Analysis of the Quality of Parabolic Flight

Thomas Lambot 1, Stephan F. Ord 2

1 Millennium Engineering (thomas.lambot@nasa.gov), 2 NASA Ames Research Center (stephan.f.ord@nasa.gov)

Abstract
Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.

Anatomy of a Parabola
A complete parabolic flight maneuver lasts around 60 s where usually 20 s are presented as micro gravity conditions. It is preceded and followed by a region of high-G (typically 1.6-1.8 G) corresponding to the aircraft pulling up to initiate or end the parabola. Data analysis showed that a typical parabola acceleration profile along the vertical axis can be divided into 5 zones as detailed below. On average, only 4 to 10 seconds of micro-gravity offer the optimal conditions for research, called the "sweet zone".

What is a Good Parabola?
A "good" or "bad" parabola depends on the researcher’s experiment requirements. Some research requires a long duration in micro-gravity but is not sensitive to small variations of acceleration while others need a shorter duration but very high quality zero-G. The Parabola Quality Index (PQI) is suggested as follows:

\[PQI = \frac{t}{\sigma} \times 1000 \]

Where \(\sigma \) is the vertical acceleration standard deviation and \(t \) is time in micro-gravity. A reference PQI_ref can be obtained based on the satisfactory standard deviation \(\sigma_{ref} \) for the experiment and its desired duration \(t_{dur} \). Parabolas with PQI > PQI_ref have acceptable data for that specific experiment.

Hardware and Data Analysis
The Suborbital Flight Environment Monitor (SFEM) is a compact, low power, self-contained user-programmable Commercial Off The Shelf (COTS) environmental sensor package used to measure values of acceleration level in reduced gravity flights. For this research, the SFEM was bolted to the floor of the aircraft in order to record the conditions encountered by researchers during zero-G flights.

The data of the 3-axis accelerometer was filtered to eliminate the high frequency oscillations before integrating the signal twice in order to obtain an approximation of velocity and position versus time. An algorithm was specially conceived in Matlab to analyze raw data, automatically identify regions of interest for each parabolic flight and conduct statistical analysis.

Movement During Micro-Gravity
Outside factors (aircraft, weather, pilot, etc.) can cause movement and therefore affect the quality of the micro-gravity section of a parabola. Most of this displacement happens along the vertical axis so the pitch of the aircraft has to be carefully adjusted to maintain the target number of G's. From data collected, the average displacement within the Sweet Zone is of 1.3 m.

The plot below shows an example of acceleration, velocity and position versus time during micro-gravity. The blue part of the curve shows the Sweet Zone.

Parabola Quality Index
When designing a micro-gravity experiment, researchers must be aware of the different regimes occurring during a parabola. The use of a 3-axis accelerometer is recommended to allow the research to determine whether the parabola quality is acceptable for the experiment. A statistical analysis and more information regarding parabola quality will be available on the Flight Opportunities website soon.