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The objective of this work was to perform sensitivity analysis and uncertainty quantifi-
cation for afterbody radiative heating predictions of Stardust capsule during Earth entry
at peak afterbody radiation conditions. The radiation environment in the afterbody region
poses significant challenges for accurate uncertainty quantification and sensitivity analysis
due to the complexity of the flow physics, computational cost, and large number of un-
certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos
approach along with global non-linear sensitivity analysis was used to identify the most
significant uncertain variables and reduce the dimensions of the stochastic problem. Then,
a total order stochastic expansion was constructed over only the important parameters
for an efficient and accurate estimate of the uncertainty in radiation. Based on previous
work, 388 uncertain parameters were considered in the radiation model, which came from
the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis
showed that only four of these variables contributed significantly to afterbody radiation
uncertainty, accounting for almost 95% of the uncertainty. These included the electronic-
impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions
influencing N, N+, O, and O+ number densities in the flow field.

Nomenclature

D Statistical variance
I Intensity
Ns Number of Samples
Nt Number of Terms in a Total-Order

Polynomial Chaos Expansion
n Number of Random Dimensions
P Pressure
p Order of Polynomial Expansion
Se Absolute Error
ST Total Sobol Index

Tv Vibrational-Electronic Temperature
x Deterministic Variable
α Deterministic Coefficient in the Polynomial

Chaos Expansion
α∗ Random Function
δ Truncation Error
Ψ Random Basis Function
µe Mean Error
ξ Standard Input Random Variable

I. Introduction

During high-speed Earth entry, radiation can significantly affect surface heating of an entry vehicle.
Lunar and planetary return missions may experience entry conditions that generate significant shock-layer
radiation. Radiating species may expand from the forebody into the afterbody region, which may cause
substantial radiative heating on the afterbody surfaces. Previous work by Johnston and Brandis1 showed
the importance of afterbody radiative heating. Because of complex modeling associated with quantifying
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the radiation in the afterbody, a large amount of uncertainty exists, which can drastically affect radiative
heating predictions. Johnston and Brandis1 stated that there was a definite need for an uncertainty and
sensitivity analysis to help inform resource allocation for improved modeling and experimental testing. This
previous study laid the ground work for afterbody radiation modeling and, therefore, is the foundation of
the current work.

The primary objective of this work is to investigate the uncertainty in high-fidelity radiative heat flux
predictions on the afterbody of the Stardust sample return capsule geometry during Earth entry. The high-
fidelity computational fluid dynamics (CFD) model is composed of the LAURA2 thermochemical nonequi-
librium flow solver coupled with the nonequilibrium radiation code, HARA.3,4 A full ray-tracing model is
implemented for improved radiation prediction on the vehicle surface. Additionally, forebody ablation is
modeled to account for the impact of ablation products that have expanded into the afterbody region. John-
ston and Kleb5 performed a detailed uncertainty analysis of forebody radiative heating during Lunar-return
Earth entry. Similar uncertainty sources in the computational model are considered in the present study,
which include flow field chemical rate models, atomic line emission and absorption, photoionization cross-
sections, the two-temperature model, negative ion cross-sections, molecular band oscillator strengths, and
the excitation/deexcitation rates of molecular electronic states. Additionally, a global nonlinear sensitivity
analysis is performed to identify key parameters that contribute significantly to the to uncertainty.

Due to the complexity and significant computational cost of the numerical simulations of planetary entry
flows, performing uncertainty quantification (UQ) with traditional sampling approaches (i.e., Monte Carlo)
may not be feasible. Following the approach by West and Hosder,6 the objective will be to implement a
surrogate modeling approach to replace the computationally expensive deterministic model during uncer-
tainty propagation. This process is based on constructing a stochastic expansion through the use of a sparse
approximation of the point-collocation nonintrusive polynomial chaos (NIPC) method. The goal is to mini-
mize the number of computationally expensive deterministic model evaluations needed for an accurate UQ
analysis. The approximation is calculated iteratively by increasing the number of CFD evaluations until a
converged surrogate model is obtained.

The impact of this work is primarily the sensitivity analysis of various parameters in the afterbody
radiation modeling and quantifying the amount of uncertainty in backshell radiative heating expected for
high speed (greater than 10 km/s) Earth entry. In the near term, with the upcoming Orion flight to the
moon and back, this information is critcal to ensuring that the thermal protection is reliable and robust to
protect future crews. Future sample and Mars return missions will also experience similar conditions during
entry and this information will be valuable for vehicle design. Additionally, the resulting sensitivity analysis
can be important for future work to allocate resources for improving the accuracy of computational models
and reducing epistemic uncertainty.

The following section briefly describes the types of uncertainty in computational modeling. Section III
outlines the surrogate modeling approach using NIPC with a sparse approximation. Section IV describes the
baseline radiative heating model for the Stardust sample return capsule entry scenario. Details regarding
the CFD model, entry conditions, and discussion of baseline solution are also given in this section. Section
V presents the results and discusses important conclusions.

II. Types of Uncertainty in Numerical Models

A critical step in any uncertainty analysis is the classification of the uncertain parameters. These pa-
rameters may be mathematically represented differently based on the nature of their uncertainty. Incorrect
classification and/or treatment of uncertain parameters can result in widely varying output uncertainty.

Two main types of uncertainty exist in numerical modeling: aleatory uncertainty and epistemic uncer-
tainty.7 Aleatory uncertainty is the inherent variation of a physical system. Such variation is due to the
random nature of input data and can be mathematically represented by a probability density function if
substantial experimental data is available for estimating the distribution type. An example of this type of
uncertainty could be the fluctuations in freestream quantities. While still considered random variables, these
variations are not controllable and are sometimes referred to as irreducible uncertainties.

Epistemic uncertainty in a stochastic problem comes from several potential sources. These include a lack
of knowledge or incomplete information of the behavior of a particular variable. Also, ignorance or negligence
with regards to accurate treatment of model parameters is a source of epistemic uncertainty. Contrary to
aleatory uncertainty, epistemic uncertainty is sometimes referred to as reducible uncertainty. An increase
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in knowledge regarding the physics of a problem, along with accurate modeling, can reduce the amount
of this type of uncertainty. Epistemic uncertainty is typically modeled using intervals because the use of
probabilistic distributions (even a uniform distribution) can lead to inaccurate predictions in the amount of
uncertainty in a system. Upper and lower bounds of these intervals can be drawn from limited experimental
data or from expert predictions and judgment.8,9

An additional, special case of epistemic uncertainty is numerical error. This uncertainty is common in
numerical modeling and is defined as a recognizable deficiency in any phase or activity of modeling and
simulations that is not due to lack of knowledge of the physical system. In CFD, an example of this type
of uncertainty would be the discretization error in both the temporal and spatial domains that comes from
the numerical solution of the partial differential equations that govern the system.9 This uncertainty can be
well understood and controlled through code verification and grid convergence studies.

III. Uncertainty Quantification Methodology

This section provides the details of the polynomial chaos techniques used in this study. The first part
outlines the general non-intrusive polynomial chaos formulation with the point-collocation approach. The
second part details the solution recovery approach for determining the polynomial chaos expansion (PCE)
coefficients under sparse conditions. Lastly, a discussion of the error and convergence measures is provided.

A. Point-Collocation Nonintrusive Polynomial Chaos

In recent studies,8–12 the polynomial chaos method has been used as a means of UQ over traditional methods,
such as Monte Carlo, for computational efficiency. Polynomial chaos is a surrogate modeling technique
based on the spectral representation of the uncertainty. An important aspect of spectral representation of
uncertainty is that a response value or random function α∗ can be decomposed into separable deterministic
and stochastic components, as shown in Eq. (1).

α∗(x, ξ) ≈
P∑
i=0

αi(x)Ψi(ξ) (1)

Here, αi is the deterministic component and Ψi is the random variable basis functions corresponding to the
ith mode. α∗ is a function of the vector x of independent, deterministic variables and the n-dimensional
standard random variable vector ξ. Note that this series is, by definition, an infinite series. However, in
practice, it is truncated and a discrete sum is taken over a number of output modes.13 To form a complete
basis or for a total order expansion, Nt terms are required, which can be computed from Eq. (2) for a PCE
of order p and a number of random dimensions or variables, n.

