The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

John J. Murray
Associate Program Manager
Atmospheric and Hydrological Disasters

Applied Sciences Program
Earth Science Division
Science Mission Directorate
NASA
Washington, DC USA

john.j.murray@nasa.gov

96th AMS Annual Meeting
New Orleans, LA
January 10 – 14, 2016
Co-author Acknowledgement

Co-authors (alphabetically by surname):

- Duncan Fairlie\(^1\)
- David Green\(^2\)
- John Haynes\(^2\)
- Nickolay Krotkov\(^3\)
- Franz Meyer\(^4\)
- Mike Pavolonis\(^5\)
- Charles Trepte\(^1\)
- Jean-Paul Vernier\(^1\)

\(^1\) NASA Langley Research Center, Hampton, VA, \(^2\) NASA Headquarters, Washington, DC, \(^3\) NASA Goddard Space Flight Center, Greenbelt, MD, \(^4\) University of Alaska, Fairbanks, \(^5\) UW/NOAA Cooperative Institute for Meteorological Satellite Studies, Madison, WI,
NASA Earth Science: Current and Upcoming Missions
Satellite imagers provide the best source of information concerning the location of volcanic ash. When one thinks of imager data, typically this is what typically comes to mind.
Multi-spectral Imaging: Making Full Use of Space-based Imagers for Volcanic Cloud Monitoring

NOAA and MetOp AVHRR

Terra and Aqua MODIS

SNPP-VIIRS

GOES-13-15

MTSAT-(1r and 2)

Met-(8,9,10) SEVIRI

Courtesy UW NOAA CIMSS, Madison WI
Eruption of Sangeang Api

NPP/OMPS May 31 2014 (04:35-06:25 UT)

SO\textsubscript{2} Cloud

Volcanic Ash Cloud

Aerosol Index

SO\textsubscript{2} column 15 km [DU]
IR ash detection:
- Plume must be transparent
- Water hides ash
- Plume temperature contrast with underlying surface
 - Detectable day and night
- Low concentration not detectable

Fresh ash clouds:
- Dense, must wait until sheared to thin layer
- Full of water, ice which masks detection

UV ash (AI) detection:
- Scattering by ash differs from Rayleigh scattering
- Sunlight necessary
- Low concentrations are detectable

Fresh ash clouds:
- Detected upon eruption
- Independent of water content
- Not detectable at night
NASA Direct Readout data processing at FMI and UAF/GINA

Direct Broadcast from Aura and S-NPP satellites

Receiving station in Sodankylä, Finland (FMI)

OMI and OMPS DR processing in Sodankylä

NASA/GSFC Direct Readout Laboratory and NPP ozone PEATE create software package for local processing of NPP DR data

FMI’s WWW and FTP services. Available within 20 min after data reception.

http://sampo.fmi.fi/volcanic.html

Receiving station at GINA/UAF in Fairbanks Alaska

OMPS DR Processing at UAF/GINA

GINA’s WWW and FTP services to Alaska Volcano Observatory. Available within 20 min after data reception.
Aura/OMI SO$_2$ data integrated into NOAA/NESDIS volcanic alert system and web site

NOAA/NESDIS distributes NASA volcanic SO$_2$ data from Aura/OMI to operational users via Washington Volcanic Ash Advisory Center. NOAA issues automatic e-mail alerts notifications.
The European Support to Aviation Control Service (SACS) is using the operational volcanic SO$_2$ column and Ash Index data from Aura/OMI and SNPP/OMPS as well as volcanic SO$_2$ data from Aqua/AIRS produced by NASA to complement the information already available from the morning instruments (GOME-2A/B, and IASI-A/B). The project is supported by NASA applied Sciences Disaster Program: http://so2.gsfc.nasa.gov
NASA NRT data are of utmost importance for Support to Aviation Control Service (SACS)

SACS= global alerting system for volcanic SO$_2$ and ash

SACS is used by 278 subscribed users for many applications:

