However, as time increases, z(t, ρ) becomes non-smooth, exhibiting large
local variations. This is a manifestation of the butterfly effect.

In contrast, Fig. 3 shows the time evolution of the solution state z′(τ(t), ρ) for a set of shadow trajectories
for the same Lorenz system, Eq. (1). The reference solution corresponds to ρ = 28. The initial conditions
and the time transformation are chosen to satisfy the shadowing lemma. The solution state is smooth with
respect to the parameter ρ at all times and the time-averaged solution state, z̄′∆T (ρ), shown in Fig. 4 is
smooth as well. Transformed time is indicated by the black lines in Fig. 3. The contours of τ(t) line up
with the peaks and troughs of z′(τ(t), ρ). Thus, τ(t) can be considered as a generalized phase shift to align
features of z in some time τ to ensure that Eq. (22) is satisfied and the shadow U′ and the reference U are
close for all time.

To approximate the shadow trajectory, the assumption of ergodicity is used and the corresponding initial
conditions are sought through a least-squares minimization problem

min
U(t),τ(t)

1
2

∫ T0+∆T

T0

‖U′(τ(t))−U(t)‖2 + α2

(
1− dτ

dt

)2

dt s.t.
dU′

dτ
+ L(U′) = 0 (24)

where dU′

dτ + L(U′) is a vector representation of Eq. (1) and α is a weighting parameter. It can be shown
that U′(t) converges to a shadow trajectory as ∆T →∞.14,33

Forward and adjoint LSS sensitivity analyses for discrete flow equations are derived from a least-squares
minimization problem similar to Eq. (24). The derivation of this minimization problem is shown in Appendix
A.

III.B. Tangent LSS

To derive the tangent form of LSS for the discrete governing equations, Eq. (16), a least-squares minimization
formulation is used

min
Vi

j ,η
i
j

1
2

m∑
i=0

[Vi
j ]
TVVi

j + α2[ηij ]
2 s.t. V

Vi
j −Vi−1

j

∆t
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj
+ ηijR

i = 0, (25)

where ηij is called the time dilation term. Eq. (25) is a linearly-constrained minimization problem with the
following Karush-Kuhn-Tucker (KKT) equations:
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Figure 3. Contours of z′(τ(t), ρ) for a set of shadow trajectories at different values of ρ. The time horizon for the shadow
trajectories is between T0 = 0 and T0 + ∆T = 10. Contours of the time transformation τ(t) are indicated by the black
contour lines.

Figure 4. Variation of the time-averaged solution, z̄′∆T (ρ), for the set of shadowing trajectories shown in Fig. 3. The
averaging window is from T0 = 0 to T0 + ∆T = 10.
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V
Wi

j −Wi+1
j

∆t
+
[
∂Ri

∂Qi

]T
Wi

j + VVi
j = 0 W0

j = Wm+1
j = 0, (26)

α2ηij +
[
Ri
]T

Wi
j = 0, (27)

V
Vi
j −Vi−1

j

∆t
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj
+ ηijR

i = 0, (28)

where Wi
j is the vector of Lagrange multipliers corresponding to time level i. The system of equations Eqs.

(26)-(28) forms a boundary-value problem in time. The block-matrix representation of this KKT system is
the following.



V [F0]T

V [G1]T [F1]T

. . . [G2]T
. . .

V
. . . [Fm−1]T

V [Gm]T

α2 [R1]T

α2 [R2]T

. . .
. . .

α2 [Rm]T

F0 G1 R1

F1 G2 R2

. . .
. . .

. . .

Fm−1 Gm Rm





V0
j

V1
j

.

.

.

.

.

.

Vm
j

η1
j

η2
j

.

.

.

ηm
j

W1
j

W2
j

.

.

.

Wm
j



= −



0

0

.

.

.

.

.

.

0

0

.

.

.

0

b1
j

b2
j

.

.

.

bm
j



, (29)

where

Fi = − V
∆t

, Gi =
V
∆t

+
∂Ri

∂Qi
, bij =

∂Ri

∂Dj
, i = 0, ...,m. (30)

Each block (V, Gi, and Fi) is a sparse n × n matrix. The blocks highlighted in red, white, and yellow
correspond to Eqs. (26)-(28), respectively. Instead of solving the entire KKT system, the Schur complement
is solved.

To derive the Schur complement, a block-matrix notation for the KKT system is adopted, V̂ 0 B̂T

0 α2I ĈT

B̂ Ĉ 0


 V̂j

η̂j

Ŵj

 = −

 0
0
b̂j

 . (31)

Here, the superscript accent ˆ designates vectors and matrices describing all time levels collectively, B̂ is an
mn× (m+ 1)n matrix, Ĉ is an mn×m matrix, V̂ is an (m+ 1)n× (m+ 1)n diagonal matrix, Î is the m×m
identity matrix, V̂j is an (m+ 1)n× 1 vector, η̂j is an m× 1 vector, Ŵj is an mn× 1 vector, and b̂j is an
mn× 1 vector.

