
 1

Semantic Representation and Scale-up of
Integrated Air Traffic Management Data

Richard M. Keller*✦, Shubha Ranjan¢n, Mei Y. Wei*✦, and Michelle M. Eshow*n
NASA Ames Research Center
Moffett Field, California, USA

{rich.keller, shubha.ranjan, mei.y.wei, michelle.eshow}@nasa.gov

ABSTRACT
Each day, the global air transportation industry generates a vast
amount of heterogeneous data from air carriers, air traffic control
providers, and secondary aviation entities handling baggage,
ticketing, catering, fuel delivery, and other services. Generally,
these data are stored in isolated data systems, separated from each
other by significant political, regulatory, economic, and
technological divides. These realities aside, integrating aviation
data into a single, queryable, big data store could enable insights
leading to major efficiency, safety, and cost advantages.

In this paper, we describe an implemented system for combining
heterogeneous air traffic management data using semantic
integration techniques. The system transforms data from its
original disparate source formats into a unified semantic
representation within an ontology-based triple store. Our initial
prototype stores only a small sliver of air traffic data covering one
day of operations at a major airport. The paper also describes our
analysis of difficulties ahead as we prepare to scale up data
storage to accommodate successively larger quantities of data --
eventually covering all US commercial domestic flights over an
extended multi-year timeframe. We review several approaches to
mitigating scale-up related query performance concerns.

CCS Concepts
• Information systems~Information integration • Information
systems~Network data models • Applied computing~Computers
in other domains

Keywords
big data; semantic data

1. INTRODUCTION
With over 30 million flights flown yearly [1], the global air
transportation industry generates a vast amount of heterogeneous
data daily, including real time data from aircraft sensors, flight
radar, air traffic control systems, airline reservation systems,
baggage systems, and a myriad of other sources. Although the
content of the data from these different systems is interrelated, the
systems and their data are only loosely connected. Aviation data is

big data by any measure: volume, variety, or velocity. If this data
could be integrated, queried, and analyzed by aviation operations
personnel and policy makers, we might enable discoveries that
could potentially impact the efficiency and safety of our air
transportation system. In particular, such a data resource might be
used to monitor and analyze air traffic efficiency and safety, to
facilitate strategic decision-making by air traffic managers and
airlines, and to assist in the design, research, and analysis of air
traffic and aviation safety systems.

We are exploring an approach to integrating data across aviation
systems using ontologies, linked data, and semantic integration
techniques. In particular, we are focusing on a subset of
government flight, weather, and airspace management data
systems that are part of the US air traffic management (ATM)
system. These systems track aircraft as they make their way along
their flight path and maintain data about aircraft routing and
weather conditions that can impact air traffic.

In the balance of this paper, we describe our motivation for this
work, our prototype data integration system, and our analysis of
barriers ahead as we scale up our data store to make it useful.

2. BACKGROUND AND MOTIVATION
Our work is motivated by a desire to improve the data
management services available to aeronautics researchers within
the National Aeronautics and Space Administration (NASA). To
perform their research and analysis, the researchers access data
stored in the Sherlock aviation data repository [2]. Sherlock
replicates aeronautics data from a variety of different sources
generated by agencies in the US government, including the
Federal Aviation Administration (FAA), the National
Oceanographic and Atmospheric Administration (NOAA), and
the Department of Transportation (DOT). These data include
flight track data, flight plans, weather data, airport delay data, and
airspace navigation data, among others. Data refreshed on a fixed
periodic update cycle, such as information on airports and air
routes, are incorporated into Sherlock within 72 hours of release;
real-time data, such as aircraft flight tracks or weather data, are
streamed from FAA or NOAA systems, and recorded live to our
filesystem and uploaded nightly to Sherlock, making it available
for users to search and download. The repository includes data
back to 2009.