Nt = P + 1 =
(n+ p)!

n!p!
(2)

Further details on polynomial chaos theory are given by Ghanem14 and Eldred.13

The objective with any PCE method is to determine the expansion coefficients, αi. To do this, polynomial
chaos methods can be implemented using an intrusive or a non-intrusive approach. While an intrusive method
may appear straightforward in theory, for complex problems this process may be time consuming, expensive,
and difficult to implement.8 In contrast, the non-intrusive approach can be easily implemented to construct
a surrogate model that represents a complex computational simulation, because no modification to the
deterministic model is required. The non-intrusive methods require only the response (or sensitivity)15–17

values at selected sample points to approximate the stochastic response surface.
Several methods have been developed for NIPC. Of these, the point-collocation NIPC method has been

used extensively in many aerospace simulations and CFD problems.9,10,12,15 The point-collocation method
starts with replacing a stochastic response or random function with its PCE using Eq. (1). Then, Nt vectors
are chosen in random space and the deterministic code is then evaluated at these points, which is the left
hand side of Eq. (1). Following this, a linear system of Nt equations can be formulated and solved for the
spectral modes of the random variables. This system is shown in Eq. (3).
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
α∗(x, ξ0)

α∗(x, ξ1)
...

α∗(x, ξP )

 =


Ψ0(ξ0) Ψ1(ξ0) · · · ΨP (ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨP (ξ1)
...

...
. . .

...

Ψ0(ξP ) Ψ1(ξP ) · · · ΨP (ξP )



α0

α1

...

αP

 (3)

Note that for this linear system, Nt is the minimum number of deterministic samples required to obtain
an analytical solution (i.e., the coefficient vector). If more samples are available and that are linearly
independent, the system is considered overdetermined and can be solved using a least squares approach.
The number of samples over the required minimum is represented by the use of an oversampling ratio
(OSR), defined as the ratio of number of actual samples to the minimum number required (i.e., Nt). In
general, the number of collocation points can be determined by multiplying Eq. (2) by an OSR. Hosder et
al.18 determined an effective OSR of two for the stochastic model problems studied. It was shown that the
accuracy of the PCE is dependent on the number of collocation points.

Polynomial chaos techniques suffer from a “curse of dimensionality”. This means that the number of
deterministic model evaluations required to create an accurate surrogate model grows exponentially with the
number of random dimensions. For many large-scale, complex problems, such as those found in modeling
hypersonic reentry flows with radiative heat transfer, it may be infeasible or even impossible to obtain even
the minimum required number of deterministic model samples. The most desirable approach is to obtain
an accurate surrogate model with as few deterministic samples as possible to limit the computational cost,
even if the minimum number of samples required for a total order expansion is not achievable.

B. Underdetermined/Sparse Point-Collocation Solution Approach

In general, a system of linear equations that has fewer linearly independent equations than unknowns,
possesses an infinite number of solutions. In many PCEs, only a small fraction of the coefficients may carry
significant weight in the surrogate model and/or are near zero. This would then allow for an assumption
that many of the expansion coefficients are zero, making the vector of expansion coefficients sparse. With
this assumption, the linear system can be regularized allowing for a well-posed solution. The objective is
to seek out a solution to the linear system with the fewest number of non-zero coefficients. Using convex
relaxation, a solution can be obtained from the L1-minimization problem shown in Eq. (4).

min
∥∥∥α∥∥∥

1
subject to

∥∥∥Ψα− α∗
∥∥∥

2
≤ δ (4)

Here, δ is the truncation error associated with the truncation of the series in Eq. (1). For the problems
in this study, δ is assumed equal to zero, as it can be shown that the solution to Eq. (4) is unique in this
instance. In the above formulation, the dimensions of Ψ are Ns x Nt and the vector α∗ is of length Ns where
Ns < Nt for the underdetermined problem. The vector α is of length Nt. Doostan and Owhadi19 discuss,
in great detail, the theory and formulation of the above method, as well as discussion on stability.

The optimization problem in Eq. (4) is commonly referred to as Basis Pursuit Denoising (BPDN).19–21

This type of problem can be solved using many methods from quadratic programming, and the discussion
of these methods is left to other works.20,21 In the current study, the least absolute shrinkage and selection
operator (LASSO) homotopy optimization routine21 was selected to find the optimal solution of Eq. (4).
While many methods exist for solving the above minimization problem, the homotopy method was selected
for efficiency, as this method is not significantly affected by the dimensionality of the problem.20

C. Sample Size, Accuracy, and Convergence

The optimization and sparse solution recovery approach poses two fundamental issues: (1) how to determine
the necessary number of samples, Ns, required to obtain an accurate solution and (2) how to measure the
accuracy of the solution. The latter of these assumes, of course, that no other means of obtaining the exact
solution is possible, thereby relying on the solution obtained from Eq. (4). To reduce the computational
cost, the desired approach is to limit the total number of deterministic model evaluations. To address both
the sample size and the accuracy issues simultaneously, there must be a measure of the convergence of the
expansion coefficients with increasing sample size. The objective of this section is to outline a procedure
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for determining an acceptable sample size along with measuring the convergence of the stochastic expansion
coefficients.

The first step in this process will be to generate an initial sample set of the random variables. In the
current study, the approach will be to use an incremental Latin Hypercube sampling (LHS) to gradually
grow the sample set, while maintaining a sample structure that covers the space spanned by the uncertain
parameters. Note that this approach is different from that used in previous work by West et al.6 where the
approach was to take subsets of a larger sample set of size Nt.

The idea is to start with a small LHS structure and evaluate the deterministic model at these points.
Then, a first set of PCE coefficients can be obtained using the minimization routine in Eq. (4). This process is
then repeated by incrementally expanding the LHS structure, which adds more samples to the minimization
problem until the convergence of the expansion coefficients is achieved. Note the incremental LHS only allows
for doubling of the sample structure size. This suggests that the sample size may grow rapidly. However,
using all of the samples after each LHS increment is not required. A constant sample size increase may
still be used by simply taking subsets of each new LHS structure. This may be necessary when tracking
convergence.

After the expansion coefficients are approximated, their convergence should be checked at each iteration.
In theory, this could be done by monitoring each individual coefficient. Unfortunately, for large scale prob-
lems, there may be thousands of coefficients. Also, because the expansion coefficient vector is known to be
sparse, this may not be an accurate approach as the degree of sparseness of the solution vector may decrease
with increasing sample size causing radical changes in any convergence error measurement. A logical choice
for a convergence metric would be to use output statistics based on the expansion coefficients. Sobol indices22

can be used to measure the convergence of the solution and are derived via Sobol Decomposition, which is
a variance-based global sensitivity analysis method. First, the total variance, D, can be written in terms of
the PCE as shown in Eq. (5).

D =

P∑
j=1

α2
j (t, ~x)

〈
Ψ2
j (
~ξ)
〉

(5)

Then, as shown by Sudret22 and Crestaux et al.,23 the total variance can be decomposed as:

D =

i=n∑
i=1

Di +

i=n−1∑
1≤i<j≤n

Di,j +

i=n−2∑
1≤i<j<k≤n

Di,j,k + · · ·+D1,2,...,n (6)

where the partial variances (Di1,...,is) are given by:

Di1,...,is =
∑

β∈{i1,...,is}

α2
β

〈
Ψ2
β(~ξ)

〉
, 1 ≤ i1 < . . . < is ≤ n (7)

Then the Sobol indices (Si1···is) are defined as,

Si1···is =
Di1,...,is

D
(8)

which satisfy the following equation:

i=n∑
i=1

Si +

i=n−1∑
1≤i<j≤n

Si,j +

i=n−2∑
1≤i<j<k≤n

Si,j,k + · · ·+ S1,2,...,n = 1.0 (9)

The Sobol indices provide a sensitivity measure due to individual contribution from each input uncertain
variable (Si), as well as the mixed contributions ({Si,j}, {Si,j,k}, · · · ). As shown by Sudret22 and Ghaffari
et al.,24 the total (combined) effect (STi) of an input parameter i is defined as the summation of the partial
Sobol indices that include the particular parameter:

STi =
∑
Li

Di1,...,is

D
; Li = {(i1, . . . , is) : ∃ k, 1 ≤ k ≤ s, ik = i} (10)

For example, with n = 3, the total contribution to the overall variance from the first uncertain variable
(i = 1) can be written as:
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ST1 = S1 + S1,2 + S1,3 + S1,2,3 (11)

From these formulations, it can be seen that the Sobol indices can be used to provide a relative ranking of
each input uncertainty to the overall variation in the output with the consideration of nonlinear correlation
between input variables and output quantities of interest.