Conducting block Gaussian elimination, the Schur complement is found to be:

ÂŴj = b̂j , ,W0
j = Wm+1

j = 0, Â = B̂V̂−1B̂T +
1
α2

ĈĈT . (32)

The exact structure of matrix Â can be seen by reverting to the notation of Eq. (29)
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Â =


F0V−1[F0]T + G1V−1[G1]T G1V−1[F1]T

F1V −1[G1]T F1V−1[F1]T + G2V−1[G2]T G2V−1[F2]T

. . . . . . . . .
Fm−1V−1[Gm−1]T Fm−1V−1[Fm−1]T + GmV−1[Gm]T



+
1
α2


R1[R1]T

R2[R2]T

. . .
Rm[Rm]T

 . (33)

The Schur complement matrix Â is an mn×mn symmetric, positive-definite and block tridiagonal matrix.
The objective function is often defined in the form

f(D) = ω

(
1

m1 −m0 + 1

m1∑
i=m0

F (Qi)

)p
∆t, (34)

where ω is a weighting parameter, ∆t is a time step, and [m0,m1], 0 ≤ m0 < m1 ≤ m, are the time
steps bounding the averaging window. Note that f and F are both scalars. One example of F is the drag
coefficient:

F (Qi) = CD(Qi). (35)

The LSS sensitivity of the objective function with respect to design parameter Dj can be obtained from
the following equation (see Appendix B):

df

dDj
=

∂f

∂Dj
+

m1∑
i=m0

(
[gi]TVi

j + hiηij
)
, (36)

where

[gi]T =
∂f

∂Qi
= ω∆t

pF̄ p−1

m1 −m0 + 1
∂F i

∂Qi
, (37)

hi = ω∆t
pF̄ p−1

m1 −m0 + 1
(
F (Qi)− F̄

)
, (38)

F̄ =
1

m1 −m0 + 1

m1∑
j=m0

F (Qj), (39)

∂f

∂Dj
= ω∆t

pF̄ p−1

m1 −m0 + 1

m1∑
i=m0

∂F i

∂Dj
. (40)

The only difference between Eq. (36) and the conventional sensitivity analysis, Eq. (17), is the term
containing time dilation ηij .

III.C. Adjoint LSS

To compute many sensitivities for a single objective function in an efficient manner, a discrete formulation
adjoint to tangent LSS is derived. First, Eq. (36) is rewritten using the block-matrix notation of equation
Eq. (31)
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df
dDj

=
(

ĝT ĥT 0
) V̂j

η̂j

Ŵj

+
∂f

∂D

+
(

Φ̂T ψ̂T Λ̂T
)

 V̂ 0 B̂T

0 α2Î ĈT

B̂ Ĉ 0


 V̂j

η̂j

Ŵj

+

 0
0
b̂j


 , (41)

where (Φ̂, ψ̂, Λ̂) are adjoint LSS solutions, ĝ is an mn×1 vector of gi at all times, and ĥ is an m×1 vector of
hi at all times. Eq. (41) is rearranged to group terms dependent on the tangent LSS solution (V̂T

j η̂Tj ŴT
j ),

df
dDj

=
(

0 0 b̂Tj
) Φ̂

ψ̂

Λ̂

+
∂f

∂Dj

+
(

V̂T
j η̂Tj ŴT

j

)
 V̂ 0 B̂T

0 α2Î ĈT

B̂ Ĉ 0


 Φ̂

ψ̂

Λ̂

+

 ĝ
ĥ

0


 . (42)

To eliminate any dependence of df
dDj

on (V̂T
j η̂Tj ŴT

j ), the following system of adjoint LSS equations must
be satisfied  V̂ 0 B̂T

0 α2Î ĈT

B̂ Ĉ 0


 Φ̂

ψ̂

Λ̂

 = −

 ĝ
ĥ

0

 . (43)

The adjoint LSS equations can also be written in the same form as Eqs. (26)-(28)

V
Λi −Λi+1

j

∆t
+
[
∂Ri

∂Qi

]T
Λi + VΦi +

[
∂f

∂Qi

]T
= 0, Λ0 = Λm+1 = 0, (44)

α2ψi +
[
Ri
]T

Λi + hi = 0, (45)

VΦi −Φi−1

∆t
+
∂Ri

∂Qi
Φi + ψiRi = 0. (46)

Since the KKT system, Eq. (43), is symmetric, the matrix for adjoint LSS is the same as the matrix for
tangent LSS, Eq. (31), but the right-hand side is different. The Schur complement of the KKT system Eq.
(43) is solved for the adjoint solution Λ̂,

ÂΛ̂ = −B̂V̂−1ĝ − 1
α2

Ĉĥ, Λ0 = Λm+1 = 0. (47)

Finally, the sensitivities are computed as follows

df

dDj
= b̂Tj Λ̂ +

∂f

∂D
=

m∑
i=1

[bi]TΛi +
∂f

∂Dj
. (48)

All sensitivities of the objective function f can be computed using the same adjoint solution Λ̂,

df

dD
=

∂f

∂D
+

m∑
i=1

[Λi]T
∂Ri

∂D
. (49)

Note that this expression is similar to Eq. (21) that is used for conventional adjoint-based sensitivity analysis.
The only difference is that Eq. (49) has no dependence on the initial adjoint field Λ0. This is consistent
with the assumption of ergodicity.
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III.D. Least Squares Shadowing Implementation

The linear system of equations given by Eq. (43) represents a global space-time system that is considerably
larger than a time-marching CFD problem. The overall dimension of the system is the number of time steps
in the LSS window multiplied by the number of spatial grid points multiplied by the number of governing
equations. To assemble and solve this system, the required data is generated using the CFD and sensitivity
analysis solvers described in Section II. The flow field is first determined by integrating the governing
equations forward in time. The cell volumes V are stored to disk, as well as the nonlinear residual vector Ri

at each physical time step. The conventional adjoint solver is then used to progress backwards in time to
construct the linearization of the residual vector and objective function at each physical time step. Here, the
conventional adjoint solver is used solely to generate and store the required linearization matrices to disk;
the solution procedure itself is not carried out. Note that the amount of data produced by this process can
be tremendously large, even for small simulations typically carried out on a single workstation. Seemingly
trivial two-dimensional simulations with O(104) mesh points and a moderate number of time steps can easily
yield data sets consisting of several terabytes.

