Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) (Invited)

Mohagna J. Pandya
NASA Langley Research Center, Hampton, Virginia

Boris Diskin
National Institute of Aerospace, Hampton, Virginia

James L. Thomas, Neal T. Frink
NASA Langley Research Center, Hampton, Virginia

Presented at
AIAA Science and Technology Forum and Exposition (SciTech 2016)
San Diego, California
January 4-8 2016

mohagna.j.pandya@nasa.gov
Outline

• Background and Motivation
• Summary of Present Extensions
• Overview of USM3D Solution Methods
• Results
• Concluding Remarks
• Future Directions
Background and Motivation

- **Initial mixed-element USM3D version in 2012 (AIAA-2013-2541)**
 - extends USM3D tetrahedral grid CFD code to support various cell topologies
 - “preconditioner-alone” (PA) baseline solver technology to advance nonlinear solution in pseudo-time
 - preconditioner based on defect-correction scheme and point-implicit Gauss-Seidel solution method

- **Sluggish iterative convergence on finer grids**
 - 2D bump-in-channel finest grid solution after 500,000 nonlinear iterations
 - forces and moment almost converged, residuals several orders above machine-zero
Background and Motivation

- **USM3D mixed-element version enhanced in 2014 for improved iterative convergence and robustness (AIAA-2015-1747)**
 - Hierarchical Adaptive Nonlinear Iteration Method (HANIM)
 - similar to other recent approaches at NASA (FUN3D), Boeing (GGNS), etc.
 - convergence speedup factor of 1.4 to 13 relative to the baseline PA method
- **Diminished convergence acceleration on finer grids**
Summary of Present Extensions

- **Multicolor line-implicit preconditioner**
 - highly-anisotropic grids typically used for turbulent flow computations
 - line-implicit preconditioner can efficiently reduce high-frequency errors in the directions of small and large mesh spacing
 - point-implicit preconditioner can be inefficient on highly-anisotropic grids
 - line generation algorithm implemented
 - extracts a sequence of ordered cells that share a face
 - relies only on grid connectivity, does not use geometric/discretization information
 - currently limited to prismatic and hexahedral grids
 - Thomas algorithm for block tri-diagonal linear system
Summary of Present Extensions

• Improved discretization of turbulence model source terms
 – velocity gradients modified using a line-mapping method
 ➢ relies on line structure

• Discretely-consistent and general symmetry boundary condition
 – intersection of up to 3 symmetry boundary patches, angle between two
 symmetry boundary patches can be any divisor of 360°
 – new procedures for computing nodal averaging, fluxes, and flux linearization
 ➢ gradient, nodal averaging, and flux reconstruction stencils not biased

• Grid sequencing for solution initialization
 – currently limited to structured grids

• Preconditioner optimization
 – static residuals to monitor convergence of preconditioner
 – residual reduction target changed from 0.1 to 0.5
 ➢ improved efficiency observed for HANIM solutions using point-implicit
 preconditioner (up to factor 2.3)
Overview of USM3D Nonlinear Solution Methods

- System of nonlinear equations, $R(Q) = 0$
- Two different methods for nonlinear iterations
 - Preconditioner-Alone (PA) method
 - Hierarchical Adaptive Nonlinear Iteration Method (HANIM)
- PA method
 - baseline code technology with improved discretization and preconditioner
- HANIM
 - significant improvements over PA in robustness and iterative convergence
 - enhanced solver for the system of nonlinear equations
 - provides two additional hierarchies around the preconditioner of PA
 - matrix-free linear solver for the exact linearization of nonlinear RANS equations
 - nonlinear control of solution updates
 - CFL adaptation used as a comprehensive tool
PA Method

- Baseline code technology with improved discretization and preconditioner
 - first-order FDS scheme for mean flow approximate Jacobian
 - point- or line-implicit scheme for solving preconditioner equations
 - residual reduction targets for preconditioner

\[
\frac{V}{\Delta \tau} \Delta Q + \frac{\partial \hat{R}}{\partial Q} \Delta Q = -R \left(Q^n \right) \\
Q^{n+1} = Q^n + \Delta Q
\]
Hierarchical Adaptive Nonlinear Iteration Method (HANIM)

Preconditioner

GCR Solver

Realizability Check

Nonlinear Control

Nonlinear Update

Failure Handler

nonlinear iteration

nonlinear residuals
pseudo-time step

failed

failed

failed

HANIM Flowchart

mohagna.j.pandya@nasa.gov
HANIM Modules

Preconditioner, GCR Solver, Realizability Check, Nonlinear Control

- **Preconditioner** generates a new search direction for GCR

- **GCR Solver** uses Generalized Conjugate Residual (GCR) method
 - matrix-free linear solver for
 \[\frac{V}{\Delta \tau} \Delta Q + \frac{\partial R}{\partial Q} \Delta Q = - R(Q^n) \]
 - Frechet derivative used for \[\frac{\partial R}{\partial Q} \Delta Q \]
 - suggests updates, \(\Delta Q \), for current nonlinear solution