The accuracy of the Sobol indices depend highly on the accuracy of the PCE coefficients, making it
an ideal measure of their convergence. Also, because the number of total Sobol indices is the same as the
number of uncertain parameters, there is less parameters to track, as this number will always be less than
the number of PCE coefficients. To monitor the convergence of the total Sobol indices with the addition
of more samples at each iteration, an absolute error, Sei,j can be defined for the jth total Sobol index at
iteration i using Eq. (12).

Sei,j =
∥∥∥ST,i,j − ST,i−1,j

∥∥∥ (12)

Note that measuring the convergence based on this absolute error puts emphasis on the variables that
contribute to the output uncertainty more significantly. The errors of each total Sobol index, at each
iteration, can then be averaged giving a single value for monitoring, which is shown in Eq. (13).

µe,i =
1

n

n∑
j=1

Sei,j (13)

Plotting this average error at each iteration would then illustrate the convergence of the PCE coefficients.
The objective will be to seek out nearly asymptotic convergence, as zero error would likely not be achievable
simply due to the randomness of the samples added at each iteration and any numerical inaccuracies that
may occur during the analysis of complex models.

D. Dimension Reduction

Previous works by West et al.6,26 considered all of the uncertain parameters in the surrogate model used in
the final uncertainty analysis. However, in the present study, a much larger set of uncertain parameters will
be considered. The expectation is that many of these parameters will weakly contribute to the overall output
uncertainty; however, these parameters may introduce noise to the response surface, which may degrade the
surrogate model accuracy. Therefore, in this study, the approach will be to reduce the number of uncertain
variables with a small number of deterministic model evaluations by using the sparse approximation, point-
collocation method and perform an accurate uncertainty analysis for the problem with the reduced dimensions
by using, again, the point-collocation NIPC method.

Using the Sobol index based convergence technique outlined in the previous subsection, the objective will
be to first determine the parameters which do not contribute significantly to the total output variance. West
et al.6 showed that a relative ranking of the uncertain parameters can be achieved rapidly, with a small
sample set for those problem investigated, even if the accuracy of the surrogate model can still be improved
by adding additional samples. While the accuracy of the surrogate model may still be in question with a
small sample size, the converged ranking of the uncertain parameters will allow for a systematic means of
reducing the number of random dimension to a size that may allow for a more accurate surrogate model that
is a function of only those uncertain parameters deemed to be of significant importance. Note that there
may be multiple levels of dimension reduction in order to ensure accurate relative ranking of the uncertain
parameters as the number of parameters is reduced. In this study, only one level of dimension reduction was
sufficient, which is shown in Section V.

IV. Baseline Model and Uncertainty Sources

This section gives the baseline computational model for Earth entry flow with radiative heat transfer
over the Stardust capsule geometry. The details of the selected flow solver, the radiation code, and the entry
vehicle configuration are given. Then, the entry scenario is presented, which includes selection of freestream
conditions and chemical rate models. Uncertainty sources in the computational model are discussed and
identified, which will be used in the subsequent uncertainty analysis. A total of 388 uncertain parameters
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are identified both in the flow field chemistry and the radiation modeling. Note that all of the uncertainties
identified are modeled as epistemic uncertainty due to the lack of knowledge about these parameters.

A. Flow Solver and Geometry

In this study, the flow field was modeled using the LAURA finite-volume, Navier-Stokes flow solver.2 This
solver uses a second-order, upwind, discretization scheme with tunable relaxation of both inviscid and viscous
terms for solution stability. LAURA has been used for many high energy flow studies and has been extensively
validated for various atmospheric entry flow scenarios. The flow field was assumed to be steady state with
a two-temperature, thermochemical nonequilibrium model.27,28

The Stardust capsule geometry is described by Liu et al.29 The capsule is made up of a 60o sphere cone
forebody and a 30o truncated cone backshell. Along the centerline, the capsule is about 55 cm long and the
shoulder is about 20 cm behind the nose, along the line of symmetry. Figure 1 shows the axisymmetric grid
used in the present study. The grid is made up of 14 blocks, as shown in the upper left image in Figure 1,
and is 193 x 267. Note that the block divisions are made by approximate lines of sight from the capsule.

Figure 1: Computational grid.

B. Flow Field Chemistry and Radiation Modeling

In this study, the uncertainty analysis was performed at single point along the trajectory. The 46 second
location was selected as this point exhibited the peak radiative heating.1 At this time, the freestream velocity,
density, and temperature were approximately 11.69 km/s, 1.0e-4 kg/m3, and 228 K, respectively. Earth’s
atmospheric composition was modeled as 76% N2 and 24% O2 by mass.

The flow field was modeled with a 26 species composition model: N, N+, NO, NO+, N2, N+
2 , O, O+,

O2, O+
2 , e−, C, C+, CO, CO2, C2, C3, C5, C2H, C2H2, CN, H, H+, H2, HCN, CH. A 64 reaction finite

rate chemistry model is composed of both reactions due to free-stream composition, as well as reactions that
occur due to the introduction of ablation products into the flow field as a result of forebody ablation. The
dissociation, exchange, and ionization reactions are listed in Tables A1, A2, and A3, respectively, in the
appendix. Notice that in these tables, uncertainty ranges have been included for each of the reactions. The
reaction rates and uncertainty ranges are taken from multiple sources.30,31

Forebody ablation was included in the analysis as ablation products can have a significant impact on the
afterbody radiative heating.1 In this study, the ablation is computed assuming a steady-state, equilibrium
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phenolic impregnated carbon ablator (PICA) ablation on the forebody, while the non-ablating afterbody
is assumed in radiative equilibrium with a fully-catalytic to homogeneous recombination wall boundary
condition. Note that the wall catalyst model on a non-ablating surface has a negligible effect on the surface
radiative heating.31

Figure 2(a) shows the mass fraction of CO in the afterbody due to forebody ablation. Note that CO
is the dominant ablation product and also a known strong radiator. The difference in the intensity along
the line of sight specified in Figure 2(a) is shown in Figure 2(b). Notice that ablation causes a nearly 40%
rise in the intensity near the wall. Johnston and Brandis1 point out that this increase in the intensity
is not a result of radiation from the ablation products, but rather the effect of the ablation products on
the vibrational-electronic energy by lowering the vibrational-electronic temperature in the boundary layer.
The ablation products reduce absorption in the afterbody flow field boundary layer, there by increasing the
radiative heat flux at the wall.

(a) Flow field CO mass fraction.
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(b) Intensity along line of sight.

Figure 2: Contour of CO mass fraction and ablation product effect on intensity.