The entire data set is then read into a separate application, which assembles and solves the adjoint LSS
system, Eq. (47). To leverage massively parallel hardware yet avoid cumbersome infrastructure associated
with traditional spatial decompositions, the current implementation decomposes the problem in time rather
than space, with an entire solution at a single time step assigned to each processor. This approach assumes
that the data required to assemble contributions to Eq. (47) from a single time step do not exceed the memory
available to each processor. This constraint is acceptable for the small simulations considered here, where
the goal is solely to evaluate the ability of the LSS approach to produce meaningful sensitivity information
for simple applications. This decomposition lends itself to a straightforward communication pattern. Since
a first-order BDF scheme is used, processor i needs to only communicate with processors i − 1 and i + 1.
More elaborate implementations are relegated to future work.

To solve Eq. (47), the preconditioned Generalized Minimal Residual (GMRES)34 method provided in
the SPARSKIT package35 is used. The matrix-vector products required by this approach are computed
on a term-by-term basis. Contributions due to off-diagonal blocks occurring in Eq. (33) are formed by
communicating necessary information between processors responsible for adjacent time planes. Note that
the size of these communication messages is different from typical halo message sizes associated with a spatial
decomposition. The messages include entire vectors from a given time step with dimension equal to the size
of the spatial grid multiplied by the number of governing equations.

The algorithm to compute a matrix-vector product y = Âx, where Â is the matrix defined in Eq. (33)
and x is an arbitrary vector of dimension mn× 1 is described below:

1. yi = 0, ϕ = 0

2. Send xi to processor i− 1; receive xi+1 from processor i+ 1.

3. Loop through the control volumes; compute yf = FiV−1[Gi]Txi and send it to processor i+ 1.

4. Loop through the control volumes; compute:

i ϕ = ϕ+ 1
α2

[
Ri
]T

xi

ii For each control volume perform the following:

a Loop through its neighbors to compute corresponding rows of [Gi]Txi and [Fi]Txi+1.
b Divide by the current control volume V−1[Gi]Txi and V−1[Fi]Txi+1.
c Loop through its neighbors again, distribute the contribution of the current control volume to

compute yi = yi + GiV−1([Gi]Txi + [Fi]Txi+1) + FiV−1[Fi]Txi.

iii yi = yi + yf

5. Loop through the control volumes; yi = yi + ϕRi

The blocks of [Gi]T are stored in Compressed-Sparse-Row format, with each row corresponding to the
linearization of the equations with respect to solutions defined at the current and neighboring grid points.

Right GMRES preconditioning is applied using a local block-ILU(0) technique within a single time
step. The coefficient matrix given by the left hand side of Eq. (47) is used for this purpose, with the
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exception of the ĈĈT term, which is dense and prohibitively expensive to store. In the current approach,
the overall storage requirements on each processor are dominated by the linearization matrices ∂Ri/∂Qi

and the explicitly-stored matrix used for preconditioning.
In general, the solution approach outlined here was found to be inefficient for solving the adjoint LSS

system. The number of processors required by the implementation is determined by the number of time
steps contained in the LSS solution window, and several hours of wall clock time were generally required
to reduce the residual norm by 6 to 7 orders of magnitude. Beyond this point, the convergence rate of
the system deteriorated rapidly. Alternative strategies such as temporally-overlapped preconditioning and
multigrid in time were investigated but did not yield appreciable performance improvements. As noted
above, computationally efficient approaches to solving Eq. (47) for realistic applications will be the focus of
future studies.

IV. LSS Verification

The adjoint LSS implementation is verified using tangent LSS. The procedure has two stages. First, the
KKT system without time dilation terms is verified. Next, a similar set of tests is carried out with the time
dilation terms included. The tests and the order in which they have been performed for verification of the
current LSS implementation are described below.

1. Run the baseline solvers to generate and store linearization matrices ∂Ri/∂Qi and ∂Ri/∂Dj for one
design variable Dj .

2. Run tangent LSS (Eq. (33)) with 1/α2 = 0, output V0
j = −(I/∆t)W1

j and V1
j through Vm

j .

3. Run complex-variable CFD analysis, with the following imaginary perturbations:

• Initial flow field: Q0 + iεV0
j

• Design variable: Dj + iε

4. Compare the LSS instantaneous tangent solution (Vi
j) and the imaginary part of the complex-valued

solution (Qi); compare the LSS gradient (Eq. (36) with ηij = 0) with the imaginary part of the
objective function (Eq. (34)) evaluated with the complex-valued solution. The verification test passes
if the corresponding quantities match to machine precision.

5. If any comparison in the previous step fails to match to machine precision, compute vector X, where

X =


F0 G1

F1 G2

. . . . . .
Fm−1 Gm





V0
j

V1
j

...

...
Vm
j


+


b1
j

b2
j
...

bmj

 , (50)

and Fi, Gi, and bij are as defined in Eq. (29).

i If X is not zero, then the matrix product B̂V̂−1B̂T in Eq. (32) is not correct.

ii If X is zero, but Vi
j does not match the imaginary component of Qi, then ∂Ri

∂Dj
is not correct.

iii If X is zero, Vi
j matches the imaginary component of Qi, but the LSS gradient does not match the

imaginary part of the objective function, then the vector B̂V̂−1ĝT in Eq. (47) is not correct.