* National Aeronautics and Space Administration
¢ Moffett Technologies, Inc.
w Intelligent Systems Division n Aviation Systems Division

SBD'16, July 01 2016, San Francisco, CA, USA
DOI: http://dx.doi.org/10.1145/2928294.2928296

 2

The majority of data stored in Sherlock consists of raw ASCII or
binary data files in their original source format. Some types of
frequently requested raw data files are routinely processed,
parsed, and inserted into an Oracle database for easier query and
access. However, the sheer volume of data in Sherlock (30TB of
raw files) – coupled with relatively infrequent access – makes it
economically unjustifiable to house all the data within a
conventional database1. Aeronautics researchers generally use an
Oracle web application (APEX [3]) to download archived files
and generate reports from the database. This application also
supports direct SQL querying of the Oracle database by users.

Although various types of interrelated data are all stored on
Sherlock’s file system or within its database, they are not
integrated in any true sense. The various data sources use
differing data formats, inconsistent terminology (e.g., different
field names for the same values across data sources), varying
spatial and temporal resolutions, different numerical units, and
often-incompatible conceptual underpinnings. In short, there is no
unifying data model underlying the data stored in Sherlock – no
holistic view of how all of this interrelated ATM data connects
together. Within Sherlock, each data source is like an isolated
island of information that cannot be bridged and connected
without considerable effort.

To illustrate, consider how flight data is stored within the data
systems replicated in Sherlock. Although a ‘flight’ is a key entity
to track and manage within the ATM domain, none of the
government data systems we examined had any explicit record
structures corresponding to a flight. Instead, all of the systems
contained records that made reference to a flight’s ‘callsign’ (its
flight identifier, e.g. UA237) as a proxy for the flight. Formulating
a true flight record would require discovering and assembling
various bits and pieces of flight metadata from the different data
tables or records in which the callsign appears. To complicate
matters further, the callsign by itself is not a unique identifier and
must be paired with temporal and spatial data to disambiguate
among multiple flights with the same identifier. If one wishes to
go further and integrate flight data with other types of data, there
are additional problems. For example, although weather data
measures the meteorological properties of the airspace through
which a given flight flies, integrating weather data with flight data
is a real challenge due to the different spatial and temporal
representations used by weather data sources.

Sherlock’s lack of ability to integrate replicated data using a
common model has two principal impacts on aeronautics
customers. First, users who need to access data across two or
more data sources must expend whatever programming effort is
necessary to integrate the data themselves, on an as-needed basis.
This process can be error-prone, and requires considerable
knowledge of the original data – something users do not generally
possess. It also leads to duplicative effort because multiple users
may end up doing similar integration work. Second, because there
is no common view over all the data, it is not possible to
formulate queries across the different sources. There would be
significant benefits if users were able to execute cross-source
queries using a comprehensive store of current and historical air
traffic management data. In particular, this capability could assist
in diagnosis of bottlenecks in the air traffic control system and in
the design and development of new processes and procedures to
improve the system.

1 Efforts are underway to deploy a Hadoop-based Big Data

implementation to cover a subset of Sherlock’s data.

3. SEMANTIC DATA INTEGRATION
Our approach to addressing these impacts was to establish a
common description of ATM data using an ontology model, and
then apply semantic integration techniques [4,5] to populate a
triple store with data from Sherlock. The integrated triple store
can be queried using SPARQL to answer cross-cutting questions
about ATM operations. We developed a prototype system to
demonstrate this capability with a limited subset of Sherlock’s
data. The system includes four components (see Figure 1),
described in the following subsections.

Figure 1: ATM Data Integration Architecture Components

3.1 Data sources
We selected three data sources from the Sherlock repository for
integration: flight track data (from FAA’s ASDI Aircraft Situation
Display to Industry XML feed [6], routinely used by commercial
flight tracking software), airport weather data (from NOAA’s
METAR [7] meteorological observation station data feed), and
information on air traffic advisories2 (scraped routinely from the
FAA Air Traffic Control System Command Center website [8]).
Given limited resources, we did not attempt to integrate all of the
different data sources archived in Sherlock as part of our proof-of-
concept prototype. However, we did find it necessary to
incorporate some ATM infrastructure data that was not explicitly
stored in Sherlock, including information from FAA and other
sources on air traffic routes, traffic management facilities,
airports, runways, airlines, and aircraft. These data were essential
‘glue’ required for the integration process.