The radiation was modeled using the High-Temperature Aerothermodynamic Radiation (HARA) code.3,4

The HARA model is based on a set of atomic levels and lines obtained from the National Institute of Stan-
dards and Technology (NIST) database,32 Opacity Project databases,33 and atomic bound-free (photoion-
ization) cross-sections from the TOPbase.34 In the present study, the flow field solver and the radiative
heat transfer calculations are coupled. HARA uses a Collisional Radiative (CR) or non-Boltzmann modeling
of atomic and molecular electronic states. This is based on a set of electronic and heavy particle impact
excitation rates. The non-Boltzmann approach used in this study is described by Johnston et al.31

Previous studies have shown that emission and absorption from atomic nitrogen and oxygen lines plays
a key part in the radiation.5 Johnston and Brandis1 showed that afterbody radiation is due large in part
to atomic lines in vacuum ultra-violet (VUV) portion of the spectrum. The presence of these lines are the
result of electronic transitions between an upper level j ≥ 4 and a lower levels i ≤ 3. In the present study,
the lines considered as uncertain are listed in Tables A5 and A6 for N and O, respectively. Note that there
are some lines being considered that have an upper level j ≥ 1 and a lower level i ≤ 10, as these lines
may also contribute to the radiation. These tables also list the oscillator strength and Stark broadening
width uncertainty ranges adopted by Johnston and Kleb.5 In addition to the atomic lines, photoionization
cross-sections for N and O are also treated as uncertain. A total of 35 N and 32 O photoionization cross-
sections, all with +/- 20% uncertainty are considered in the present study. Note that the uncertainty in
these parameters were also obtained from Johnston and Kleb.5

Electron impact excitation rates for atomic N and O have been shown to be the most significant processes
in the non-Boltzmann calculation.5 The baseline rates for these processes are provided by Johnston et al.4

It was found in this work that electron impact excitation processes with upper levels j ≥ 1 and lower levels
i ≤ 10 are the most important for backshell radiative heating predictions, which allowed the present work
to include only these 45 transitions in the uncertainty analysis. A comparison of multiple sources for these
rates is made by Johnston and Kleb,5 who show that an order of magnitude uncertainty covers the range of
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rates proposed by various researchers. This +/- one order of magnitude uncertainty is applied in this work
for electron-impact excitation rates of N and O.

Molecular band systems of both air species and ablation products are treated using the smeared-rotational
band approach (SRB). This approximation is shown by Johnston et al.3 to result in errors of less than 3% for
air shock layers with ablation products. Oscillator strength and non-Boltzmann excitation rate uncertainties
proposed by Johnston and Kleb5 for air species and Johnston et al.31 for ablation products are applied in
this work. For example, Tables A7 and A8 present the non-Boltzmann excitation rate uncertainties for CN
and CO obtained from these studies and applied in this work. Even with the up to +/- 2 order of magnitude
uncertainties shown in Tables A7 and A8, these uncertainties will be shown to have a negligible impact on
the backshell radiation uncertainty. This is a result of the weak contribution from molecular band systems
to the backshell radiation.

Johnston and Kleb5 discuss that there is significant uncertainty in negative ion continuum cross section.
Johnston et al.3 provide the baseline values used in the is study and an uncertainty of +/- 100% was used
to capture differences in theoretical predictions and experimental measurements.5

A sensitivity analysis of two-temperature modeling parameters identified the electronic-translational en-
ergy relaxation (defined in Eq. 65 of Gnoffo et al.27) as the most important for backshell radiation. This
parameter essentially governs the equilibration of the two-temperatures in the backshell region. To capture
potential uncertainties in the energy exchange cross section applied for neutral-electron collisions, a +/- one
order of magnitude uncertainty is applied to this cross section for N and O.

The nonequilibrium radiation code uses a tangent-slab approximation for computing the radiative flux
and its divergence; however, Johnston and Brandis1 showed that the tangent-slab approximation can cause
the afterbody radiation to be over predicted in the afterbody region. Figure 3 shows the difference in
radiative heating profile along the centerline of the geometry for the tangent-slab approach versus a full ray-
tracing approach.35 This approach rotates the axisymmetric solution to form a three dimensional solution.
Then, the radiative intensity is computed along numerous rays at each body point. In the forebody, the
tangent-slab approach only slightly over predicts the radiative heating. However, approaching the shoulder
and into the afterbody, the over prediction can be nearly 35%. While the tangent-slab approach is less
computationally demanding, the approach in this study will be to use the full ray-tracing procedure to
improve the accuracy of the analysis. Note that the radiation values in this work are slightly different than
shown in the work by Johnston and Brandis1 due to a slight change in a numerical algorithm. A new
approach for scaling the quasi steady-state (QSS) matrix was implemented to allow for more robust matrix
inversions at vibrational-eletronic temperatures below roughly 4500 K.

Figure 3: Comparison of ray-tracing and tangent-slab backshell radiative heat flux calculations.
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C. Baseline Results

Prior to constructing the surrogate model and performing the uncertainty analysis, a baseline solution was
obtained with the nominal values of the uncertain modeling parameters considered in this study. Flow field
contours of pressure and vibrational-electronic temperature are shown in Figure 4. The pressure contour
in Figure 4(a) shows a well-defined shock layer in the forebody, that dissipates around the shoulder of the
capsule.

(a) Pressure. (b) Vibrational-electronic temperature.

Figure 4: Baseline Solution contours of pressure and vibrational temperature.

The contour of the vibrational-electronic temperature shown in Figure 4(b) provides some key insight
into the source of the afterbody radiation. Notice in the afterbody region the three temperature regions.
Johnston and Brandis1 discuss that a large contribution to the backshell emission comes from the cooler
vibrational-electronic temperature region (less than 5000 K), which indicates a region of significant chemical
non-equilibrium. This lower temperature region possesses a high number densities of N and N+, which is an
indication of a strong radiative region of non-equilibrium expanding flow. Moving closer to the wall, there
is an increase in the vibrational-electronic temperature that creates a region of strong absorption.

The magnitude of the radiation in the afterbody is shown in Figure 5, in comparison to the laminar
convective heating. Notice that the radiative heating is significantly larger than the convective heating. This
emphasizes the importance of accurate modeling of the radiation in the afterbody region as this heating is
clearly not negligible.

With a converged, baseline solution, the approach will be to perturb it for performing the uncertainty
and sensitivity analyses. This will reduce the computational time required for a converged solution when
only small changes to input parameters are made.

V. Results and Discussion

A. Sensitivity Analysis

Recall from section IV that there are a total of 388 uncertain parameters considered in this study. As a result,
propagating the uncertainty with a second order PCE would require a minimum of 75855 evaluations of the
CFD model to construct a total order expansion (from Eq. (2)). While this number of runs may still be less
than required for a converged Monte Carlo solution, this number of runs is not feasible in this study due to
the computational cost of the model. The objective will be to reduce this number to a more manageable and
reasonable size by constructing the surrogate model with only those parameters that significantly contribute
to the uncertainty in the radiative heating on the backshell.

Following the approach outlined in section III, an initial Latin hypercube structure of 50 samples was
generated using all 388 uncertain variables. A sparse approximation of the PCE was then constructed
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Figure 5: Convective and radiative afterbody heating.

(Eq. (4)) and the total Sobol indices calculated (Eq. (9)) iteratively for an increasing sample size from 2 to
50 by 2 samples. This approach allows for tracking of the convergence of the Sobol indices (Eqs. (12) and
(13)). Based on these results the sample set of 50 was doubled to 100 using incremental Latin hypercube to
preserve the sample structure and coverage within the domain of the uncertain parameters. Construction of
the sparse PCE and Sobol indices calculation was then continued from 50 to 100 samples.

The convergence of the Sobol indices is illustrated in Figure 6 in two ways. First, Figure 6(a) shows a
plot of the convergence of the maximum relative change among all of the uncertain parameters at a body
point about 23 cm from the nose, which translates to a point just behind the shoulder. At 50 samples,
there was of a change of about 11%, but increasing the sample size to 100 reduced the maximum change to
only 2%. Figure 6(b) shows the convergence of all of the total Sobol indices. While there are 388 curves on
this figure, clearly there are only about four parameters that are found to be of importance as the number
of samples approaches 100. These four will be identified and discussed later. Note that the non-smooth
convergence results are expected as there is no guarantee of monotonicity with a point-collocation approach
with an unstructured sampling approach.

(a) Maximum relative change. (b) All uncertain variables.

Figure 6: Convergence of total Sobol indices.

Given the convergence of the relative ranking of the Sobol indices, no additional samples were added to
the structure. Note that the surrogate (i.e., the PCE coefficients) may not be accurate at a desired level,
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but the variance is converged enough such that ranking information can be extracted with a high degree of
confidence.