Next, steps 2-5 are repeated, with some modifications, to verify the implementation with the time dilation
terms:

2. Run tangent LSS (Eq. (33)) with 1/α2 = 1, output V0
j = −(I/∆t)W1

j , V1
j through Vm

j , and
ηij = 1

α2 [Ri]TWi
j .
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3. Run complex-variable CFD analysis, with the following imaginary perturbations:

• Initial flow field: Q0 + iεV0
j

• Design variable: Dj + iε

The equations for the complex-variable CFD analysis are modified as

VQi −Qi−1

∆t
+ Ri(Qi,D) + iεηijRe[Ri] = 0, Q0 −QIF = 0, (51)

4. Compare the LSS instantaneous tangent solution (Vi
j) and the imaginary part of the complex-valued

solution (Qi); compare the LSS gradient (Eq. (36)) with the imaginary part of the objective function
(Eq. (34)) evaluated with the complex-valued solution. The verification test passes if the corresponding
quantities match to machine precision.

5. If any comparison in the previous step fails to match to machine precision, compute vector X from Eq.
(50).

i If X is not zero, then the matrix 1
α2 ĈĈT in Eq. (32) is not correct.

ii If X is zero, Vi
j matches the imaginary component of Qi, but the gradient does not match the

imaginary part of the objective function, then the vector 1
α2 Ĉĥ in Eq. (47) is not correct.

The current implementation has passed all verification tests.

V. Application of LSS to a Steady Flow

Another verification for the LSS implementation can be performed by applying the algorithm to a steady
flow. A steady-state solution can be computed directly from the steady-state equations or by time marching
a solution of the unsteady equations. In the former approach, a steady-state adjoint formulation is suitable,
whereas in the latter case, an unsteady adjoint formulation can be applied. A steady-flow verification case
should satisfy two conditions. First, the solutions computed directly from the steady-state equations and
by time marching should be the same. Second, the conventional adjoint solution for the time marching
approach should decay to zero in reverse time. This latter condition implies diminishing sensitivities of
remote instantaneous solutions to the initial conditions. If these two conditions are satisfied, then for a long
enough time horizon, the sensitivity of a steady solution computed with the conventional unsteady adjoint
approach is expected to match the sensitivity computed with the steady-state adjoint approach.

Steady flows do not require time dilation, so 1/α2 = 0, and the adjoint LSS equations are reduced to

Λm+1 = 0, Λ0 = 0, (52)

VΛi −Λi+1

∆t
+
[
∂Ri

∂Qi

]T
Λi + VΦi +

[
∂f

∂Qi

]T
= 0, 1 ≤ i ≤ m, (53)

VΦi −Φi−1

∆t
+
∂Ri

∂Qi
Φi, 1 ≤ i ≤ m. (54)

With a sufficiently long LSS window, Eqs. (52)-(54) have the solution [Λi,Φi] satisfying the conventional
unsteady adjoint equations, Eq. (20),

VΛi −Λi+1

∆t
+
[
∂Ri

∂Qi

]T
Λi +

[
∂f

∂Qi

]T
= 0 and Φi = 0. (55)

Thus, for a steady-flow verification test, the sensitivities computed with the steady, conventional unsteady,
and LSS adjoint approaches are expected to match to machine precision.

An inviscid flow around a two-dimensional NACA 0012 airfoil at one degree angle of attack is considered
as a steady-flow verification test. The freestream Mach number is M∞ = 0.25. The grid, shown in Fig. 5,
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Figure 5. Farfield and nearfield views of the NACA 0012 mesh.

consists of a single layer of 2,117 prismatic elements in the spanwise direction and 2,218 nodes. The farfield
boundary is located seven chord lengths from the leading edge.

The objective function is defined as

f =
1

m1 −m0 + 1

m1∑
i=m0

F i, (56)

where

F i =
Di

1
2ρ∞U

2
∞c

. (57)

Here, Di is the drag on the airfoil at time step i, ρ∞ is the freestream density, U∞ is the freestream velocity,
and c is the chord length. The sensitivity of the objective function with respect to freestream Mach number
is evaluated. For clarity, the explicit dependence on the freestream Mach number is not considered. The
adjoint-based sensitivity is computed as

∑m
i=1[Λi]T ∂Ri

∂D ; the complex-variable sensitivity evaluation neglects
the imaginary part of the freestream velocity in the denominator of Eq. (57). A time horizon of 5,100 time
steps is considered, with the averaging window defined over the last 100 steps.

Table 1 shows sensitivities computed with complex-variable steady and unsteady simulations as well as
with steady, conventional unsteady, and LSS adjoint methods. The complex-variable sensitivities and the
steady and conventional unsteady adjoint senstivities match to 14 decimal places. The LSS adjoint sensitivity
differs from the sensitivities computed using the other methods by 2.14 × 10−12. This difference is slightly
greater than machine precision. This mismatch is due to some small contributions from the LSS adjoint
solution at times beyond time step 5,100. The conventional unsteady adjoint solution is zero beyond time
step 5,100. To illustrate the magnitude of these differences, Fig. 6 shows the time evolution of the l2 norms
of the conventional unsteady and LSS adjoint solutions. The magnitude of the conventional unsteady adjoint
solution has decayed to 10−22 in reverse time by the initial time level. It reduces below 10−15 by time step
1,800. This observation motivated the current choice of the LSS window that starts at time step 1,801 and
includes 6,500 time steps, namely, the averaging window defined from step 5,001 to step 5,100 and 3,200
steps before and after the averaging window.