3.2 Ontology & Triple Store
We constructed an ATM ontology to provide a unified data model
for integrating data from the various sources. The RDF-based
ontology includes various classes and properties required to
describe the state of the ATM system. Although a complete
specification of the ontology is beyond the scope of this paper, a
sampling of some of its representative classes and properties are
included below:
Sample Classes: Flight, FlightPath, FlightConstraint, Airport,
AirspaceInfrastructureElement (ArrivalRoute, DepartureRoute,
NavigationFix, ATCsector, Airway), MeteorologicalCondition,
AirCarrier, AircraftModel, AircraftSystem, AircraftManufacturer,
AirportInfrastructureElement (Runway, Taxiway, DeicingPad,

2 Air traffic advisories consist of modifications issued by the Air

Traffic Control Command Center to manage the flow of aircraft
under congested operations or in adverse weather conditions.

 3

Gate, Terminal), AirspaceControlFacility (AirTrafficCmdCtr,
TeminalRadarCtrlCtr, Tower), TrafficManagementInitiative, etc.

Sample Datatype properties: aircraftHeading, groundspeed,
actualDepartureTime, maxRunwayVisibility, airportArrivalRate,
manufactureYear, ICAOcarrierCode, aircraftEquipmentCode, etc.

Sample Object properties: arrivalRunway, adjacentSector,
operatedBy, manufacturedBy, aircraftFlown, departureConstraint,
surfaceWindCondition, hasAircraftFix, hasAgreementWith, etc.

Figure 2 illustrates the ontology representation for a Flight, a key
entity in the domain. The flight itself has connections to its
departure and arrival airports, the air carrier operating the flight,
the aircraft being flown, and its flight route, which is demarcated
by a sequence of radar track positions (elaborated further in
Figure 3). The color-coding in Figure 2 shows how data from
different sources (aeronautical, flight, weather, equipment, and
industry) are merged together by the ontology.

Figure 2: Ontology Representation for a Flight

At the time of this writing, the ontology features more than 150
classes, 150 datatype properties, 100 object properties, and 450K
instances. These instances cover one day’s worth of integrated
ATM data for a single airport. The instances reside on a dedicated
Linux server running the AllegroGraph [9] triple store.

3.3 Translators
We wrote data source specific, custom Python and Java code to
translate ATM data from its original source format and convert it
into ATM ontology triples. For data stored within Sherlock, the
sources were either raw, record-oriented files or SQL tables; for
ATM infrastructure data gathered elsewhere, the sources were csv
files, html files, web service outputs, etc. This data translation step
corresponds to a conventional ETL (extract-transform-load)
process in a relational data warehouse, except that the target
format is RDF triples and that the mappings from the original
sources to the triples are often more complex than can be handled
with simple ETL mapping tools.

3.4 Query & Download Service
The last component of our prototype has yet to be implemented.
Even though it is possible to query data in our triple store using its
native SPARQL capabilities, and to download data using vendor-
supplied functionality, we feel this is insufficient for our needs.
Requiring aeronautics users to understand the ATM ontology and
learn SPARQL syntax is not realistic. Our vision is to develop a
specialized graphical user interface that allows for entry of queries
in a simpler, more intuitive and domain-relevant fashion. In
addition, we plan to supply a download capability tailored to the
needs of aeronautics and aviation researchers.

3.5 Alternative Approach
One alternative to our semantic approach would have been to
utilize conventional relational database warehousing technology
and build a common database schema to be populated by an ETL
process. However, we believe that ontology-based approaches
offer key advantages over conventional relational approaches,
principally based on their modifiability, ease of maintenance,
built-in inference capabilities, and potential for reuse [10].
Modifiability is particularly important because additional data
sources are regularly added to Sherlock, and existing data sources
are periodically revised by their producers. Our common data
model must be flexible and easily altered without requiring us to
rebuild the entire repository. Wholesale rebuilding of tables is
often necessary with relational schema changes; due to the finer
granularity of RDF, ontology changes have less impact on
preexisting triples in a repository.