Figure 6 shows the Sobol convergence at one point on the backshell. Using all 100 samples, the Sobol
indices were calculated along the remainder of the backshell and plotted in Figure 7. All 388 parameters
are plotted in Figure 7(a). The most interesting note here is that regardless of position on the backshell,
the output variance is driven by the same four parameters even though their relative ranking changes with
position. These top four are plotted in Figure 7(b). Notice that these four parameters contribute to more
than 90% of the output variance of the radiative heat flux and this is constant for the majority of the
backshell.

(a) All variables. (b) Top 4 variables.

Figure 7: Sobol index values along the backshell.

The sensitivity of the radiation to these top four parameters can further be investigated by considering
each individually. Figure 8 shows the individual parameter contributions to the radiative heating uncertainty
on the backshell. Note that these results were obtained by applying only the uncertainty to individual rates.
No other uncertainties are included. Also, in the afterbody, the radiation magnitude has a monotonic
dependency on the uncertainty in these four parameters. Applying the maximum and minimum values of
the uncertainty captures the range of radiation variation.

Johnston and Brandis1 note that the primary contributor to the radiation are the vacuum ultraviolet
lines for N and O, which result from electronic transitions between upper and lower levels of these atoms.
The sensitivity results align with this fact in the sense that the parameters that most impact the uncertainty
in the radiation are those that influence N and O number densities and electronic transition rates.

Three of the four most significant uncertainty sources are flow field reaction rates. Figure 8(a) shows
the impact of uncertainty for the N + e− ↔ N++ e− + e− rate and Figure 8(b) shows the impact of the
O + e− ↔ O++ e− + e− rate. There is a significant contribution to the uncertainty from N + e− ↔
N++ e− + e− rate, even through the uncertainty is only +/- 50% of the nominal rate. Also, notice that in
Figure 8(a) and 8(b) the sensitivity of the radiation to these parameters is only significant on the backshell.
Because the radiation on the forebody is dominated by equilibrium radiation, it is insensitive to the +/-
50% uncertainty in ionization rates. While N and O are ionized in the forebody to form N+ and O+, the
rate of deionization in the afterbody affects the number densities of N and O in the afterbody region. Note
that in the recombining, expanding flow of the afterbody, the reverse process for the ionization reactions
(recombination) are dominant. Because the backward rate is computed as the ratio of the forward rate and
equilibrium constant, the uncertainties applied to the forward rates are also applied to the backward rates.
This is why reducing the forward rates increases the radiative heating.

The order-of-magnitude reductions in the N+ + N2 ↔ N+
2 + N rate is seen to increase the radiation in

both the forebody and backshell regions. In the forebody region, this decreased rate leads to more N+ in
the nonequilibrium post shock region, which leads to increased emission. In the backshell region, this rate
has a similar impact, although it occurs in the shear layer.

The last of the four important uncertain variables is the electronic-impact excitation rate for N between
level 2 and level 5. This single rate is interesting. 45 total excitation rates were considered uncertain in this
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study, yet only this one reaction was found to be sensitive to the uncertainty. In comparison, the level 3 to
5 rate is larger than the 2 to 5 rate. However, similar to the flow field reactions, the reverse processes are
what is important. The deexcitation rate from level 5 to 2 is three times the rate from level 5 to 3. This
is true for all of the rates between upper levels greater or equal to 4 and lower levels less than or equal to
3. Note also that the uncertainty in this rate does not impact the forebody radiation and is unique to the
backshell heating.

(a) N + e− ↔ N++ e− + e− rate. (b) O + e− ↔ O++ e− + e− rate.

(c) N+ + N2 ↔ N+
2 + N rate. (d) N 2 → 5 electron-impact excitation rate.

Figure 8: Individual parameter uncertainty contributions to radiative heating.

B. Dimension Reduction and Uncertainty Propagation

With the 388 uncertain variables reduced to only 4, an estimate of the uncertainty can quickly and accurately
be calculated. A second order PCE surrogate model was constructed using 30 evaluations of the CFD
model, which is twice the minimum required for a total order expansion (OSR = 2). The uncertainty was
then propagated through the surrogate model via Monte Carlo sampling with 107 samples. The uncertainty
band, along with the total Sobol index values for each parameter along the surface of the backshell are shown
in Figure 9. Note that the uncertainty band in Figure 9(a) has no probabilistic interpretation because the
uncertain inputs were all considered to be epistemic and are not probabilistic in nature. This band is merely
the worst-case or extrema of the output uncertainty as a function of spatial location along the backshell of the
vehicle. The uncertainty band is, at a maximum, 125% above and about -50% below the nominal prediction.
The location of greatest uncertainty is just behind the shoulder, around 25 cm from the stagnation point.
Clearly, the uncertainty in just the four key parameters produces a significant amount of uncertainty in the
radiation prediction.
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The Sobol indices in Figure 9(b) are shown to confirm the trend observed in the sensitivity analy-
sis/dimension reduction study discussed in the previous section. Compared to Figure 7(b), a similar trend
is observed; however, the actual Sobol values are slightly different. This is expected given the improved
accuracy of the reduced dimension surrogate model compared to the sparse approximation with all 388 vari-
ables in addition to the small amount of uncertainty neglected as a result of the dimension reduction. As
stated previously this information can be used to effectively allocate resources to improve radiation modeling
and reduce uncertainty in modeling parameters. Also, Figure 9 only shows the backshell region because the
forebody will have different sensitivities than the afterbody. This was previously investigated by Johnston
and Kleb.5

(a) Uncertainty bounds. (b) Total Sobol Indices.

Figure 9: Sensitivities and uncertainty band of backshell radiation (reduced dimension analy-
sis).

To validate the accuracy of the final surrogate model, a series of test points were used throughout the
design space for comparison to the surrogate. Consistently, the surrogate model, on average, was within 2
to 3 % of the test points for the entirety of the backshell region, even at the corners of the domain where
large errors are often observed. This result suggests that a 2nd order fit was adequate for this analysis and
results for the uncertainty propagation were accurate.

VI. Conclusions

During high-speed Earth entry, radiation can significantly increase the surface heating of an entry vehicle
including the afterbody region. Accurate uncertainty analysis of shock-layer radiation during earth entry
poses significant challenges due to the complexity of the numerical models and the shear number of modeling
parameters that are not well understood or not well characterized. In this study, an efficient and accurate
approach for sensitivity analysis and uncertainty quantification of afterbody radiative heating was introduced,
which was based on dimension reduction in uncertainty space and performing accurate uncertainty analysis
in the reduced dimension. The approach was applied to the analysis of afterbody radiation on the backshell
of the Stardust capsule at the peak afterbody radiation trajectory point. This model contained nearly
400 uncertain parameters, which was reduced to only four by using a combined sparse approximation and
variance-based sensitivity calculation with the point-collocation non-intrusive polynomial chaos approach.
Greater than 90% of the uncertainty was captured with only 130 high-fidelity CFD solutions. This relatively
small number of samples used to estimate the uncertainty and perform a sensitivity analysis is significant
compared to sampling-based approaches.

The global, nonlinear, sensitivity approach used in this study was critical in this particular analysis
for dimension reduction and ranking of the significant uncertain variables, as a local sensitivity analysis
(e.g., finite differencing) could be misleading given the large input uncertainty ranges and possible nonlinear
dependence of the radiation on the significant parameters. The initial sensitivity analysis showed that
only four parameters contributed significantly to the backshell radiation uncertainty: the electronic-impact
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excitation rate for N between level 2 and level 5 and rates of three chemical reactions influencing N, N+, O,
and O+ number densities in the flow field. A reduced dimension surrogate model was then constructed and
used to efficiently propagate the uncertainty, which showed an uncertainty interval as wide as +125% and
-50% of the nominal case.

Overall, this approach demonstrated a means of quantifying the uncertainty in large-scale, complex
CFD models. In particular, CFD models of planetary entry flows and radiative heating pose significant
challenges for uncertainty quantification and sensitivity analysis due to the complex physics being modeling,
computational cost of the models, and the number of input uncertain parameters. The results of this analysis
will aid in the allocation of resources for model improvement, experimental testing, design changes and overall
risk reduction.

References

1Johnston, C. O. and Brandis, A. M., “Feature of Afterbody Radiative Heating for Earth Entry,” Vol. 52, 2015, pp.
105–119.