The norm of the LSS adjoint solution matches that of the conventional unsteady adjoint solution for time
steps from 1,801 to 5,100. The norm of the LSS adjoint solution exhibits a sharp drop beyond the averaging
window, but does not vanish entirely. The norm varies between 10−13 and 10−17 for the time steps from
5,100 to 8,300. This latter portion of the LSS window produces small contributions to the sensitivity that
explain the observed mismatch. Note that the LSS adjoint solution is approaching the conventional adjoint
solution in the limit of infinitely large LSS window. It is expected that the mismatch can be further reduced
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Table 1. Sensitivity df/dM∞ computed with various methods.

Method Sensitivity df/dM∞
Steady Complex 0.004026323380482

Unsteady Complex 0.004026323380483
Steady Adjoint 0.004026323380482

Unsteady Adjoint 0.004026323380483
LSS Adjoint 0.004026323378342

Figure 6. Time variation of l2 norm of the conventional unsteady and LSS adjoint solutions. The averaging window is
from time step 5,001 to 5,100. The LSS window is from time step 1,801 to 8,400.

if the size of the LSS window is increased or the contributions from the time steps beyond the averaging
window are ignored.

The LSS sensitivity analysis was considerably more expensive than the baseline CFD analysis. The
solution of the LSS equations was obtained on 6,500 Intel Xeon E5-2680v3 cores and required 81 GB of
input data and more than 130,000 GMRES iterations to converge the l2 norm of the residual to machine
zero. The corresponding CFD analysis problem was solved to machine precision orders of magnitude faster
on a single core.

VI. LSS for Chaotic Vortex Shedding

VI.A. Test Case

To evaluate the LSS methodology for a chaotic flow field, inviscid flow over a NACA 0012 airfoil is simulated
using the grid shown in Fig. 5, freestream conditions corresponding to M∞ = 0.25, an angle of attack of
90 degrees, and a nondimensional time step ∆t = 0.1. Chaotic vortex shedding from the upper surface
of the airfoil occurs for the stated conditions as shown in Fig. 7. This relatively simple test case exhibits
chaotic behavior representative of more complex turbulent flow simulations, yet yields an LSS problem that
is computationally tractable based on the current implementation. The current test case evaluates the ability
of adjoint LSS to compute sensitivity of a time-averaged chaotic-flow quantity with respect to the freestream
Mach number.

The objective function is the same as defined in Eq. (56). For this objective function, the term ∂f
∂D
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Figure 7. Instantaneous streamlines and density field for chaotic vortex shedding.

in Eq. (49) is ignored and the sensitivity df
dD is equated to the adjoint contribution

∑m
i=1[Λi]T ∂Ri

∂D . The
chaotic time history of F i is observed after 100,000 time steps in Fig. 8. The breakdown of the conventional
unsteady adjoint approach for the current problem is illustrated as follows. The averaging window for the
objective function, Eq. (56), is defined between time steps m0 = 30, 001 and m1 = 31, 000. The solution
of the conventional unsteady adjoint formulation computed backwards in time from this averaging window
grows exponentially as shown in Fig. 9.

VI.B. Results

Two LSS windows have been examined with an averaging window located in the middle of each as shown
in Fig. 10. In each case, the flow has been initialized using freestream conditions and integrated forward
in time for 13,000 time steps. The long LSS window has been defined from time step 13,001 to time step
15,000 and the corresponding averaging window is defined between time steps 13,501 and 14,500. The short
LSS window has been defined from time step 13,001 to time step 14,100 and the corresponding averaging
window is defined between time steps 13,501 and 13,600. A buffer of several time steps before and after
the averaging window is required because the accuracy of the shadow trajectory approximation diminishes
toward the boundaries of the LSS window.33 The current empirical choice of a 500-time-step buffer proved
sufficient, but a rigorous method for defining a suitable size of the LSS window is needed.

As mentioned in Section V, the computational mesh contains 2,218 grid points and 11,090 spatial degrees
of freedom. Even for such a small grid, the computational cost is high. For the long LSS window, the total
size of the KKT Schur complement matrix is 22,180,000 rows and roughly 24 GB of input data is required.
The system was solved on 2,000 cores. The short LSS window requires 13 GB of input data and was solved
using 1,100 cores. Each sensitivity has converged to at least 3 decimal places.

Figure 11 shows convergence histories of the residual l2 norm and the Mach number sensitivity for both
LSS window sizes. Three tests have been conducted for each window with 13,000, 50,000, and 100,000 run-up
time steps before starting the LSS window to assess the sensitivity to the proximity of the LSS window to
the initial conditions. Intuitively, a sufficient run-up time is needed to establish chaotic dynamics that is
essentially independent of initial conditions. As expected, the computations in the short LSS window are
more sensitive to the run-up time than the corresponding computations in the long LSS window. The short-
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Figure 8. Variation of instantaneous quantity, F i, Eq. (57).

Figure 9. The l2 norm of the conventional unsteady adjoint for the flow from Fig. 8. The adjoint solution is computed
over the first 31,000 steps. The averaging window is from step 30,001 to 31,000.
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Figure 10. Variation of instantaneous quantity, F i, Eq. (57), and two LSS windows.

(a) Short LSS Window. (b) Long LSS Window.