Although the semantic integration approach we pursued was not
particularly novel, it is the first application of these integration
techniques to a complex aviation data domain – based on our
survey of the open literature.

4. SCALING ISSUES
For our prototype, we processed only one day’s worth of
commercial US domestic flights to and from Atlanta airport (1342
flights), and transformed associated flight, weather, air traffic, and
advisory data into triples within our semantic store. The result was
~2.4M triples. Estimating conservatively at 25,000 US domestic
flights per day, processing data from all US domestic flights
would generate approximately 29M triples daily, or over 10B
triples yearly. Researchers often require multiple years of flight
data for their analytical studies, so the potential volume of data to
be integrated and queried is significant, and quickly enters the
realm of big semantic data. Although our prototype has significant
potential, that potential cannot be realized if scaling cannot be
achieved successfully.

4.1 Benchmarking
Prior to purchasing a commercial triple store to support this work,
we conducted some experiments to evaluate the performance and
scalability of two triple store products under consideration:
AllegroGraph v5.1 [9] and GraphDB v6.1 [11]. Part of our goal
was to examine the feasibility of scaling up our prototype from a
single day of Atlanta operations to a month’s worth of data. We
developed a set of 17 benchmark SPARQL queries to investigate
the impact of scale-up. These sample queries were developed in
response to feedback provided by domain experts, and address
topics of potential interest to NASA aeronautics researchers. In
addition – to illustrate the benefits of data integration – these
queries require data from multiple Sherlock sources, and cannot
be answered using one data source alone. Among these
benchmark SPARQL queries are the following (translated into
English):

• F1: Find Delta Airlines flights using Airbus A319
equipment departing any Atlanta region airport;

• F3S: Find flights with rainy departures from Atlanta-
Hartsfield airport;

• S4: Find which US airspace sector was traversed by the
most flights during a given hour;

• S1S: Find flights that passed through a given airspace
sector within 30 minutes of each other;

• S6: Find the busiest airspace sectors in the US on a given
day, aggregating hourly;

• T1: Find flights that were subject to airport ground delays;

 4

• W1: Calculate the hourly Weather-Impacted Traffic Index
at Atlanta-Hartsfield airport

(See Appendix for actual SPARQL queries corresponding to F1,
F3S, S4, and S1S.) After formulating the benchmark queries, we
loaded one day of flights into each of the two candidate triple
stores, and ran the queries. Query execution times for the
benchmark queries ranged anywhere from 11 milliseconds to 9.6
seconds (average = 1.19 seconds), depending on the query. Next,
we synthetically generated and processed one month of flight data
and reloaded the triple stores with the resulting 36M triples (an
amount 15 times greater than the 2.4M triples generated for a
single day). This time, query execution times ranged from 8
milliseconds to 27 minutes (average = 96.65 seconds). (See
Appendix for execution timing statistics.)

Depending on the computational complexity of the SPARQL
graph-matching problem and the efficiency of the implementation,
the results for scaling up from one day to one month varied.
Execution time for most of the queries (~60%) scaled up roughly
in proportion to the increase in number of triples. In a smaller
number of queries (~30%), the increase in execution time was
negligible – virtually the same in both cases. However, for at least
one query, the time increase appeared to be exponential: 350 or
700 times longer, depending on which triple store product was
used. Benchmarking for another query surfaced significant
performance discrepancies between the triple stores; one
implementation reported a modest 4x increase for one month of
data, while the other reported a 1400x increase on the same query.
Overall, the results of our benchmarking exercise do not bode
well for an effortless scale-up experience. Clearly, if we wish to
scale up to analyze multi-year data, new strategies will be
required to answer queries in reasonable response timeframes;
many of these queries would require hours or even days to
produce responses over multi-year data.