2Mazaheri, A., Gnoffo, P. A., Johnston, C. O., and Kleb, B., “LAURA Users Manual: 5.4-54166,” Tech. rep., NASA/TM-
2011-217092, May 2009.

3Johnson, C. O., Hollis, B. R., and Sutton, K., “Spectrum Modeling for Air Shock-layer Radiation at Lunar-Return
Conditions,” Journal of Spacecraft and Rockets, Vol. 45, No. 5, 2008, pp. 865–878.

4Johnson, C. O., Hollis, B. R., and Sutton, K., “Non-Boltzman Modeling for Air Shock Layers at Lunar Return Condi-
tions,” Journal of Spacecraft and Rockets, Vol. 45, No. 5, 2008, pp. 879–890.

5Johnston, C. O. and Kleb, B., “Uncertainty Analysis of Air Radiation for Lunar-Return Shock Layers,” Journal of
Spacecraft and Rockets, Vol. 49, No. 3, 2012, pp. 425–434.

6West IV, T. K. and Hosder, S., “Uncertainty Quantification of Hypersonic Reentry Flows with Sparse Sampling and
Stochastic Expansions,” Journal of Spacecraft and Rockets, Vol. 52, No. 1, 2015, pp. 120–133.

7Oberkampf, W. L., Helton, J. C., and Sentz, K., “Mathematical Representation of Uncertainty, AIAA 2001-1645,” 3rd

Non-Deterministic Approaches Forum, Seattle, WA, April 2001.
8Hosder, S. and Bettis, B., “Uncertainty and Sensitivity Analysis for Reentry Flows with Inherent and Model-Form

Uncertainties,” Journal of Spacecraft and Rockets, Vol. 49, No. 2, 2012, pp. 193–206.
9Bettis, B., Hosder, S., and Winter, T., “Efficient Uncertainty Quantification in Multidisciplinary Analysis of a Reusable

Launch Vehicle, AIAA 2011-2393,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Confer-
ence, San Francisco, CA, April 2011.

10Hosder, S., Walters, R. W., and Balch, M., “Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic
Computational Fluid Dynamics,” AIAA Journal , Vol. 48, No. 12, 2010, pp. 2721–2730.

11Witteveen, J. A. S. and Bijl, H., “Efficient Quantification of the Effect of Uncertainties in AdvectionDiffusion Problems
Using Polynomial Chaos,” Numerical Heat Transfer , Vol. 53, No. 5, 2008, pp. 437–465.

12Han, D. and Hosder, S., “Inherent and Model-Form Uncertainty Analysis for CFD Simulation of Synthetic Jet Actuators,
AIAA 2012-0082,” 48th AIAA Aerospace Sciences Meeting, Nashville, TN, Jan. 2012.

13Eldred, M. S., “Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty
Analysis and Design, AIAA 2009-2274,” 50th AIAA/ASME/ASCE/AHS/ASC Structures, Palm Springs, CA, May 2009.

14Ghanem, R. G. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.
15West IV, T. K., Hosder, S., and Johnston, C. O., “Multi-Step Uncertainty Quantification Approach Applied to Hypersonic

Reentry Flows,” Journal of Spacecraft and Rockets, Vol. 51, No. 1, 2014, pp. 296–310.
16Lockwood, B. and Mavriplis, D., “Gradient-Based Methods for Uncertainty Quantification in Hypersonic Flows,” Com-

puters and Fluids Journal , Vol. 85, Oct. 2013, pp. 27–38.
17Roderick, O., Anitescu, M., and Fischer, P., “Polynomial Regression Approaches Using Derivative Information for Un-

certainty Quantification,” Nuclear Science and Engineering, Vol. 164, No. 2, 2010, pp. 122–139.
18Hosder, S., Walters, R. W., and Balch, M., “Efficient Sampling for Non-Intrusive Polynomial Chaos Applications with

Multiple Uncertain Input Variables, AIAA 2007-1939,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Honolulu, HI, April 2007.

19Doostan, A. and Owhadi, H., “A non-adapted sparse approximation of PDEs with stochastic inputs,” Journal of Com-
putational Physics, Vol. 230, No. 8, 2011, pp. 3015–3034.

20Yang, A., Ganesh, A., Sastry, S., and Ma, Y., “Fast L1-Minimization Algorithms and An Application in Robust Face
Recognition: A Review,” Tech. Rep. UCB/EECS-2010-13, EECS Department, University of California, Berkeley, Feb 2010.

21Asif, M. S. and Romberg, J., “Fast and Accurate Algorithms for Re-Weighted l1-Norm Minimization,” IEEE Transactions
on Signal Processing, Vol. 61, No. 23, 2013, pp. 5905–4916.

22Sudret, B., “Global sensitivity analysis using polynomial chaos expansion,” Reliability Engineering and System Safety,
Vol. 93, No. 7, 2008, pp. 964–979.

23Crestaux, T., Maitre, O. L., and Martinez, J.-M., “Polynomial chaos expansion for sensitivity analysis,” Reliability
Engineering and System Safety, 2009.

24Ghaffari, S., Magin, T., and Iaccarino, G., “Uncertainty Quantification of Radiative Heat Flux Modeling for Titan
Atmospheric Entry, AIAA 2010-239,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, Orlando, FL, Jan. 2010.

15 of 19

American Institute of Aeronautics and Astronautics



25Blatman, G. and Sudret, B., “Adaptive sparse polynomial chaos expansion based on least angle regression,” Journal of
Computational Physics, Vol. 230, No. 6, 2011, pp. 2345–2367.

26West IV, T. K., Brune, A. J., Hosder, S., and Johnstons, C. O., “Uncertainty Analysis of Radiative Heating Predictions
for Titan Entry,” Journal of Thermophysics and Heat Transfer , 2015.

27Gnoffo, P. A., Gupta, R. N., and Shinn, J. L., “Conservation Equations and Physical Models for Hypersonic Air Flows
in Thermal and Chemical Nonequilibrium,” Tech. rep., NASA TP 2867, Feb. 1989.

28Park, C., Howe, J. T., Jaffe, R. L., and Candle, G. V., “Review of Chemical-Kinetic Problems for Future NASA Missions,
II: Mars Entries,” Journal of Thermophysics and Heat Transfer , Vol. 8, No. 1, 1994, pp. 9–23.

29Liu, Y., Prabhu, D., Trumble, K. A., Saunders, D., and Jenniskens, P., “Radiation Modeling for the Reentry of the
Stardust Sample Return Capsule,” Journal of Spacecraft and Rockets, Vol. 47, No. 5, 2010, pp. 741–752.

30Gokcen, T., “N2-CH4-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan,” Journal of Thermo-
physics and Heat Transfer , Vol. 21, No. 1, 2007, pp. 9–18.

31Johnston, C. O., Brandis, A. M., , and Sutton, K., “Shock Layer Radiation Modeling and Uncertainty for Mars Entry,
AIAA 2012-2866,” 43rd AIAA Thermophysics Conference, New Orleans, LA, June 2012.

32Ralchenko, Y., “NIST Atomic Spectra Database, Version 3.1.0,” .
33The Opacity Project Team, The Opacity Project , Vol. 1, 1995.
34Cunto, W., Mendoza, C., Ochsenbein, F., and Zeippen, C., “TOPbase at the CDS,” Astronomy and Astrophysics,

Vol. 275, 1993, pp. L5–L8.
35Mazaheri, A., Johnston, C. O., and Sefidbakht, S., “Three-Dimensional Radiation Ray-Tracing for Shock-Layer Radiative

Heating Simulations,” Journal of Spacecraft and Rockets, Vol. 50, No. 3, 2013, pp. 485–493.

Appendix

The following appendix gives tables of the four groups of uncertain parameters for the radiative heat
transfer model problem used in this study. Note that the parameters of Tables A1, A2, A3, A7, and A8 are
those of an Arrhenius form. The equations for each of these three tables are given by Eq. (14), (15), and
(16), respectively. The notation “om” on the uncertainty ranges denotes order-of-magnitude.