Figure 11. Iterative convergence of the residual l2 norm and sensitivity for two LSS windows.
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Table 2. Sensitivities computed for various LSS Windows. Values within the 99% confidence interval of the linear
regression slope are indicated in bold.

Sensitivity df/dM∞
Window Start Short LSS Window Long LSS Window

13,000 1.63 2.618
50,000 1.362 2.195
100,000 1.116 2.129

Figure 12. Objective function, Eq. (56), computed for a range of Mach numbers.

window sensitivities are significantly different from each other and from those of the long-window simulations.
The long-window sensitivities computed with longer run-up intervals are similar. It appears that the short
run-up interval of 13,000 time steps is not sufficient. The corresponding sensitivities are significantly higher
than the other sensitivities computed with longer run-up intervals. Interestingly, residuals in the long-window
computations with the short run-up time converge better than the residuals in the same window with longer
run-up intervals. As expected, the residual convergence in the long-window computations is significantly
slower than in the short-window computations.

All sensitivities computed with LSS are presented in Table 2. The sensitivities are compared with a
linear regression of long-time averages of the objective function computed at freestream Mach numbers
0.245 ≤M∞ ≤ 0.255. The objective function has been computed by averaging F i between time steps 10,001
and 1,000,000. The first 10,000 steps have been excluded to mitigate any possible impact of initial transients
on the time average. The computed linear fit is

f ≈ 2.693M∞ − 0.363, (58)

where the 99% confidence interval of the slope is estimated to be [2.006,3.380] using the standard error of
the slope and the appropriate t-score of the data.

The long-window sensitivities fall within the 99% confidence interval of the regression slope. This is in
contrast with the short LSS window results, which all fell outside the 99% confidence interval. It is likely
that the short averaging windows are not able to capture a representative behavior of the flow. Figure 12
shows the LSS sensitivities plotted with the linear regression and the raw objective functions. The long-
window LSS sensitivities match the linear regression well. Figure 12 also includes 3σ error bars, where σ
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(a) Short LSS window. (b) Long LSS window.

Figure 13. The l2 norm of the adjoint LSS solution for two LSS windows. The black, red, and blue lines correspond to
13,000, 50,000, and 100,000 run-up time steps, respectively.

(a) Short LSS window. (b) Long LSS window.

Figure 14. Instantaneous contributions [Λi]T ∂Ri

∂D to sensitivity df
dD for two LSS windows. The black, red, and blue lines

correspond to 13,000, 50,000, and 100,000 run-up time steps, respectively.

is an estimate of the standard deviation computed with the batch mean method.36 The error bars were
computed over four separate equal length time intervals between time steps 10,000 and 1,000,000. The
long-time averaging intervals ensure that the objective functions computed on these intervals are essentially
independent. Additional details are provided in Appendix C.

Figure 13 shows the time evolution of the l2 norm of the LSS adjoint solutions. In contrast to the
conventional adjoint solution shown in Fig. 9, the LSS adjoint solution does not grow exponentially backwards
in time. The magnitude of the adjoint solution at any time step for all cases studied remains bounded. The
adjoint solution decays to zero towards the ends of the LSS window. Figure 14 shows contributions to the
sensitivity from each time step. The non-zero values of [Λi]T ∂Ri

∂D observed past the end of the averaging
window are much smaller for the long LSS window than for the short LSS window.
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VII. Conclusions and Future Outlook

A new Least Squares Shadowing (LSS) approach for computing sensitivities of long-time averages of
chaotic flow solutions has been implemented in a large-scale computational fluid dynamics solver offering
mature adjoint capabilities. Implementation of LSS in a practical framework is challenging. Moreover,
established verification methods such as complex-variable procedures are not applicable. New, detailed
verification procedures for an LSS implementation have been developed and presented. A chaotic flow
solution and corresponding LSS sensitivities have been computed and assessed. With sufficient computational
windows and time-averaging intervals, the computed sensitivities are accurate and can be used for design.
However, the computational cost of the current LSS implementation is high.

Computing sensitivities of chaotic CFD simulations is a difficult problem that continues to lack an ade-
quate solution. High-fidelity aerospace design problems are characterized by many thousands of design pa-
rameters and a high computational cost of CFD analysis. Several sensitivity analysis methods that have been
developed recently in other communities for chaotic dynamical systems are not suitable for high-resolution
LES and DNS computations of turbulent flow. The LSS approach described in this paper represents the
most efficient method developed to date; however, its application remains prohibitively expensive for practical
aerospace simulations.

The complexity of LSS sensitivity analysis is many orders of magnitude higher than that of conventional
CFD analysis. A work unit can be defined as the computational operations required to perform one iteration
of a nonlinear CFD analysis at all time steps within an LSS window. A typical simulation requires 10-15
such iterations to sufficiently reduce the residuals at each time step. Thus, the total cost of a typical CFD
analysis may require 10-15 work units.

The computational expense of a GMRES iteration for the current LSS implementation is driven largely
by the cost of performing a matrix-vector multiplication. However, it is not straightforward to evaluate this
expense in terms of work units. The fill of the LSS matrix is many times larger than the fill of the approximate
linearization matrix used in the CFD analysis. A low-end estimate is that the cost of one GMRES matrix-
vector multiplication is about 2 work units. Based on the cases reported here, more than 250,000 GMRES
iterations may be required to sufficiently reduce the LSS system residuals for a small chaotic dynamical CFD-
based system. Thus, the cost of an LSS sensitivity analysis is at least 500,000 work units, or approximately
4 to 5 orders of magnitude more than that of the baseline CFD analysis. Revolutionary breakthroughs in
solution technologies for LSS sensitivity analysis as well as increased availability of leadership-class computing
resources are needed to enable practical high-fidelity design for aerospace applications involving chaotic flows.