- **Realizability Check** module checks for non-physical solution state using updates, \(\Delta Q \), from GCR Solver module

- **Nonlinear Control** reduces nonlinear residuals to a specified target \(Q = Q^n + \omega \Delta Q \)
 - finds optimal under-relaxation parameter, \(\omega \), for updates from GCR-Solver
 - quadratic search used for under-relaxation parameter

\[\text{mohagna.j.pandya@nasa.gov} \]
Results

- **Steady-state Reynolds-averaged Navier-Stokes (RANS) solutions**
 - 2D bump-in-channel
 - 2D NACA 0012 airfoil
 - 3D bump-in-channel
 - 3D hemisphere-cylinder

- **Grids from NASA Turbulence Modeling Resource (TMR) website**
 - uniformly-refined nested grids

- **3 different solution sets**
 - HANIM solutions using line-implicit preconditioner (LI-HANIM)
 - HANIM solutions using point-implicit preconditioner (PI-HANIM)
 - PA method solutions using point-implicit preconditioner (PA)

- **Convergence of LI-HANIM assessed relative to PI-HANIM and PA**

- **Solution convergence criteria**
 - \(\text{rms norm of combined mean flow and turbulence model residuals} \leq 10^{-13} \)
 - aerodynamic coefficients converged to six significant digits
Key Solution Parameters

• Spalart-Allmaras (SA) model; negative variant
• Mean flow convective terms: second-order, Roe’s FDS
• SA model convective term: first-order
• Mean flow approximate Jacobian convective terms: first-order, FDS
• Preconditioner: maximum 500 G-S iterations, residual reduction target 0.5
• HANIM parameters
 – only 1 search direction for GCR Solver
 – linear residual reduction target for GCR Solver module: 0.96
 – nonlinear residual target for Nonlinear Control module: 0.92
 – adaptive CFL, 1 for the first nonlinear iteration
 ➢ If all modules declare success increase CFL by factor 2
 ➢ If any module declares failure, reduce CFL by factor 10
 – two different solutions using point-implicit preconditioner (PI-HANIM) and line-implicit preconditioner (LI-HANIM)
• PA parameters:
 – point-implicit preconditioner
 – prescribed CFL, ramped from 1 to 150 over 150 nonlinear iterations
2D NACA 0012 Airfoil

- Solutions computed using TMR Family II structured grid series
 - 2x113x33, 2x225x65, **2x449x129**, 2x897x257, 2x1793x513, **2x3585x1025**
 - grid points listed in spanwise, streamwise, and normal directions

Flow conditions: $M_\infty = 0.15$, $\alpha = 10^\circ$, $Re_c = 6\times10^6$

Solutions initialized using grid sequencing

mohagna.j.pandya@nasa.gov
2D NACA 0012 Airfoil
Solution Convergence on 2x449x129 Grid

- Combined residuals
 - Mean flow and SA model

- Maximum eddy viscosity

- Log₁₀(rms of residuals)
 - PA
 - PI-HANIM
 - LI-HANIM

- CPU time, seconds

- Log₁₀(CFL number)

- Mean flow and SA model

- Total drag

- CPU time, seconds

- PA

- PI-HANIM

- LI-HANIM

- CPU time, seconds

- Log₁₀(CFL number)

- CPU time, seconds

- Log₁₀(rms of residuals)

- CPU time, seconds
2D NACA 0012 Airfoil
Solution Convergence on 2x3585x1025 Grid

$\mu_{t,\text{max}}$

CPU time, seconds

maximum eddy viscosity

Combined residuals

Log$_{10}$(rms of residuals)

CFL number

Log$_{10}$(CFL number)

CPU time, seconds

$H_{t,\text{max}}$

CPU time, seconds

C_D

CPU time, seconds

C_D

CPU time, seconds

mohagna.j.pandya@nasa.gov
2D NACA 0012 Airfoil

LI-HANIM Speedup for Converged* Solutions

*combined residual rms 1.0×10^{-13}
force coefficients converge to six significant digits

LI-HANIM speedup = method time to solution/LI-HANIM time to solution

Speedup relative to PA method

Speedup relative to PI-HANIM

LI-HANIM converged on all grids

Speedup vs. characteristic grid spacing, h

PA solution yet to converge

PI-HANIM solution yet to converge

mohagna.j.pandya@nasa.gov
3D Bump-in-Channel

- Solutions computed using structured grid series
 - 3x45x21, 5x89x41, 9x177x81, 17x353x161, **33x705x321**, 65x1409x641
 - grid points listed in spanwise, streamwise, and normal directions