- Volcanological observatories
- VAACs/metOffices
- Pilots
- Airlines, private companies related to aviation sector
- National civil protection agencies
- Scientists
- Students, Professors
- Journalists
- Citizens

Enhanced Characterization: Assimilating Series of CALIPSO Curtains Into Dispersion Forecast Models

Australia

New Zealand

Volcanic ash cloud

Ensemble of trajectories
- Ash cloud masked by ash in MTSAT data over SE Australia (Sydney)
- Ash Advisory misses area over Tasman Sea
- CALIPSO-trajectory map captured the head of the plume on time as validated by a subsequent independent daytime overpass
- n.b. The plume depiction above is 2-D, whereas the model output is 4-D.
- Operating since 2006
- Polar Orbit
- Equatorial Crossing-time at 0130 and 1330 LET
- Repeat cycle of 16 days

- Total Backscatter at 532 nm (density)
- Depolarization at 532 nm (geometry)
- Color Ratio (1064/532) (size)

- High vertical resolution (60 m) of backscatter profiles
- Optical parameters provide unique capability to detect volcanic ash and its vertical structure
Cordon ash clouds over New Zealand observed by CALIPSO several weeks after the eruption

- Multi laminar layers with low color ratio (0.5) and high depolarization (0.3-0.4) indicative of ash as opposed to ice
- Negative BT from IIR on board CALIPSO
- Consistent with small volcanic ash from Cordon
- Similar features observed most of June 2011
R. Kahn, D. Nelson, and the MISR Team, NASA JPL and GSFC

Adding Stereo-Derived plume heights, May 7, 12:39 UT

Plume 1

Plume 2

Height: Blue = Wind-corrected

o~1.1 km spatial resolution curtain has limited utility

R. Kahn, D. Nelson, and the MISR Team, NASA JPL and GSFC
Mt Redoubt, AK, 24 March 2009
Complementarity of SO2 Horizontal Mapping Using OMI/OMPS and CALIPSO Lidar Vertical Curtains (3-D Mapping for Lidar coupled with HYSPLIT Model not shown).

OMI and OMPS provide information on the horizontal distribution of total column SO\textsubscript{2} and volcanic ash index while Caliop provides critical height distribution data of the volcanic aerosols.
LaRC Airborne HSRL-2: World's First Airborne Multi-wavelength HSRL

07/17/2012 TCAP flight on B200 aircraft

- High Spectral Resolution Lidar (HSRL) provides independent retrievals of aerosol extinction and backscatter
 - HSRL-2 Capabilities
 - Backscatter at 355, 532, and 1064 nm
 - Extinction at 355 and 532 nm (HSRL)
 - Depolarization at 355, 532, 1064 nm
From CALIPSO to HSRL-2 to ACE

Caliop and HSRL*

532 and 1024 nm*
Backscatter
Depolarization
Color ratio
Extinction at 532 nm
Effective radius
Index of refraction
Scattering & Absorption Coefficients
Single Scattering Albedo

* 2 channel lidar are a minimum requirement to characterize volcanic ash. HSRL is the Calipso airborne equivalent

Eg. ESA EarthCare mission with a single 355 nm channel will provide improved signal to noise performance for plume heights, limited microphysics, and model trajectory validation. It will also provide greater observation frequency with multiple platforms, but it will not be a sufficiently capable, primary volcanic ash assessment tool.

HSRL-2 and ACE**

355, 532, and 1064 nm
Backscatter
Depolarization
Color ratio
Extinction at 355 and 532 nm
Mass/extinction ratios
Effective radius
Index of refraction
Scattering & Absorption Coefficients
Single Scattering Albedo
Surface concentration
Volume concentration
Particle size distribution

** 3 channel lidar are required to directly retrieve volumetric concentration without secondary cal/val.
From: Mike Pavolonis NOAA Federal
Subject: NOAA/CIMSS Volcanic Cloud Alert
Date: May 30, 2014 6:08:15 AM CDT
To: Mike Pavolonis NOAA Federal