4.2 Possible Approaches to Dealing with Scale
Given that efficiency considerations can undermine the potential
value of adopting semantic data representations, we must examine
various approaches to improving the query performance of triple
stores – especially in the world of big data. These approaches fall
into several categories: hardware approaches (e.g., construction of
specialized hardware appliances to store and process triples [12]);
algorithm improvements (e.g., new graph-matching algorithms
[13,14]); software approaches (e.g., SPARQL query planner
improvements, triple storage and access improvements [15, 16]);
query reformulation approaches (e.g., rewriting and/or
reconceptualizing queries [17]); and triple reduction approaches
(e.g., representation change, use of auxiliary non-triple storage).
For an application builder using a commercial triple store (vs. a
technology developer or a researcher), the last two categories
represent the sole means available to improve efficiency. As such,
we will discuss these two in more detail.

4.2.1 Query reformulation
With any large data store, it is necessary to consider efficiency
when formulating queries. When using conventional relational
database systems, specific tools are available to analyze and
debug query performance issues by examining the query plan,
calculating the size of the table joins, formulating indices, creating
table partitions, etc. But when using semantic data stores, the
current tools are not as mature, and it is more difficult to analyze
and optimize queries. We found that although some query
planning statistics could be generated using the triple stores we
benchmarked, the support for query analysis was primitive and
poorly documented. Furthermore, these systems provided little

transparency as to how SPARQL queries were translated into
code and executed, so it was difficult to determine how to go
about rewriting queries to be more efficient.

Figure 3: Ontology Representation of Aircraft Track Points

4.2.2 Triple reduction
When it is not possible to improve query performance due to the
sheer size of the graph search space, it becomes necessary to
rethink the underlying semantic representation and consider ways
to reduce the size of the search space. In these cases, an
unfortunate tradeoff between representational fidelity and
efficiency must be considered. Consider an example from our
ATM application domain, where much of the data volume is due
to geospatial flight track information. Each flight is tracked by
radar, and data is recorded about the position, altitude, and speed
of each airborne aircraft every 30 seconds.3,4,5 Within the triple
store, each tracking point is stored as a TrackPoint instance. The
TrackPoint records the airspeed, heading, and time as datatype
properties, and location of the aircraft as an object property
(aircraftFix) whose range is a LatLonFix instance (see
Figure 3). The LatLonFix is a subclass of PointLocation and
NavigationFix, and captures the aircraft’s latitude, longitude,
and altitude as datatype properties. Conceptually, this
representation separates the temporally-dependent properties of
the aircraft (e.g., speed, heading) at the track point from the static
location in three-space through which the aircraft is passing (the
LatLonFix).

With this representation, it would be possible to record multiple
aircraft passing through the same LatLonFix at different times,
or to record the weather conditions at that location at different
times. However this representational advantage comes at a penalty
in terms of query efficiency, because for each radar track point,
two linked instances are instantiated and stored in the triple store
(one TrackPoint instance and one LatLonFix instance). These
instances represent a majority of all instances in our triple store
(~70%).

An alternative and less costly representational approach – in terms
of storage and query efficiency – would be to merge the location-
specific datatype properties and the aircraft-specific datatype
properties into one class. This approach would reduce the size of

3 FAA operational systems sample radar signals at a much higher

frequency: once per second.
4 The volume of aircraft data is significantly greater than just the

geospatial tracking data available to the FAA; operational
aircraft generate volumes of high frequency systems health data.

5 The average number of tracking points per flight in our Atlanta
dataset is 156, which corresponds to a 78-minute duration flight.

 5

the triple store by ~35%. However, this representation
compromises fidelity and is less flexible and extensible.

Yet a different path to triple reduction would be to develop a
hybrid approach, where the fidelity of the semantic representation
is not compromised, but a subset of the data is removed and
accessed outside the triple store – in secondary storage. For
example, the sequence of LatLonFix points constituting a flight
route and the boundaries of airspace sectors and regions could be
stored in a geographic database optimized for spatial
representations and computations. (Indeed, several graph database
vendors offer specialized functionality to support geospatial data
[18].) A similar argument could be made for storing certain types
of multidimensional weather data external to the triple store.

