Introduction

Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively freezing out atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI) [2, 1].

The instruments are being built for the Gemini-N and WYNN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WYNN and Gemini telescopes [3]. Examples of DSSI data are shown in the figures below. We expect similar data quality in speckle imaging mode with the new instruments.

Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WYNN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

Gemini North

Telescope f/ # 16.0
Plate scale 1.592 ″/mm

GemSpeck - Speckle mode
Focal Lengths
L1 35 mm
L2 75 mm

Detector Image Plane
Magnification 2.14x
Pixel Scale 0.0096 ″/pixel
Unvignetted Circle Dia 6.7 ″
Detector FoV 9.9 x 9.9 ″

GemSpeck - Wide-Field mode
Focal Lengths
L1 75 mm
L2 100 mm
L3 50 mm

Detector Image Plane
Magnification 0.28x
Pixel Scale 0.0275 ″/pixel
Unvignetted Circle Dia 60 ″
Detector FoV 74 x 74 ″

GemSpeck - top view, mounted at the GCal port

Dichroic Edge 685 nm
This allows the blue (447nm) and green (562nm) filters in the reflective channel and the red (692nm) and infrared (880 nm) filters in the transmissive channel.

Filter Wheel A

SDSS/g 480 nm, 140 nm
SDSS/r 625 nm, 140 nm
g-narrow 466 nm, 40 nm
r-narrow 562 nm, 40 nm

Filter Wheel B

SDSS/i 770 nm, 150 nm
SDSS/z 810 nm, 120 nm
i-narrow 692 nm, 40 nm
z-narrow 832 nm, 40 nm

Detectors

The instrument will use two identical Andor iXon Ultra 888 EMCCD cameras.
- 1024 x 1024 with 13 mm square pixels
- Capable of 26 fps reading out the full chip, higher for subarray readout (speckle mode)
- EX coating, > 90% quantum efficiency from 420 to 750 nm, > 90% QE between 550 and 720 nm.
- Thermoelectrically cooled, require no consumables.
- Data is transferred to the control computer via USB3, no internal cards
- Control computer can be quite small with heat dissipation being minimal.

Maximum Resolution

Gemini 0.015 ″ FWHM @ 500 nm
0.05 ″ FWHM @ 800 nm

Discussion

Possible Exoplanet Applications

- Simultaneous two color transit photometry yields instant verification (same depth in both channels).
- Standard imaging provides host star photometry
- Speckle imaging assesses binarity and yielding correct exoplanet radius

Future Expansion

The fiber wheels each have two remaining empty slots, we are currently exploring possible uses for those including the addition of:
- Transmission Grating - Grism
- Aperture Mask

Possible science application include: exoplanet transit spectroscopy, exoplanet atmosphere detection, transient object classification and characterization.

An aperture mask would allow spatial resolution beyond the diffraction limit! Achieving true interferometric resolution (2.44x the diffraction limit). This could be especially interesting if used on next-generation ELTs.

Acknowledgments

We acknowledge the collaborations with the WIYN and Gemini observatory staff and the support for this project from the NASA Exoplanet Exploration Program and NASA headquarters.

Notes

1 NASA Ames Research Center, n.j.scott@nasa.gov
2 NASA Ames Research Center, steve.b.howell@nasa.gov
3 Southern Connecticut State University, horche2@southernct.edu

References


Notes

1 NASA Ames Research Center, n.j.scott@nasa.gov
2 NASA Ames Research Center, steve.b.howell@nasa.gov
3 Southern Connecticut State University, horche2@southernct.edu

References