Appendices

A. Linearizing Least Squares Shadowing

The shadowing lemma can be applied directly to the discretized nonlinear governing equations, Eq. (16).
For any δ and a reference solution Qi corresponding to a set of design parameters D, there exists a solution,
Q′i, corresponding to the set of design parameters with a perturbed parameter Dj = Dj + ε. The solution
Q′ satisfies ‖Q′i −Qi‖ < δ for all time ti, where ‖ · ‖ is the l2 vector norm. Note that Q′i corresponds to a
smooth transformation of time, τ ij ,

τ ij = (1 + εηij)t
i, η0

j = 0. (59)

The flow solution Q′i is the “shadow trajectory”, and, according to the shadowing lemma, its existence
is guaranteed for a range of chaotic dynamical systems.14 The assumption of ergodicity allows the initial
condition for Q′i to be replaced with a least-squares minimization problem. For the first order BDF1
temporal discretization, this discrete least-squares minimization problem is

min
Q′i,ηi

1
2

m∑
i=0

(Q′i −Qi)TV(Q′i −Qi) + α2

(
1−

dτ ij
dti

)2

(60)

s.t. VQ′i −Q′i−1

∆τ
+ Ri(Q′i,Dj + ε) = 0, (61)
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where ∆τ = dτ i
j

dti ∆t is the transformed time step.
To linearize Eq. (60), the following identities are used:

lim
ε→0

Q′i = Qi, lim
ε→0

Q′i −Qi

ε
=
∂Qi

∂Dj
≡ Vi

j . (62)

Dividing the minimization statement in Eq. (60) by ε2 and taking the limit of ε→ 0 results in

lim
ε→0

min
Q′i,ηi

1
2

m∑
i=0

(
Q′i −Qi

ε

)T
V
(

Q′i −Qi

ε

)
+ α2[ηij ]

2

= min
Vi

j ,η
i
j

1
2

m∑
i=0

[Vi
j ]
TVVi

j + α2[ηij ]
2. (63)

The governing equation for the shadow trajectory Q′i, Eq. (61), is linearized around the reference solution
Qi,

lim
ε→0

1
ε


VQ′i −Q′i−1

dτ i
j

dti ∆t
+ Ri(Q′i,Dj + ε)

− (VQi −Qi−1

∆t
+ Ri(Qi,D)

)
= lim
ε→0

{
V
∆t

(
Q′i −Q′i−1

(1 + εηij)ε
− Qi −Qi−1

ε

)
+
(

R(Q′i,Dj + ε)−Ri(Qi,D)
ε

)}

= lim
ε→0

{
V

∆t(1 + εηij)

(
Q′i −Qi

ε
+

Q′i−1 −Qi−1

ε
− ηij(Qi −Qi−1)

)}
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj

= V
Vi
j −Vi−1

j

∆t
− ηij

Qi −Qi−1

∆t
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj

= V
Vi
j −Vi−1

j

∆t
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj
+ ηijR

i. (64)

Combining Eqs. (63) and (64), the following least-squares minimization problem for the tangent solution is
obtained

min
Vi

j ,η
i
j

1
2

m∑
i=0

[Vi
j ]
TVVi

j + α2[ηij ]
2 s.t. V

Vi
j −Vi−1

j

∆t
+
∂Ri

∂Qi
Vi
j +

∂Ri

∂Dj
+ ηijR

i = 0. (65)

B. Computing Sensitivities using a Shadow Trajectory

An objective function can be written in the following form:

f(D) = ω

(
1

∆T

∫ T0+∆T

T0

F (Q) dt

)p
∆t. (66)

The corresponding discrete form of this expression is

ω

(
1

m1 −m0 + 1

m1∑
i=m0

F (Qi)

)p
∆t. (67)

The objective function for a shadow trajectory Q′ is

f(D) = ω

(
1

∆T ′

∫ T0+∆T ′

T0

F (Q′) dτ

)p
∆t, (68)
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where ∆T ′ is shadow averaging window,

∆T ′ = τ(T0 + ∆T )− T0 =
∫ T0+∆T

T0

dτ

dt
dt. (69)

The discrete version of Eq. (68) is

f(D) = ω

(
1∑m1

i=m0

dτ i

dti

m1∑
i=m0

F (Q′i)
dτ i

dti

)p
∆t, (70)

m1∑
i=m0

dτ i

dti
= (m1 −m0 + 1)(1 + ζ), (71)

where ζ =
∑m1
i=m0

(
dτ i

dti − 1
)

=
∑m1
i=m0

ηij .
The perturbation of the objective function, δf , is the following difference

δf = ω

(
1

(m1 −m0 + 1)(1 + ζ)

m1∑
i=m0

F (Q′i)
dτ i

dti

)p
∆t− ω

(
1

m1 −m0 + 1

m1∑
i=m0

F (Qi)

)p
∆t.