Flow conditions: $M_\infty = 0.2$, $\alpha = 0^\circ$, $Re_L = 3 \times 10^6$

Solutions initialized using grid sequencing

mohagna.j.pandya@nasa.gov
3D Bump-in-Channel
Solution Convergence on 33x705x321 Grid

combined residuals

Log$_{10}$(rms of residuals)

CPU time, seconds

PA
PI-HANIM
LI-HANIM

CFL number

Log$_{10}$(CFL number)

CPU time, seconds

C$_D$

total drag

CPU time, seconds

μ$_{t,max}$

maximum eddy viscosity

μ$_{t,max}$

CPU time, seconds

CD

CPU time, seconds

mohagna.j.pandya@nasa.gov
LI-HANIM speedup = method’s time to solution/LI-HANIM time to solution

*combined residual rms 1.0x10^{-13}
force coefficients converge to six significant digits

LI-HANIM converged on all grids

PA solution failed
PA solution not attempted

PI-HANIM solution not attempted

Residuals
Drag

PA solution
not attempted

characteristic grid spacing, h

characteristic grid spacing, h

Mohagna.J.Pandya@NASA.Gov
3D Hemisphere-Cylinder

- Solutions computed using mixed-element unstructured grid series
 - 355,200 cells in coarse grid, 2,841,600 cells in medium grid, and 22,732,800 cells in fine grid
 - 60° circumferential domain

Flow conditions: $M_\infty = 0.6$, $\alpha = 0^\circ$, $Re_L = 0.35 \times 10^6$

Solutions initialized using freestream conditions
3D Hemisphere-Cylinder
LI-HANIM Speedup for Converged* Solutions

*combined residual rms 1.0x10^{-13}
force coefficients converge to six significant digits

LI-HANIM speedup = method’s time to solution/LI-HANIM time to solution

Speedup relative to PA method

Speedup relative to PI-HANIM

Residuals

Drag

characteristic grid spacing, h

characteristic grid spacing, h
HANIM Convergence
Time to Target Level* Residuals for Four Cases

*combined residual rms 1.0×10^{-13}

- 2D bump-in-channel
- 2D NACA 0012 airfoil
- 3D bump-in-channel
- 3D hemisphere-cylinder

(characteristic grid spacing, h)

(time to solution, normalized by DoF)

mohagna.j.pandya@nasa.gov
Concluding Remarks

- Enhancements for mixed-element USM3D to further improve efficiency and accuracy of CFD solutions
 - multicolor line-implicit preconditioner
 - discretely-consistent and general symmetry boundary condition
 - improved discretization of turbulence model source term using line-mapping method

- Iterative convergence of line-implicit HANIM assessed relative to point-implicit HANIM and PA method on four turbulent flow cases
 - 2D bump in a channel, 2D NACA 0012 airfoil, 3D bump in a channel, 3D hemisphere cylinder

- Only line-implicit HANIM met convergence targets for all cases
 - rms norm of combined mean flow and turbulence model residuals ≤ 10^{-13}
 - aerodynamic coefficients converged to six significant digits
Concluding Remarks

- **Line-implicit HANIM relative to point-implicit HANIM**
 - at least factor 2.1 speedup for bump cases and NACA 0012 airfoil on finer grids, speedup higher than 10 on many grids
 - negligible speedup or even minor slowdown on coarse grids
 - slowdown for 3D hemisphere cylinder case, more competitive in grid refinement
 - less case-to-case variations in performance
 - less degradation in performance with grid refinement

- **Line-implicit HANIM relative to PA method**
 - more efficient across all cases
 - at least factor 6.2 speedup for bump cases and NACA 0012 airfoil on finer grids, speedup higher than 10 on many grids

- **Discretely-consistent and general symmetry boundary condition enabled efficient simulation of 3D hemisphere cylinder case**
 - one sixth of the grid for the full computational domain
Future Directions

- Parallelize current improvements
- Develop line generation algorithm for general unstructured grids
- Assess line-implicit HANIM on more 3D cases
 - transonic/supersonic flows
 - tetrahedral grids
- Seek **grid-independent convergence rate**
 - agglomeration scheme for grid sequencing and multigrid
 - linear multigrid for preconditioner
 - nonlinear multigrid solver

\[\text{mohagna.j.pandya@nasa.gov} \]
Present study funded by the NASA Aeronautics Research Mission Directorate

- Transformative Aeronautics Concepts Program, Transformative Tools and Technologies project
- Airspace Operations and Safety Program, Airspace Technology Demonstrations project

Drs. H. Nishikawa (NIA) and E. Parlette (ViGYAN, Inc.) provided utilities to generate grids for 3D hemisphere-cylinder case