Table A1: Flow Field Dissociation Reactions

# Reaction Af,i nf,i Df,i Tf,i Third Body, M Uncertainty

Dissociation Reactions

1 C2 + M ↔ 2C + M 4.5e+18 −1.00 7.15e+04 Ta All +1, -1 om

2 C2H + M ↔ C2 + H + M 1.7e+35 −5.16 5.74e+4 Ta All +1, -1 om

3 C2H2 + M ↔ C2H + H + M 4.0e+16 0.00 5.40e+4 Ta All +1, -1 om

4 C3 + M ↔ C2 + C + M 1.68e+21 −1.50 8.774e+04 Ta H, C, N, O +1, -1 om

8.4e+20 −1.50 8.774e+04 Ta others +1, -1 om

5 C5 + M ↔ C3 + C2 + M 4.0e+14 0.00 81549.0 Ttr All +1, -1 om

6 CH + M ↔ C + H + M 1.9e+14 0.00 3.3717e+04 Ta All F=2.0

7 CN + M ↔ C + N + M 6.0e+15 −0.40 7.100e+04 Ta All +1, -1 om

8 CO + M ↔ C + O + M 1.15e+11 1.519 1.2270e+5 Ta H, C, N, O +50, -75%

1.15e+10 1.519 1.2270e+5 Ta C02 +50, -75%

2.3e+10 1.519 1.2270e+5 Ta others +50, -75%

9 CO2 + M ↔ CO + O + M 1.185e+22 −1.50 63275.0 Ta H, C, N, O +0, -1 om

7.9e+21 −1.50 63275.0 Ta others +0, -1 om

10 H2 + M ↔ 2H + M 0 0.00 4.840e+04 Ta H F=2.0

9.0e+14 0.00 4.840e+04 Ta others F=2.0

11 HCN + M ↔ CN + H + M 3.57e+26 −2.60 6.2845e+04 Ta All F=2.0

12 N2 + M ↔ 2N + M 3.01e+22 −1.60 1.132e+05 Ta H, C, O, N +1, -1 om

7.000e+21 −1.60 1.132e+05 Ta others +1, -1 om

13 NO + M ↔ N + O + M 4.567e+17 0.00 7.550e+04 Ta H, C, N, O, NO, CO2 +1, -1 om

2.080e+16 0.00 7.550e+04 Ta others +1, -1 om

14 O2 + M ↔ 2O + M 1.000e+22 −1.50 5.936e+04 Ta H, C, O, N +50, -50%

2.000e+21 −1.50 5.936e+04 Ta others +50, -50%

kf,i = Af,iT
nf,i

f,i exp(−Df,i/Tf,i) (14)

Khp
f,ij = Ahp

(
Ta

6000

)nhp

exp(−Ehp/Ta) (15)

Kel
f,ij = AelTve

nelexp(−Eel/Tve) (16)
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Table A2: Flow Field Exchange Reactions

# Reaction Af,i nf,i Df,i Tf,i Uncertainty

15 C2 + C2H2 ↔ 2C2H 1.1e+14 −0.38 6.87e+3 Ttr +1, -1 om

16 C2 + N2 ↔ CN + CN 1.50e+13 0.0 2.1e+4 Ttr +1, -1 om

17 C2H + H ↔ C2 + H2 1.600e+13 0.15 1.460e+04 Ttr +1, -1 om

18 C3 + C ↔ C2 + C2 6.00e+11 1.07 1.650e+04 Ttr +1, -1 om

19 C3 + N ↔ CN + C2 1.000e+12 0.00 3.420e+04 Ttr +1, -1 om

20 CH + C ↔ C2 + H 2.00e+14 0.0 0.0 Ttr +1, -1 om

21 CH + CO ↔ C2H + O 2.5e+10 0.67 3.90e+4 Ttr +1, -1 om

22 CH + N2 ↔ HCN + N 4.40e+12 0.0 1.106e+04 Ttr +1, -1 om

23 CN + C ↔ C2 + N 3.000e+14 0.00 1.810e+04 Ttr +1, -1 om

24 CN + H2 ↔ HCN + H 2.95e+05 0.0 1.13e+03 Ttr F=5.0

25 CN + O ↔ NO + C 1.600e+12 0.10 1.460e+04 Ttr +1, -0 om

26 CO + C ↔ C2 + O 2.40e+17 −1.00 5.800e+04 Ttr +1, -1 om

27 CO + C2 ↔ C3 + O 1.000e+12 0.00 4.120e+04 Ttr +1, -1 om

28 CO + N ↔ CN + O 1.000e+14 0.00 3.860e+04 Ttr +1, -1 om

29 CO + NO ↔ CO2 + N 3.0e+6 0.88 1.33e+4 Ttr +1, -1 om

30 CO + O ↔ O2 + C 3.900e+13 −0.18 6.920e+04 Ttr +1, -0 om

31 CO2 + O ↔ O2 + CO 2.710e+14 0.0 3.3797e+04 Ttr +1, -1 om

32 H + C2H2 ↔ C2H + H2 1.e+16 −0.5 1.55e+4 Ttr +1, -1 om

33 H + CN ↔ CH + N 1.5e+15 −0.12 4.976e+4 Ttr +1, -1 om

34 H + CO ↔ CH + O 6.7e+14 0.15 8.847e+4 Ttr +1, -1 om

35 H2 + C ↔ CH + H 4.00e+14 0.00 1.17e+04 Ttr +1, -1 om

36 H2 + H ↔ 2H + H 8.5e+19 −1.1 5.2335e+04 Ta +1, -1 om

37 N + CO ↔ NO + C 1.1e+14 0.07 5.35e+4 Ttr +1, -1 om

38 N2 + C ↔ CN + N 1.100e+14 −0.11 2.320e+04 Ttr +50, -50%

39 N2 + CO ↔ CN + NO 1.2e+16 −1.23 7.70e+4 Ttr +1, -1 om

40 N2 + O ↔ NO + N 6.0e+13 0.1 3.800e+04 Ttr +50, -50%

41 O2 + N ↔ NO + O 2.49e+9 1.18 4.005e+03 Ttr +1, -1 om

Table A3: Flow Field Ionization Reactions

# Reaction Af,i nf,i Df,i Tf,i Uncertainty

42 C + e− ↔ C+ + e− + e− 5.05e+29 −3.00 1.3072e+05 Tve +1, -1 om

43 C+ + N2 ↔ N+
2 + C 1.11e+14 −0.11 5.0000e+04 Ttr +1, -1 om

44 H + e− ↔ H+ + e− + e- 2.20e+30 −2.80 1.5780e+05 Tve +1, -1 om

45 N + N ↔ N+
2 + e− 4.400e+07 1.50 6.750e+04 Tve +1, -1 om

46 N + O ↔ NO+ + e− 5.300e+12 0.00 3.190e+04 Tve +1, -1 om

47 N + e− ↔ N++ e− + e− 2.50e+34 −3.82 1.682e+05 Tve +1, -1 om

48 N+ + N2 ↔ N+
2 + N 1.000e+12 0.50 1.220e+04 Tve +1, -1 om

49 N2 + O+ ↔ N+
2 + O 9.100e+11 0.36 2.280e+04 Ttr +1, -1 om

50 N2 + e− ↔ 2N + e− 6.0e+3 2.6 1.132e+5 Tve +1, -1 om

51 NO + O+ ↔ N+ + O2 1.400e+05 1.90 2.660e+04 Ttr +1, -1 om

52 NO+ + C ↔ C+ + NO 1.0e+13 0.0 2.32e+4 Ttr +1, -1 om

53 NO+ + N ↔ N+
2 + O 7.200e+13 0.00 3.550e+04 Ttr +1, -1 om

54 NO+ + N ↔ O+ + N2 3.400e+13 −1.08 1.280e+04 Ttr +1, -1 om

55 NO+ + O ↔ N+ + O2 1.000e+12 0.50 7.720e+04 Ttr +1, -1 om

56 NO+ + O ↔ O+
2 + N 7.200e+12 0.29 4.860e+04 Ttr +1, -1 om

57 NO+ + O2 ↔ NO + O+
2 2.400e+13 0.41 3.260e+04 Ttr +1, -1 om

58 O + O ↔ O+
2 + e− 7.100e+02 2.70 8.060e+04 Tve +1, -1 om

59 O + e− ↔ O+ + e− + e− 3.900e+33 −3.78 1.585e+05 Tve +1, -1 om

60 O2 + C+ ↔ O+
2 + C 1.0e+13 0.0 9.4e+3 Ttr +1, -1 om

61 O+
2 + N ↔ O2 + N+ 8.700e+13 0.14 2.860e+04 Ttr +1, -1 om

62 O+
2 + N2 ↔ N+

2 + O2 9.900e+12 0.00 4.070e+04 Ttr +1, -1 om

63 O+
2 + O ↔ O+ + O2 4.000e+12 −0.09 1.800e+04 Ttr +1, -1 om

64 O2 + e− ↔ O+
2 + e− + e− 2.19e+10 1.16 130102.0 Tve +1, -1 om
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Table A4: Uncertain Molecular Band Processes

