Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

Stephen B. Cumming, Mark S. Smith, Aliyah N. Ali, Trong T. Bui, Joel C. Ellsworth, and Christian A. Garcia

NASA Armstrong Flight Research Center

Washington, D.C.
Outline

• Introduction
• Flight Test Approach
• Investigation Methods
• Flight Test Results
• Conclusions
Introduction

• Adaptive Compliant Trailing Edge (ACTE) effort was a joint project with NASA’s Environmentally Responsible Aviation (ERA) project and U.S. Air Force Research Laboratory (AFRL)
• The ACTE technology has the potential to reduce aircraft weight, improve aerodynamic efficiency, and reduce airframe noise
• NASA GIII airplane was modified, removing trailing edge flaps, along with flight and ground spoilers, and installing seamless compliant flaps
• Flaps were fixed at specific flap deflections, ranging from -2 degrees (trailing edge up) to 30 degrees (trailing edge down) and only adjustable on the ground
• A series of flights was flown to obtain aerodynamic and structural data for the modified GIII airplane with the ACTE flaps installed
GIII SubsoniC Research Aircraft Testbed
GIII SubsoniC Research Aircraft Testbed

- **GIII Airplane Information:**
 - Service Ceiling: 45,000 ft
 - Max Speed: 340 KCAS, Mach 0.85
 - Zero Fuel Weight: 38,000 lb, Max Takeoff Weight: 69,700 lb
 - 75 ft wingspan

- **Standard Research Instrumentation:**
 - Pitot-static and total temperature parameters
 - Flow angle vanes
 - Embedded GPS/INS (EGI) unit
 - Surface position measurements

- **ACTE Research Instrumentation:**
 - Structural sensors, including strain gages, fiber optics strain sensing, accelerometers
 - Aerodynamic sensors, including steady and unsteady pressures, a leading-edge stagnation sensing system, separation detection sensors, and tufts
ACTE Flaps

- Replaced conventional GIII Fowler flaps
- Span of 18 ft
- Roughly 20% chord
ACTE Aerodynamic Instrumentation
Flight Test Approach

• Prior to ACTE modifications, baseline flights, including some with the flight spoilers disabled, were completed and used to update existing aerodynamic models for the GIII airplane

• CFD analyses were performed with Star-CCM+ code over the planned flight range of flap deflections and flight conditions

• CFD results were used to create an aerodynamic model, investigate effects of the flaps on stall speed and evaluate potential loss of aileron effectiveness

• An aerodynamic model of the force and moment effects of the ACTE flaps was created from predictive tools and incorporated into a 6-DOF flight simulation

• Flights were performed with the ACTE flaps installed, starting with 0 degree flap deflection

• The flight envelope for each flap deflection was cleared, then incrementally increased for the next set of flights
Star-CCM+ Vehicle Aerodynamics

- Unstructured Navier-Stokes solver
- Full airplane was modeled
- Operating engines were modeled using flow conditions from 1-D engine model
- 35 million finite volume cells
- SST K-Omega turbulence model used with an all y+ wall treatment
- 19 prism layers were used within a normal distance of approximately 1.8 inches from the wall
ACTE Flight Envelope

![Graph showing ACTE flap deflection](image)

ACTE flap deflection
- 0 to 2 deg
- −2 to 5 deg
- −2 to 15 deg
- −2 to 30 deg

ACTE test points

Axes:
- Altitude, ft
- Mach number

Lines and Markings:
- 150 KCAS
- 170 KCAS
- 200 KCAS
- 220 KCAS
- 250 KCAS
- 300 KCAS
- 340 KCAS
- 350 KCAS
Investigation Methods

• Vehicle Aerodynamics
 – 2-1-1 maneuvers performed in-flight
 – Parameter estimation using equation error and output error techniques

• Sectional Pressures
 – Constant airspeed and altitude “steady-state” maneuvers were flown
 – Pressures were averaged over 5-second time spans with minimal change in Mach, altitude, and angle of attack
 – Pressure coefficients and sectional lift coefficients were calculated

• Pitot-Static System
 – Level acceleration and deceleration maneuvers were performed at various altitudes
 – Meteorological data was combined with differential GPS to produce correction curves
Flight Test Results