5. RELATED WORK
Although there is little indication that “bleeding edge” semantic
data management approaches have been adopted as yet by the
inherently conservative aviation sector, the technology has begun
to emerge in a small number of prototypes and experimental
efforts. A recent workshop on Semantic Web for Air
Transportation [19] uncovered ten active projects sponsored by
government agencies, standards bodies, and private companies.
The air transportation industry is acutely aware of data
interoperability problems and has been actively pursuing more
mainstream approaches for some time, publishing UML-based
XML exchange model standards for weather, flight, and
aeronautical information [20]. However, these models lack the
formal logic underpinnings of ontologies and therefore cannot
support data inference – a much-vaunted key capability of
semantic approaches. In addition, the focus of these models is on
system interoperability through the provision of a standardized,
cross-industry exchange language. The more challenging problem
of assembling heterogeneous data from multiple sources to create
a single integrated data view is not directly addressed. Similarly,
in [21] a system for integrating aircraft surveillance data from
geographically-distributed signal receivers using RDF as a
uniform data layer is proposed. But this work uses a triple store as
a means of aggregating homogenous standardized data from
multiple sources; there is no complex integration involved. There
is little published work on ontologies in the air traffic
management domain. van Putten [22] describes an ontology
developed to model people, processes, and products associated
with air traffic management. Although there is some conceptual
overlap with our ontology, the scoping and scaling of this work is
quite restricted, and is a mismatch to our specific requirements.

6. CONCLUSIONS
In this paper, we described an approach to constructing an
integrated, semantics-based air traffic management data resource.
Our prototype provides a proof-of-concept implementation, scaled
down to a manageable scope covering one day’s worth of
commercial domestic flights arriving or departing a major US
airport. If realized on a larger-scale basis, this data resource has
significant potential to serve a broad community of aviation
researchers, operational flight management personnel, policy
makers, and beyond. There are many challenging tasks that must
be addressed to realize our goals, but data scale-up is one of the
most critical to our success. The burning question is whether
semantic tools are up to the task, and whether big semantic data is
practical for real-world, big data domains where complex queries
must be issued and answered in an acceptable timeframe. Our
experience thus far indicates that this question remains very much
open; without further work to develop tools that support serious
performance tuning, future prospects are in doubt.

7. ACKNOWLEDGMENTS
This work was funded by the Airspace Operations and Safety
Program from within NASA’s Aeronautics Research Mission
Directorate. Eric Wang provided systems support for this effort.

8. REFERENCES
[1] IATA Safety Report 2014, Retrieved February 11, 2016 from

International Air Transport Association web site:
http://www.iata.org/publications/Pages/safety_report.aspx

[2] Eshow, M. M., Lui, M., and Ranjan, S. 2014. Architecture
and capabilities of a data warehouse for ATM research. In
Digital Avionics Systems Conference (DASC), 2014
IEEE/AIAA 33rd. IEEE.

[3] Oracle Application Express (APEX). From Oracle web site:
https://apex.oracle.com.

[4] Noy, N. F. 2004. Semantic integration: a survey of ontology-
based approaches. ACM SIGMOD Rec. 33, 4 (Dec. 2004),
65-70. DOI=http://dx.doi.org/10.1145/1041410.1041421.

[5] Doan, A. and Halevy, A. Y. 2005. Semantic integration
research in the database community: A brief survey. AI
magazine 26.1 (2005): 83. DOI=
http://dx.doi.org/10.1609/aimag.v26i1.1801.

[6] ASDI: Aircraft Situation Display to Industry. From FAA
web site: http://www.fly.faa.gov/ASDI/asdi.html.

[7] METAR: Meteorological Terminal Aviation Routine
Weather Report. From NOAA web site:
https://www.aviationweather.gov/adds/metars.

[8] FAA Advisories. From FAA Command Center web site:
http://www.fly.faa.gov/adv/advADB.jsp.

[9] AllegroGraph, Retrieved February 16, 2016 from Franz Inc.
web site: http://franz.com/agraph/allegrograph/.

[10] Uschold, M. and Gruninger, M. 2004. Ontologies and
semantics for seamless connectivity. SIGMOD Rec. 33, 4
(December 2004), 58-64.
DOI=http://dx.doi.org/10.1145/1041410.1041420

[11] GraphDB, Retrieved February 16, 2016 from Ontotext web
site: http://ontotext.com/products/graphdb/.

