Automatic Dependent Surveillance Broadcast: ADS-B Sense-and-Avoid System

Ricardo Arteaga
NASA Armstrong Flight Research Center
AIAA, June 13-17
Washington DC
Introduction to ADS-B

Automatic Dependent Surveillance Broadcast

- Replacing radar for tracking aircraft worldwide
 - Prevent collisions
- Sharing position, altitude, velocity, etc. with air traffic control and other aircraft
 - ADS-B Out = Transmit
 - ADS-B In = Receive
- FAA-mandate by Jan. 1, 2020
Operational Use Cases

• Urgent need to safely integrate UAS into the National Air Space (NAS)
 – First responders and firefighters
 – Search-and-rescue missions
 – Monitoring and/or fighting forest fires
 – Package delivery (Amazon®, Domino’s®, FedEx®)
 – Surveying farmland, borders, pipelines

• Consumer/Commercial demand for UAS likely to explode in the next decade
 – 30,000 drones operating by 2020 (FAA)¹

• Market opportunity by 2020 for ADS-B equipped Unmanned Aircrafts: from $240 to $360 million.

New Technology
• ADS-B OUT
• ADS-B IN
• ADS-B Sense and Avoid

UNMANNED ADS-B AIRCRAFT SYSTEMS

• ADS-B system coupled to an unmanned aerial vehicle for increased situational awareness and self-separation assurance

C-BAND

LOS Datalink

GPS

GCS

1090 MHz

978 MHz

ADS-B Ground Station

NASA Patent Pending 13/785,661
NASA Results and Benefits

Results

ADS-B flight tests on Ikhana UAS

• ADS-B Out: March 2012
 o First time a UAS as large as the MQ-9 had flown equipped with ADS-B
• ADS-B In: May 2012
 o 2 Flight Tests at Dryden with successful traffic surveillance

Benefits

• Complies with FAA certification for ADS-B Out (5.7 feet position accuracy, FAA independent analysis)
• Provides backbone technology for NextGen
• Increases safety by ensuring safe separation
• Increases pilot awareness, situational and traffic
• Other technical benefits
 o Provides 3D synthetic views
 o Loss link of UAS telemetry uses FAA Tech Center ADS-B data for redundancy

NASA Patent Pending 13/785,661
Advanced sense-and-avoid algorithm

- Software uses ADS-B broadcast information to construct aircraft trajectories, and predict future loss of separation.

Collision possible: 33s
ADS-B sense-and-avoid algorithm

Stratway – a modular approach to safe conflict resolutions.
Stratway conflict resolution algorithm

Stratway – strategies are iterated.
Sense-and-Avoid sub-functions

NASA Sense and Avoid unique capabilities provided by the Stratway code.
NASA ADS-B SAA Display

LEGEND

- **Target aircraft transmitting ADS-B**
- **Ownship’s resolution advisory**
- **Aircraft’s nominal trajectory**
- **Traffic alert advisory**
- **Traffic threat advisory**

NASA Patent Pending 13/785,661
Model Elements Used To Develop and Validate Requirements

- Encounters
 - Correlated
 - Uncorrelated
 - Multi-Intruder-type distribution
 - Scripted stressing scenarios
 - Recorded flight test tracks
 - Run Simulation (NASA)

- Detect
 - Ownship Data
 - UAV
 - Active (Mode S / Mode C Transponders)
 - ADS-B

- Tracker
 - Correlation
 - Kalman Filters

- Alerting
 - Must Not Alert
 - Must Alert
 - Horizontal RAs
 - Vertical RAs
 - Speed RAs

- Guidance
 - Stratway +
 - Metrics (CPA, Well Clear, Alerting Time)

- Display
 - NASA ADS-B Display Sense and Aviod

- Aircraft Model/Aircraft
 - NASA (6 DOF)
 - Cessna 172 A/C

- Pilot
 - Pilot Usability
 - Pilot response time
 - Pilot Maneuvers
Encounters Geometries Used To Develop and Validate Requirements

- Horizontal & Vertical Encounters
- 500, 200, 0, -200, -500 feet offsets
- Head On, Crossing, 45, 90, 180 degree.
Encounters Geometries Used To Develop and Validate Requirements

- Horizontal & Vertical Encounters
- 500, 200, 0, -200, -500 feet offsets
- Head On, Crossing, 45, 90 degree.
SAA Algorithm Performance

- Vertical Encounters
- Horizontal Encounters
- Multiple Intruders Scenario

```
<table>
<thead>
<tr>
<th>Vertical Separation (ft)</th>
<th>Horizontal Separation (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.00</td>
</tr>
<tr>
<td>900</td>
<td>0.50</td>
</tr>
<tr>
<td>800</td>
<td>1.00</td>
</tr>
<tr>
<td>700</td>
<td>1.50</td>
</tr>
<tr>
<td>600</td>
<td>2.00</td>
</tr>
<tr>
<td>500</td>
<td>2.50</td>
</tr>
<tr>
<td>400</td>
<td>3.00</td>
</tr>
<tr>
<td>300</td>
<td>3.50</td>
</tr>
</tbody>
</table>
```

"Well Clear"
ADS-B Sense and Avoid Simulation
Manned Flight Tests ADS-B SAA

- Test Aircraft (Ownship)
- Intruder
Flight Test Validation

COLLISION POSSIBLE 10s
Flight Test Lessons Learned

- Simplify, simplify, simplify, don’t try to get it totally right the first time.
- Incrementally integrate the ADS-B Out and ADS-B In capability.
- Pilot Useability tests are critical for design of man-machine interface.
- Flight tests can be used to validate simulations.
Future Applications and Benefits

ADS-B on Space Craft Vehicles

- Complies with FAA certification for ADS-B Out
- ADS-B represents the backbone technology for NextGen.
- Provides re-entry tracking from ground station/UAS for space vehicle recovery

Commercial Applications both inside and outside NASA: Long Endurance 5 years Commercial space vehicles with ADS-B Systems (will likely emerge in the next decade).