Molecule Upper State – Lower State Band Name λ Range (nm) Uncertainty

CO A1Π – X1Σ+ 4th Positive 120 – 280 +/- 40%

CO X1Σ+ – X1Σ+ Infrared 1200 – 7000 +/- 50%

CN A2Πi – X2Σ+ Red 400 – 2800 +/- 30%

CN B2Σ+ – X2Σ+ Violet 300 – 550 +/- 15%

C2 d3Πg – a3Πu Swan 390 – 1000 +/- 50%

H2 B1Σ+
u – X1Σ+

g Lyman 120 – 170 +/- 10%

H2 C1Πu – X1Σ+
g Werner +/- 20%

N2 Carroll-Yoshino +/- 50%

N2 First-Positive +/- 10%

N+
2 First-Negative +/- 10%

N2 Second-Positive +/- 10%

NO Beta +/- 50%

NO Delta +/- 50%

NO Epsilon +/- 50%

Table A5: Uncertain Atomic Nitrogen Lines

λmulti (nm) i j Wiese ID ±fij ±∆λS,O

120.00 1 4 1 20% 50%

149.33 2 5 15 10% 30%

174.36 3 5 29 20% 50%

745.22 4 10 48 10% 30%

821.41 4 9 47 10% 30%

869.40 4 8 46 15% 30%

1160.0 6 10 61 25% 100%

113.47 1 6 2 10% 50%

1353.0 5 7 50 10% 50%

1490.9 6 8 59 10% 100%

1355.1 6 9 60 25% 100%

Table A6: Uncertain Atomic Oxygen Lines

λmulti (nm) i j Wiese ID ±fij ±∆λS,O

130.35 1 5 2 3 50

844.88 5 7 60 10 50

777.55 4 6 56 0 3 50

104.01 1 9 6 25 50

135.60 1 4 1 25 50

164.13 2 5 4 25 50

172.71 2 4 3 25 50

232.54 3 5 5 25 50

672.80 4 7 57 25 50

1016.7 5 6 59 25 50

1128.7 7 11 78 25 50

Table A7: Uncertain Molecular Heavy-Particle Impact Excitation Rates (cm3/s) for non-
Boltzmann Modeling

# Reaction Ahp nhp Ehp Uncertainty

1 CN(X2Σ+) + M ↔ CN(A2Π) + M M dependent +/- 1 om

2 CN(A2Π ) + M ↔ CN(B2Σ+) + M M dependent +/- 1 om

3 CN(B2Σ+ ) + M ↔ CN(a4Σ+) + M M dependent +/- 2 om

4 CN(a4Σ+) + M ↔ CN(D2Π+) + M M dependent +/- 2 om

5 CO(X1Σ+) + M ↔ CO(a3Π) + M M dependent +/- 1 om

6 CO(X1Σ+) + M ↔ CO(a’3Σ+) + M 5.20E-10 0.500 80370.0 +/- 1 om

7 CO(X1Σ+) + M ↔ CO(d3∆) + M 2.61E-11 0.500 87975.0 +/- 1 om

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 2.52E-09 0.344 93669.0 +/- 1 om

9 CO(a3Π) + M ↔ CO(a’3Σ+) + M M dependent +/- 2 om

10 CO(a’3Σ+) + M ↔ CO(d3∆) + M M dependent +/- 2 om

11 CO(d3∆) + M ↔ CO(e3Σ−) + M M dependent +/- 2 om

12 CO(e3Σ−) + M ↔ CO(A1Π) + M 8.78e-11 0.498 971.0 +/- 2 om
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Table A8: Uncertain Molecular Electron-Impact Excitation Rates (cm3/s) for non-Boltzmann
Modeling

# Reaction Ael nel Eel Uncertainty

1 CN(X2Σ+) + e− ↔ CN(A2Π) + e− 6.41e-09 0.20 18303 +/- 1 om

2 CN(X2Σ+) + e− ↔ CN(B2Σ+) + e− 6.83e-10 0.39 40428 +/- 1 om

3 CN(X2Σ+ ) + e− ↔ CN(a4Σ+) + e− 5.13e-11 0.35 47323 +/- 2 om

4 CN(X2Σ+) + e− ↔ CN(D2Π+) + e− 4.07e-10 0.25 79368 +/- 2 om

5 CN(A2Π) + e− ↔ CN(B2Σ+) + e− 1.36e-04 -0.74 28030 +/- 2 om

6 CN(A2Π) + e− ↔ CN(a4Σ+) + e− 4.55e-04 -0.77 37548 +/- 2 om

7 CN(A2Π) + e− ↔ CN(D2Π+) + e− 1.22e-03 -0.82 69300 +/- 2 om

8 CN(B2Σ+) + e− ↔ CN(a4Σ+) + e− 7.85e-05 -0.66 14148 +/- 2 om

9 CN(B2Σ+) + e− ↔ CN(D2Π+) + e− 6.29e-04 -0.79 45559 +/- 2 om

10 CN(a4Σ+) + e− ↔ CN(D2Π+) + e− 4.23e-04 -0.77 36015 +/- 2 om

11 CO(X1Σ+) + e− ↔ CO(a3Π)+ e− 8.42e-11 0.28 80530 +/- 1 om

12 CO(X1Σ+) + e− ↔ CO(a’3Σ+)+ e− 1.82e-14 1.17 102434 +/- 1 om

13 CO(X1Σ+) + e− ↔ CO(d3∆)+ e− 3.16e-12 0.66 114626 +/- 1 om

14 CO(X1Σ+) + e− ↔ CO(e3Σ−)+ e− 2.10e-14 1.17 113995 +/- 1 om

15 CO(X1Σ+) + e− ↔ CO(A1Π)+ e− 3.82e-09 0.12 95850 +/- 1 om

16 CO(a3Π) + e− ↔ CO(a’3Σ+)+ e− 4.43e-8 -0.73 23456 +/- 1 om

17 CO(a3Π) + e− ↔ CO(d3∆)+ e− 7.74e-15 1.17 44552 +/- 1 om

18 CO(a3Π) + e− ↔ CO(e3Σ−)+ e− 3.21e-15 1.27 44896 +/- 1 om

19 CO(a3Π) + e− ↔ CO(A1Π)+ e− 1.49e-05 -0.74 27860 +/- 2 om

20 CO(a’3Σ+) + e− ↔ CO(d3∆)+ e− 2.53e-11 0.16 10611 +/- 1 om

21 CO(a’3Σ+) + e− ↔ CO(e3Σ−)+ e− 6.04e-13 0.61 11041 +/- 1 om

22 CO(a’3Σ+) + e− ↔ CO(A1Π)+ e− 6.56e-06 -0.69 17750 +/- 2 om

23 CO(d3∆) + e− ↔ CO(e3Σ−)+ e− 1.09e-10 1.66 10686 +/- 1 om

24 CO(d3∆) + e− ↔ CO(A1Π)+ e− 2.62e-06 -0.63 10570 +/- 2 om

25 CO(e3Σ−) + e− ↔ CO(A1Π)+ e− 1.41e-06 -0.58 6971 +/- 2 om
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