• All flight test objectives were met
• A total of 23 ACTE flights were completed
• The flight tests successfully cleared the planned envelope and captured aerodynamic and structural data
• Results in the areas of vehicle aerodynamics, sectional pressures, and effects on the pitot-static system will be discussed
Vehicle Aerodynamics Results

- The ACTE flaps affected airplane lift and pitching moment
- No significant effects to other stability and control derivatives
- The preflight ACTE aerodynamic model over-predicted lift due to the ACTE flap for flap deflections above 10 degrees
- Pitching moment due to ACTE flap was better predicted, but still over-predicted for flap deflections above 20 degrees
- ΔC_L and ΔC_m trends with Mach number were captured reasonably well by the preflight model
ΔC_L vs. ACTE Flap Deflection

![Graph showing ΔC_L vs. ACTE flap deflection, with data points and shaded confidence region.](image)
ΔC_m vs. ACTE Flap Deflection

![Graph showing ΔC_m vs. ACTE flap deflection, with data points and model confidence region.](image-url)
ΔC_L vs. Mach Number

The diagram shows the change in lift coefficient (ΔC_L) as a function of Mach number across different ACTE flap deflections. The Preflight aerodynamic model confidence region is indicated by the shaded area. Different symbols and colors represent various flap deflections: -2, 10, 25, 2, 15, 30, 5, and 20. The x-axis represents Mach number, ranging from 0.3 to 0.8, while the y-axis represents ΔC_L, ranging from -0.1 to 0.6.
ΔC_m vs. Mach Number
Sectional Pressures Results

- CFD results consistently over-predicted suction over the entire airfoil section (at all three butt lines)
- At high flap deflections, flow separation over the flap was under-predicted by CFD results
- Predictions for flow separation point were most accurate for the inboard pressures and least accurate for the outboard pressures
- Results for sectional lift mirrored overall aerodynamic model trends for lift due to ACTE flap
Sectional Pressures

0° ACTE flap at Mach 0.30, 10,000 ft

$C_{l,\text{flight}} = 0.66$

$C_{l,\text{CFD}} = 0.71$

- Flight, upper
- Flight, lower
- CFD, upper
- CFD, lower
Sectional Pressures

20° ACTE flap at Mach 0.30, 10,000 ft

$C_{l,\text{flight}} = 0.81$

$C_{l,\text{CFD}} = 0.96$

Flight, upper
Flight, lower
CFD, upper
CFD, lower
Sectional Pressures

30° ACTE flap at Mach 0.30, 10,000 ft

BL 136

BL 201

BL 269

C_p vs. x/c

- Flight, upper
- Flight, lower
- CFD, upper
- CFD, lower

June 15, 2016
AIAA Aviation 2016
Sectional Lift

![Graph showing sectional lift coefficient vs. ACTE flap deflection](image)

- Flight data
- CFD data

Legend:
- Blue circles: Mach 0.3, hp=10000 ft
- Red crosses: Mach 0.55, hp=20000 ft
- Black squares: Mach 0.75, hp=40000 ft
Effects on Pitot-Static System

• Despite noticeable effects on the pitot-static system by the standard fowler flaps, airplane pitot-statics were not substantially affected by the ACTE flaps
• Any potential effects of the ACTE flaps fall within the calibration uncertainties of the pitot-static system
Pitot-Static Effects

![Graph showing Pitot-Static Effects](image)
Conclusions

• ACTE flight tests were completed successfully
• Aerodynamic models compared well with flight data at lower ACTE flap deflections, but over-predicted lift at higher flap deflections
• CFD solutions consistently over-predicted suction over the airfoil and under-predicted flow separation over the ACTE flap when compared with flight data
• Airplane pitot-static system was unaffected by ACTE flaps
Questions?
Backup Slides
ACTE Flap Deflection Definition

Undelected flap

Horizontal reference line

ACTE flap deflection
Sectional Pressures

0° ACTE flap at Mach 0.55, 20,000 ft

\[C_{l,\text{flight}} = 0.32 \]

\[C_{l,\text{CFD}} = 0.37 \]