[12] Cray Urika-GD Graph Discovery Appliance, Retrieved
February 11, 2016, from Cray corporate web site:
http://www.cray.com/products/analytics/urika-gd.

[13] Zou, L., Mo, J., Chen, L, Özsu, M.T., and Zhao, D. 2011.
gStore: answering SPARQL queries via subgraph matching.
Proc. VLDB Endow. 4, 8 (May 2011), 482-493.
DOI=http://dx.doi.org/10.14778/2002974.2002976

[14] Neumann, T. and Weikum, G. 2009. Scalable join processing
on very large RDF graphs. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data
(SIGMOD '09), Carsten Binnig and Benoit Dageville (Eds.).
ACM, New York, NY, USA, 627-640.
DOI=http://dx.doi.org/10.1145/1559845.1559911

[15] Tsialiamanis, P., Sidirourgos, L., Fundulaki, I.,
Christophides, V., and Boncz, P. 2012. Heuristics-based
query optimisation for SPARQL. In Proceedings of the 15th
International Conference on Extending Database
Technology (EDBT '12), Elke Rundensteiner, Volker Markl,
Ioana Manolescu, Sihem Amer-Yahia, Felix Naumann, and
Ismail Ari (Eds.). ACM, New York, NY, USA, 324-335.
DOI=http://dx.doi.org/10.1145/2247596.2247635

 6

[16] Zeng, K., Yang, J., Wang, H., Shao, B., and Wang, Z. 2013.
A distributed graph engine for web scale RDF data. Proc.
VLDB Endow. vol. 6, no. 4 (February 2013), 265-276.
DOI=http://dx.doi.org/10.14778/2535570.2488333

[17] Giese, M., Soylu, A., Vega-Gorgojo, G., Waaler, A., Haase,
P., Jimenez-Ruiz, E., Lanti, D., Rezk, M., Xiao, G., Ozcep,
O., Rosati, R. 2015. Optique: Zooming in on Big Data,
Computer, vol.48, no. 3, pp. 60-67, Mar. 2015,
DOI=10.1109/MC.2015.82

[18] Patroumpas, K. et al. 2013. Market and Research Overview,
GeoKnow EU/FP7 project deliverable 2.1.1. Retrieved
February 16, 2016 from GeoKnow web site:
http://svn.aksw.org/projects/GeoKnow/Public/D2.1.1_Marke
t_and_Research_Overview.pdf

[19] Keller, R and Kaplun, M (eds.), Semantic Web for Air
Transportation Meeting, electronic proceedings, Retrieved
February 11, 2016 from FAA Service Semantics web site:
https://www.faa.gov/nextgen/programs/swim/governance/ser
vicesemantics/#SWAT-Special-Interest-Group

[20] Bradford, S., Humbertson, R., Perper, A. 2014. Global
harmonisation through information. Journal of Airport
Management, vol. 8, no. 2, pp. 119-128.

[21] Klauza, M., Czekalski, P., Tokarz, K. 2015. Air Traffic Data
Integration using the Semantic Web Approach. Athens
Journal of Technology & Engr., vol. 2, no. 2, pp. 115-128

[22] van Putten, B-J, Wolfe, S, Dignum, V. 2008. An Ontology
for Traffic Flow Management, in Proc. 8th Aviation
Technology, Integration, and Operations Conference, AIAA.

9. APPENDIX
9.1 Sample SPARQL Queries
F1: Find Delta A319s departing ZTL airports on 9/8/12

SELECT ?flight ?departYear ?departMonth ?acModel
WHERE {BIND (nas:ZTLcenter AS ?center) . BIND
(2012 AS ?departYear) . BIND (9 AS ?departMonth) .
BIND(eqp:A319AircraftType AS ?modelType) .
BIND (nas:DALairline AS ?operator) .
 ?flight a atm:Flight .
 ?flight atm:actualDepartureDay ?departDay .
 ?departDay nas:calendarYear ?departYear .
 ?departDay nas:calendarMonth ?departMonth .
 ?flight atm:operatedBy ?operator .
 ?flight atm:aircraftTypeFlown ?modelType .
 OPTIONAL {?flight atm:aircraftFlown ?ac .
 ?ac eqp:hasAircraftModel ?acModel .} .
 ?flight atm:departureAirport ?departAirport .
 {{?tracon nas:hasLOAwith ?departAirport .
 ?tracon nas:hasLOAwith ?center .} UNION
 {?departAirport nas:hasLOAwith ?center .} . } .}