@**********VOLCANIC ALERTS**********
STARTING DATE/TIME OF IMAGE: 2014-05-30 10:32:00 [UTC]
PRIMARY INSTRUMENT: MTSAT-2 Vis/IR_Imager
WMO SPACECRAFT ID: 172
LOCATION/ORBIT: GEO
L1 FILE: mtsat2_1_2014_150_1032.area.gz
VOLCANO DATABASE: /data/common//VOLCAT_DATA/alerts/NEW
NUMBER OF ASH CLOUD ALERTS: 1
NUMBER OF VOLCANIC Cb ALERTS: 0
NUMBER OF VOLCANIC THERMAL ANOMALY ALERTS: 0
NUMBER OF SO2 CLOUD ALERTS: 0

REPORT WITH IMAGES:
http://volcano.ssec.wisc.edu/alert/report/14318

POSSIBLE VOLCANIC ASH CLOUD FOUND
Alert Status: New Alert Object
Latitude of Radiative Center: -8.421 [degrees]
Longitude of Radiative Center: 119.678 [degrees]
Mean Viewing Angle: 31.21 [degrees]
Mean Solar Zenith Angle: 100.73 [degrees]
Nearby Volcanoes (meeting alert criteria):
 Sanpo, Waipu (49.71 km)
 Sangeang Api (71.71 km)
 Pauo, Uwai (93.32 km)
 Ranakah (94.86 km)
 Manam (147.81 km)

Cloud Object Probability: 99.99957 [%]
Median Probability of Object Pixels: 92.45512 [%]
Percent Unambiguous Pixels: 12.30223 [%]
Maximum Height [AMSL]: 10.2 [km] (33355.06 [ft])
90th Percentile Height [AMSL]: 9.6 [km] (31600.68 [ft])
Mean Tropopause Height [AMSL]: 16.5 [km] (54080.38 [ft])
Total Mass: .004477 [Tg]
Median Effective Particle Radius: 5.74 [um]
Total Area: 1281.51 [km^2]

Geographic Regions of Nearby Volcanoes: Lesser Sunda Is
VAAC Regions of Nearby Volcanoes: Darwin
FIR Regions of Nearby Volcanoes: Unknown

Primary Application: Initial Detection, Characterization and Alerting
Potential Secondary Application: Automated cuing of higher resolution observations such as Cliop
Application of SAR-integrated system to historic eruption of Okmok
- Conventional AVO data showed hazard signals only 20 minutes before eruption!
- SAR showed changing deformation pattern 25 days prior to eruption!
Accomplishment/Result

- While project is aimed at volcanic hazards, we have applied SARVIEWS to disasters of opportunity including:
 - Nepal earthquake (Apr/May 2015)
 - Wolf Volcano (May 2015)
 - Northwest China Earthquake (Jul 2015)
 - Chile Earthquake (Sep 2015)

- **Chile Earthquake (9/16/15; mag. 8.3):**
 - SARVIEWS team completed event-capturing SAR interferogram within 24 hours of the earthquake!
 - Image on right shows up to 1.5 meters of surface deformation across an area of 130 miles radius
Additional Examples

Wolf Volcano Eruption 5/25/2015

Earthquake Northwest China 7/3/2015

Nepal Earthquake Apr. 2015

Hazard products for recent disasters: GIS-Ready Surface Deformation maps
KIAsh deployment after Mt Kelud eruption

KIAsh campaign
10-day balloon field experiment in Darwin (Australia) May, 2014 to sample volcanic aerosol from the Mt Kelud eruption. Rapid Response, with critical support from NASA HQ (Considine, Kaye), CALIPSO (Trepte), SAGE (Thomason), Australian BOM (Atkinson), CASA.

Accumulated CALIPSO observations (14-24 May 2014)

- 3 months after the Mt Kelud eruption, the KIAsh campaign has revealed the persistence of volcanic ash in the lower stratosphere. Current models do not account for the climate impact of volcanic ash.
Questions?