NASA is a world class leader in cutting edge astronautics technology.
Conclusion

• Research presented demonstrates the ADS-B SAA performance for conflict detection and conflict resolutions for unmanned and manned general aviation using accurate ADS-B velocity state information.

• Vigilant Aerospace Systems, Inc has successfully licensed the NASA ADS-B SAA technology

• NASA will conduct research on a miniaturized radar for detecting uncooperative targets and/or objects.
ADS-B Sense and Avoid System

Video

http://www.youtube.com/watch?v=7vUV2VqFw5E&feature=youtu.be
Questions?
NASA’s Successful Flight Tests

- **Various sizes:** Ikhana, DROID, Towed Glider
- **Performance:** 5.7 ft. accuracy (304 ft. mandate)
- **Traffic surveillance:** Up to 17 real-time tracks
- **Record-setting:** First time large UAS had flown with ADS-B

http://www.nasa.gov/centers/armstrong/Features/armstrong_engineers_honored.html, accessed on October 15, 2104
Alerting Logic
RISK Collision Volumes

ATC Separation Services

Self Separation Threshold

Collision Avoidance Threshold

Collision Volume

Near Mid-Air Collision Alert

Traffic Alert

Intruder

Threat

1000 ft.

+/-500 ft

 +/-1000 ft

1 nm

3 nm

3 - 5 nm

Well Clear
New Technology

MANNED AIRCRAFT SYSTEMS

Aircraft

- Traffic Conflict Detection
- Integrated 2D/3D Weather
- Integrated 3D Terrain
- NASA Dryden developed capability
- ADS-B Sense and Avoid

Tablet User Interface

- Detects intruding aircraft in terms of increasing threat risk
- Alerts pilots of potential collisions and provides resolution advisories

ADS-B Out & In

- ADS-B Out Broadcasts Ownship
- ADS-B In reception of air-to-air ADS-B messages from proximate aircraft and ADS-B In traffic information.
Simulation Scenario Demo
BACKGROUND
Urgent need to safely integrate UAS into the National Air Space (NAS), as these systems are less expensive alternatives for:
- Search and rescue missions
- Monitoring forest fires
- Package delivery
- Surveying farmland, borders, and pipelines
- Fire Fighting missions

What is ADS-B?
- ADS-B Out is the broadcast of position information to other aircraft and ground stations.
- ADS-B In is the ability to receive ADS-B Out transmissions.

Why use ADS-B?
- By 2020, all aircraft flying in transponder airspaces will be required to have ADS-B.
- Provides more reliable tracking of aerial vehicles and increases safety.

OBJECTIVE
- Evaluate SAA Algorithm performance with small and mid-sized UAVs

SYSTEM
ADS-B Hardware
ADS-B Out transponder from Sagetech Corporation
- 3.5 x 1.8 x 0.7 inches
- 100 grams (3.5 ounces)

Sense & Avoid Software and Algorithms
The software package is entirely developed by NASA
- World Wind – 3D Geobrowser
- Stratway - Strategic resolutions for aircraft conflicts
- Sense & Avoid–Alerts pilot of potential collisions to avoid accidents

SYNOPSIS
- Advanced system will be needed to keep drones from colliding with manned aircraft vehicles.
- Validating the software algorithms with flight experiments to improve safety.
- This ADS-B Sense and Avoid product is key to safety.

http://www.nasa.gov/centers/armstrong/Features/armstrong_engineers_honored.html, accessed on October 15, 2104
ADS-B Equipped DRIOD
Benefits of NASA’s ADS-B Technology

- **Complies with FAA** certification for ADS-B Out
- **Provides backbone** technology for NextGen
 - Tracking UAVs and other aircraft on tablets
- **Increases safety** by ensuring safe separation
 - ADS-B sense-and-avoid capability
- **Increases awareness**, situational and traffic
 - Preeminent attribute for successful UAS operations
- **Other technical benefits**
 - Provides 3D synthetic views of the UAS
 - Loss link of UAS telemetry uses FAA Tech Center ADS-B data for redundancy

NASA Patent Pending 13/785,661
ADS-B SAA Display
Traffic Advisory
Flight Tests ADS-B Sense and Avoid
(Green Resolution Advisory)
Conflict Detection
Resolution Advisory
NASA Pilot Usability Tests

Human Factors

<table>
<thead>
<tr>
<th></th>
<th>Conflict detection</th>
<th>Resolution advisory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usefulness</td>
<td>9.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Accuracy</td>
<td>9.6</td>
<td>8.2</td>
</tr>
<tr>
<td>Safety</td>
<td>9.2</td>
<td>8.9</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>9</td>
<td>8.9</td>
</tr>
</tbody>
</table>
ADS-B Situational Display
Traffic Alerting

TRAFFIC THREAT INDICATORS
ADS-B Mission Scenarios

“Baseline” case: No intruders, conflicts or collisions detected. Nominal UAS Operations

“Conflict” case: Traffic A/C Conflict threat detected.

- Conflict Threat Detection
- Resolution Advisory
- Time to CPA appears at top of the display

“Collision” case: Traffic A/C Collision threat detected.

- Collision Threat Detection
- & Resolution Advisory