F3S: Find rainy departures from ATL on 9/8/12
SELECT DISTINCT ?flight
WHERE {BIND (nas:KATLairport AS ?departAirport) .
 ?flight a atm:Flight .
 ?flight atm:departureAirport ?departAirport .
 ?flight atm:actualDepartureDay ?departDay .
 ?flight atm:actualDepartureTime ?departTime .
 ?departAirport data:hasMETARreport ?metarRpt .
 ?metarRpt data:metConditionStartDay ?departDay .
 ?metarRpt data:metConditionStartTime ?rptTime .
 ?metarRpt data:hasWeatherCondition ?wxcond .
 ?wxcond data:weatherPhenomenon "rain" .
 BIND (hours(?departTime) AS ?dptHour) .

 BIND (minutes(?departTime) AS ?dptMins) .
 BIND (hours(?rptTime) AS ?rptHour) .
 BIND (minutes(?rptTime) AS ?rptMins) .
 BIND (((?rptHour * 60)+ ?rptMins)AS ?totRptMins).
 BIND (((?dptHour * 60)+ ?dptMins)AS ?totDptMins).
 BIND (abs((?totRptMins - ?totDptMins))
 AS ?reportingLagMins) .
 FILTER (?reportingLagMins < 30) .}
ORDER BY (?flight)

S4: Find which sector controlled the most
flights during a given hour
SELECT DISTINCT ((COUNT(?flight)) AS ?totalFlight)
 ?sector
WHERE {BIND (2 AS ?hourExamined) .
 ?flight atm:hasActualRoute ?route .
 ?route gen:hasSequencedItem ?posn .
 ?posn atm:reportingTime ?time .
 ?posn atm:aircraftFix ?fix .
 ?fix atm:locatedInSector ?sector .
 FILTER (hours(?time) = ?hourExamined) .}
GROUP BY ?sector
ORDER BY DESC (?totalFlight)

S1S: Find flights passing through a given sector
within 30 minutes of each other
SELECT DISTINCT ?flight1 ?flight2
WHERE {BIND (nas:ZTLsector040 AS ?sector1) .
 ?flight1 atm:hasActualRoute ?route1 .
 ?flight1 atm:callSign ?callSign1 .
 ?flight1 atm:actualDepartureDay ?departDay .
 ?route1 gen:hasSequencedItem ?posn1 .
 ?posn1 atm:reportingTime ?time1 .
 ?posn1 atm:aircraftFix ?fix1 .
 ?fix1 atm:locatedInSector ?sector1 .
 ?flight2 atm:hasActualRoute ?route2 .
 ?flight2 atm:callSign ?callSign2 .
 ?flight2 atm:actualDepartureDay ?departDay .
 ?route2 gen:hasSequencedItem ?posn2 .
 ?posn2 atm:aircraftFix ?fix2 .
 ?posn2 atm:reportingTime ?time2 .
 ?fix2 atm:locatedInSector ?sector1 .
BIND (hours(?time1) AS ?rptHour1) . BIND (minutes
(?time1) AS ?rptMins1) . BIND (hours(?time2) AS
?rptHour2) . BIND (minutes(?time2) AS ?rptMins2) .
BIND (((?rptHour1 * 60) + ?rptMins1) AS
?totRptMins1) . BIND (((?rptHour2 * 60) +
?rptMins2) AS ?totRptMins2) . BIND (abs
((?totRptMins1 - ?totRptMins2)) AS ?deltaTime) .
FILTER ((?deltaTime < 30) &&
 (?callSign1 < ?callSign2)) .}
ORDER BY (?flight1) (?flight2)

9.2 Benchmark Timing Statistics

