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Outline

 Background and overview

 Beamforming in anisotropic composite laminates

• Generic beamforming formula

• Array characterization

 Phased array implementation

• Piezoelectric transducer (PZT)-scanning laser Doppler vibrometer

(SLDV) sensing system

 Proof of concept experiment 

• Detection of multiple defects in anisotropic composite plate

 Conclusions
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Research Background and Motivation

 Rapid damage inspection in composites

• Increased use of composites in aerospace 

vehicles (space and aeronautics)

• Composites have unique damage types 

(compared to metallic plates), such as 

microcracking and delamination

• Rapid inspection techniques for detecting and 

quantifying damage in large composites 

 Critical for ensuring operability and safety of 

composite structures

 Imperative for evaluating and certifying the materials, 

in the development and manufacturing of next-

generation composite materials

Composite crew module

Image from www.nasa.gov

C-scan image of a hidden 

delamination in a composite plate

http://www.nasa.gov/
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Guided Ultrasonic Wave Damage Detection 

 Guided wave damage detection

• Sensitivity to a variety of damage types

• Traveling a relatively long distance with low 

energy loss

• Promising detection results on metallic plates

 Challenges

• Dispersive and multi-modal

• Guided wave signal: incident, reflection and noise

• Complex wave propagation in anisotropic 

composite plates

• Additional data analysis is needed for damage 

diagnosis

A waveform under a narrowband excitation 

indeed containing (1) an incident A0 wave, 

(2) a reflected A0 wave, and (3) noise

Directionally 

dependent wave 

propagation
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Research Overview

 Objectives

• Phased array beamforming in anisotropic composites

• Rapid damage detection in anisotropic composites

 Our work

• Generic beamforming formula for anisotropic composites

• Phased array implementation using PZT-SLDV system

• Detection of multiple defects in a CFRP plate

 State of the art—guided wave phased arrays

• A small number of sensors placed close to each other in a compact format

• Steering of the array output in any desired direction through phase/time delays

• Perform a sweep inspection of the entire structure in a way analogous to radar 

• Phased arrays in isotropic plates: Wilcox et al. 2005, Yu and Giurgiutiu 2008; Stepinski

2007; Fromme et al. 2006; Purekar et al. 2004; Kwon et al. 2013 

• Phased arrays in anisotropic composites: Yan and Rose 2007; Rajagopalan et al. 2006; 

Purekar and Pines 2010; Leleux et al. 2013; Osterc et al. 2013

Phased arraySingle actuator 

Can we multiple defects in an 

anisotropic composite plate ?
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Beamforming in Anisotropic Composite Laminates

• Assumptions: far-field, uniform point source

• Based on the traditional delay and sum beamforming

• Unique of this method

 Phase delay in frequency domain

 Directionally dependent wavenumber and 

phase velocity are considered

 The energy skew angle β between wavenumber 

vector k and group velocity vector cg is considered
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Beamforming in an Anisotropic [02/902]s CFRP Plate

Point source at the origin 
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• Test plate: 0.85 mm thick 8-ply 

CFRP plate with [02/902]s layup

• Wave mode: A0 mode at 90 kHz 

• Wavelength: 11 mm ≥𝜆y,min ≥ 8.0 mm

• Array configuration: 16×16 grid array

• Element spacing: dx = dy= 2 mm

Beamforming
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Phased Array Implementation using PZT-SLDV System

• PZT: to generate guided waves

• Scanning laser Doppler vibrometer (SLDV): 

Scan points are selected from the entire scan area to construct the array

• Higher spatial density and resolution (less than 0.1 mm)

• The scan points can be easily configured in different distribution 

 Such as linear array, circular array, square array, 

 For different purposes such as parametric studies and array optimization

Easily configured into 

various array distributions
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Detection of Multiple Defects in a CFRP Plate (Setup)
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generator
Amplifier

Oscilloscope

Laser 

head

 Test plate: 0.85 mm thick 8-ply CFRP 

plate with [02/902]s layup

 Defects: four quartz rods (D1, D2, D3

and D4) bonded on the plate

• Same distance 100 mm away 

from the array center 

• Different angles 0°, 45°, 90° and 135°

 PZT to generate guided waves

• Excitation: 3-count tone burst at 90 kHz

 SLDV to measure wavefield in 

the scanning area

• Dimensions: 45 mm ×45 mm 

• Resolution: 0.1 mm 
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Detection in a CFRP Plate 
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Detection Results

 31×31 points are chosen from the 

scanning area to construct a phased array

• Array configuration: 31×31 grid array

• Element spacing: dx = dy= 2 mm

• Array span: Dx = Dy = 60 mm
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Detection of Multiple Defects in a CFRP Plate (Results)
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Conclusions

 Generic beamforming formula for 

anisotropic composites

• Phase delay in frequency domain

• Directionally dependent wavenumber and 

phase velocity are considered

• The energy skew angle β between 

wavenumber vector k and group velocity 

vector cg is considered

 Detection of multiple defects

• The dispersion effect is compensated

• Multiple defects are successfully detected

 Future work

• Detect delamination damage

• Enhanced beamforming

• Directionally dependent wave amplitude A(θ)

Wavefield of 

a single actuator

Beamforming

result of an array

Detection of multiple defects
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