Assuming ε << 1 and εp ≈ 0, for p ≥ 2,

δf = ω
1

(m1 −m0 + 1)p + pζ(m1 −m0 + 1)p−1

(
m1∑
i=m0

F (Q′i)(1 + εηij)

)p
∆t

− ω

(
1

m1 −m0 + 1

m1∑
i=m0

F (Qi)

)p
∆t,

δf = ω
1

(m1 −m0 + 1)p + pζ(m1 −m0 + 1)p−1

{( m1∑
i=m0

F (Q′i)

)p

+ εp

(
m1∑
i=m0

F (Q′i)

)p−1( m1∑
i=m0

F (Q′i)ηij

)
−
(

1 +
pζ

m1 −m0 + 1

)( m1∑
i=m0

F (Qi)

)p}
∆t.

Dividing by ε and taking the limit as ε→ 0,

df

dDj
= lim
ε→0

δf

ε
= ω

1
(m1 −m0 + 1)p + pζ(m1 −m0 + 1)p−1

{
1
ε

[(
m1∑
i=m0

F (Q′i)

)p
−

(
m1∑
i=m0

F (Qi)

)p]

+ p

(
m1∑
i=m0

F (Q′i)

)p−1( m1∑
i=m0

F (Q′i)ηij

)

− p

(
m1∑
i=m0

F (Qi)

)p−1 ∑m1
i=m0

ηij
m1 −m0 + 1

(
m1∑
i=m0

F (Qi)

)}
∆t.

The following limit identities hold:

lim
ε→0

Q′i = Qi, lim
ε→0

τ i(ti) = ti, (72)

and

lim
ε→0

F (Q′i)− F (Qi)
ε

=
∂F i

∂Qi

∂Qi

∂Dj
+
∂F i

∂Dj
=
∂F i

∂Qi
Vi +

∂F i

∂Dj
, F i ≡ F (Qi). (73)
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Consequently,

df

dDj
= ω

p

(m1 −m0 + 1)p

(
m1∑
i=m0

F (Qi)

)p−1{( m1∑
i=m0

∂F

∂Qi
Vi
j

)
+

(
m1∑
i=m0

F (Qi)ηij

)

−
∑m1
i=m0

ηij
m1 −m0 + 1

(
m1∑
i=m0

F (Qi)

)}
∆t+ ω

p

(m1 −m0 + 1)p

(
m1∑
i=m0

F (Qi)

)p−1
∂F

∂Dj
∆t. (74)

df

dDj
=

m1∑
i=m0

(
[gi]TVi

j + hiη
i
j

)
+

∂f

∂Dj
, (75)

where

[gi]T =
∂f

∂Qi
= ω∆t

pF̄ p−1

m1 −m0 + 1
∂F i

∂Qi
, (76)

hi = ω∆t
pF̄ p−1

m1 −m0 + 1
(
F (Qi)− F̄

)
, (77)

F̄ =
1

m1 −m0 + 1

m1∑
j=m0

F (Qj), (78)

∂f

∂Dj
= ω∆t

pF̄ p−1

m1 −m0 + 1

m1∑
i=m0

∂F i

∂Dj
. (79)

C. Computing Error Estimates for Time-Averaged Quantities

An objective function, f∆T , computed over an averaging window of length ∆T is

f∆T =
1

∆T

∫ T0+∆T

T0

F (t)dt. (80)

The error in f∆T relative to the same objective function,

f∞ = lim
∆T→∞

f∆T , (81)

computed over an infinite averaging window is estimated using a batch statistic variance estimator.36 As-
suming that samples of f∆T for a given ∆T are independent and distributed normally, there is a 99.6%
probability that the next sample of f∆T is within the range of f∞ ± 3σ, where

σ =
1
N

(
N∑
i=1

(f i − f̄)2

)0.5

(82)

is the standard deviation of the normal distribution. Here, N is the number of samples,

f i =
1

∆T

∫ T0+i∆T

T0+(i−1)∆T

F (t) dt, (83)

and

f̄ =
1
N

N∑
i=1

f i =
1

N∆T

N∑
i=1

∫ T0+i∆T

T0+(i−1)∆T

F (t) dt =
1

N∆T

∫ T0+N∆T

T0

F (t) dt = fN∆T . (84)
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7Giles, M. and Süli, E., “Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality,” Acta

Numerica, Vol. 11, 2002, pp. 145–236.
8Gunzburger, M., Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2002.
9Bodony, D. and Natarajan, M., “Controller selection and placement in compressible turbulent flows,” Proceedings of the

2012 Summer Program, Center for Turbulence Research, Stanford, Dec. 2012, pp. 35–42.
10Wang, Q., Uncertainty Quantification for Unsteady Fluid Flow using Adjoint-based Approaches, PhD dissertation, Stan-

ford University, 2009.
11Wang, Q., Duraisamy, K., Alonso, J., and Iaccarino, G., “Risk Assessment of Scramjet Unstart Using Adjoint-Based

Sampling Methods,” AIAA Journal , Vol. 50, No. 3, 2012, pp. 581–592.
12Lorenz, E., “Deterministic Nonperiodic Flow,” Journal of the Atmospheric Sciences, Vol. 20, 1963, pp. 130–141.
13Lea, D., Allen, M., and Haine, T., “Sensitivity analysis of the climate of a chaotic system,” Tellus, Vol. 52A, 2000,

pp. 523–532.
14Wang, Q., Hui, R., and Blonigan, P., “Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations,”

Journal of Computational Physics, Vol. 267, June 2014, pp. 210–224.
15Ruelle, D., “Differentiation of SRB states,” Communications in Mathematical Physics, Vol. 187, 1997, pp. 227–241.
16Eyink, G., Haine, T., and Lea, D., “Ruelle’s linear response formula, ensemble adjoint schemes and Lévy flights,”
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