Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

Zhenhua Tian1, Cara A.C. Leckey2, Lingyu Yu1

1 Department of Mechanical Engineering, University of South Carolina, Columbia, SC
2 Nondestructive Evaluation Sciences Branch, NASA Langley Research Center, Hampton, VA
Outline

- Background and overview
- Beamforming in anisotropic composite laminates
 - *Generic beamforming formula*
 - *Array characterization*
- Phased array implementation
 - *Piezoelectric transducer (PZT)-scanning laser Doppler vibrometer (SLDV) sensing system*
- Proof of concept experiment
 - *Detection of multiple defects in anisotropic composite plate*
- Conclusions
Research Background and Motivation

- Rapid damage inspection in composites
 - Increased use of composites in aerospace vehicles (space and aeronautics)
 - Composites have unique damage types (compared to metallic plates), such as microcracking and delamination
 - Rapid inspection techniques for detecting and quantifying damage in large composites
 - Critical for ensuring operability and safety of composite structures
 - Imperative for evaluating and certifying the materials, in the development and manufacturing of next-generation composite materials

Composite crew module Image from www.nasa.gov

C-scan image of a hidden delamination in a composite plate
Guided Ultrasonic Wave Damage Detection

- **Guided wave damage detection**
 - Sensitivity to a variety of damage types
 - Traveling a relatively long distance with low energy loss
 - Promising detection results on metallic plates

- **Challenges**
 - Dispersive and multi-modal
 - Guided wave signal: incident, reflection and noise
 - Complex wave propagation in anisotropic composite plates
 - Additional data analysis is needed for damage diagnosis

A waveform under a narrowband excitation indeed containing (1) an incident A0 wave, (2) a reflected A0 wave, and (3) noise.
Research Overview

- State of the art—guided wave phased arrays
 - A small number of sensors placed close to each other in a compact format
 - Steering of the array output in any desired direction through phase/time delays
 - Perform a sweep inspection of the entire structure in a way analogous to radar
 - Phased arrays in anisotropic composites: Yan and Rose 2007; Rajagopalan et al. 2006; Purekar and Pines 2010; Leleux et al. 2013; Osterc et al. 2013

- Objectives
 - Phased array beamforming in anisotropic composites
 - Rapid damage detection in anisotropic composites

- Our work
 - Generic beamforming formula for anisotropic composites
 - Phased array implementation using PZT-SLDV system
 - Detection of multiple defects in a CFRP plate

Can we multiple defects in an anisotropic composite plate?
Beamforming in Anisotropic Composite Laminates

• Assumptions: far-field, uniform point source
• Based on the traditional delay and sum beamforming
• Unique of this method
 ✓ Phase delay in frequency domain
 ✓ Directionally dependent wavenumber and phase velocity are considered
 ✓ The energy skew angle β between wavenumber vector k and group velocity vector c_g is considered

Point source at the origin

\[u(t, x) = Ae^{j(\omega t - k \cdot x)} \]

m^{th} element at $\{p_m\}$

\[u(t, x) = Ae^{j[\omega t - k \cdot (x - p_m)]} \]

Delay and sum beamforming

\[z(t, x) = u(t, x) \sum_{m=0}^{M-1} W_m e^{j[k \cdot p_m - \Delta_m(\theta_S)]} \]

Delay $\Delta_m(\theta_S) = k(\omega, \theta_S + \beta_S) \cdot p_m$
Beamforming in an Anisotropic $[0_2/90_2]_s$ CFRP Plate

- Test plate: 0.85 mm thick 8-ply CFRP plate with $[0_2/90_2]_s$ layup
- Wave mode: A_0 mode at 90 kHz
- Wavelength: $11 \, \text{mm} \geq \lambda_{y,\text{min}} \geq 8.0 \, \text{mm}$
- Array configuration: 16×16 grid array
- Element spacing: $d_x = d_y = 2 \, \text{mm}$

Point source at the origin

$$u(t,x) = Ae^{j(\omega t-k_x x)}$$

Array beamforming

$$z(t,x) = u(t,x) \sum_{m=0}^{M-1} W_m e^{j[k \cdot p_m - \Delta_m(\theta_S)]}$$
Beamforming Factor for Array Characterization

\[BF(\theta \mid w_{p,q}, \theta_s) = \frac{1}{PQ} \sum_{p=0}^{P-1} \sum_{q=0}^{Q-1} w_{p,q} e^{j[k(\omega,\theta+\beta)-k(\omega,\theta_s+\beta_s)]} \left((p--\frac{P-1}{2})d_x,(q--\frac{Q-1}{2})d_y \right) \]
Phased Array Implementation using PZT-SLDV System

- PZT: to generate guided waves
- Scanning laser Doppler vibrometer (SLDV):
 Scan points are selected from the entire scan area to construct the array
- Higher spatial density and resolution (less than 0.1 mm)
- The scan points can be easily configured in different distribution
 - Such as linear array, circular array, square array,
 - For different purposes such as parametric studies and array optimization

\[
\begin{align*}
&x_1 \\
&x_2 \\
&y \\
&\theta \\
&D \\
&m^{th} \text{ scanning point at } p_m \\
&\text{Damage} \\
&\text{Incident} \\
&\text{Reflected} \\
&\text{Scanning area} \\
\end{align*}
\]
Detection of Multiple Defects in a CFRP Plate (Setup)

- Test plate: 0.85 mm thick 8-ply CFRP plate with $[0_2/90_2]_s$ layup
- Defects: four quartz rods (D_1, D_2, D_3 and D_4) bonded on the plate
 - Same distance 100 mm away from the array center
 - Different angles 0°, 45°, 90° and 135°

- PZT to generate guided waves
 - Excitation: 3-count tone burst at 90 kHz
- SLDV to measure wavefield in the scanning area
 - Dimensions: $45 \text{ mm} \times 45 \text{ mm}$
 - Resolution: 0.1 mm
Detection in a CFRP Plate

Guided waves measured in the scanning area

Incident waves at 30 µs

Reflected waves from the four defects at 140 µs

SLDV points at selected locations \(\{ p_m \} \)

Signal at each array point

Delay and sum in frequency domain

Frequency-space representation

Time-space representation
Detection Results

- 31 × 31 points are chosen from the scanning area to construct a phased array
 - Array configuration: 31 × 31 grid array
 - Element spacing: $d_x = d_y = 2$ mm
 - Array span: $D_x = D_y = 60$ mm
Detection of Multiple Defects in a CFRP Plate (Results)

- Four defects are detected
- Location error < 4 mm
- Amplitude increases w.r.t. the defect size
- $0^\circ > 90^\circ > 45^\circ (135^\circ)$
Conclusions

- **Generic beamforming formula for anisotropic composites**
 - Phase delay in frequency domain
 - Directionally dependent wavenumber and phase velocity are considered
 - The energy skew angle β between wavenumber vector \mathbf{k} and group velocity vector \mathbf{c}_g is considered

- **Detection of multiple defects**
 - The dispersion effect is compensated
 - Multiple defects are successfully detected

- **Future work**
 - Detect delamination damage
 - Enhanced beamforming
 - Directionally dependent wave amplitude $A(\theta)$
Acknowledgements

- The non-reimbursement space act umbrella agreement SAA1-18124 between South Carolina Research Foundation (SCRF) and the National Aeronautics and Space Administration (NASA) Langley Research Center

- SC NASA EPSCoR Research Grant Program 521192-USCYu
THANK YOU! QUESTIONS?