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ABSTRACT 
Each day, the global air transportation industry generates a vast 
amount of heterogeneous data from air carriers, air traffic control 
providers, and secondary aviation entities handling baggage, 
ticketing, catering, fuel delivery, and other services. Generally, 
these data are stored in isolated data systems, separated from each 
other by significant political, regulatory, economic, and 
technological divides. These realities aside, integrating aviation 
data into a single, queryable, big data store could enable insights 
leading to major efficiency, safety, and cost advantages.  

In this paper, we describe an implemented system for combining 
heterogeneous air traffic management data using semantic 
integration techniques. The system transforms data from its 
original disparate source formats into a unified semantic 
representation within an ontology-based triple store. Our initial 
prototype stores only a small sliver of air traffic data covering one 
day of operations at a major airport. The paper also describes our 
analysis of difficulties ahead as we prepare to scale up data 
storage to accommodate successively larger quantities of data -- 
eventually covering all US commercial domestic flights over an 
extended multi-year timeframe. We review several approaches to 
mitigating scale-up related query performance concerns. 

CCS Concepts 
• Information systems~Information integration   • Information 
systems~Network data models  • Applied computing~Computers 
in other domains  
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1. INTRODUCTION 
With over 30 million flights flown yearly [1], the global air 
transportation industry generates a vast amount of heterogeneous 
data daily, including real time data from aircraft sensors, flight 
radar, air traffic control systems, airline reservation systems, 
baggage systems, and a myriad of other sources. Although the 
content of the data from these different systems is interrelated, the 
systems and their data are only loosely connected. Aviation data is 

big data by any measure: volume, variety, or velocity. If this data 
could be integrated, queried, and analyzed by aviation operations 
personnel and policy makers, we might enable discoveries that 
could potentially impact the efficiency and safety of our air 
transportation system. In particular, such a data resource might be 
used to monitor and analyze air traffic efficiency and safety, to 
facilitate strategic decision-making by air traffic managers and 
airlines, and to assist in the design, research, and analysis of air 
traffic and aviation safety systems. 

We are exploring an approach to integrating data across aviation 
systems using ontologies, linked data, and semantic integration 
techniques. In particular, we are focusing on a subset of 
government flight, weather, and airspace management data 
systems that are part of the US air traffic management (ATM) 
system. These systems track aircraft as they make their way along 
their flight path and maintain data about aircraft routing and 
weather conditions that can impact air traffic. 

In the balance of this paper, we describe our motivation for this 
work, our prototype data integration system, and our analysis of 
barriers ahead as we scale up our data store to make it useful. 

2. BACKGROUND AND MOTIVATION  
Our work is motivated by a desire to improve the data 
management services available to aeronautics researchers within 
the National Aeronautics and Space Administration (NASA).  To 
perform their research and analysis, the researchers access data 
stored in the Sherlock aviation data repository [2]. Sherlock 
replicates aeronautics data from a variety of different sources 
generated by agencies in the US government, including the 
Federal Aviation Administration (FAA), the National 
Oceanographic and Atmospheric Administration (NOAA), and 
the Department of Transportation (DOT). These data include 
flight track data, flight plans, weather data, airport delay data, and 
airspace navigation data, among others. Data refreshed on a fixed 
periodic update cycle, such as information on airports and air 
routes, are incorporated into Sherlock within 72 hours of release; 
real-time data, such as aircraft flight tracks or weather data, are 
streamed from FAA or NOAA systems, and recorded live to our 
filesystem and uploaded nightly to Sherlock, making it available 
for users to search and download. The repository includes data 
back to 2009. 
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The majority of data stored in Sherlock consists of raw ASCII or 
binary data files in their original source format. Some types of 
frequently requested raw data files are routinely processed, 
parsed, and inserted into an Oracle database for easier query and 
access. However, the sheer volume of data in Sherlock (30TB of 
raw files) – coupled with relatively infrequent access – makes it 
economically unjustifiable to house all the data within a 
conventional database1. Aeronautics researchers generally use an 
Oracle web application (APEX [3]) to download archived files 
and generate reports from the database. This application also 
supports direct SQL querying of the Oracle database by users. 

Although various types of interrelated data are all stored on 
Sherlock’s file system or within its database, they are not 
integrated in any true sense. The various data sources use 
differing data formats, inconsistent terminology (e.g., different 
field names for the same values across data sources), varying 
spatial and temporal resolutions, different numerical units, and 
often-incompatible conceptual underpinnings. In short, there is no 
unifying data model underlying the data stored in Sherlock – no 
holistic view of how all of this interrelated ATM data connects 
together. Within Sherlock, each data source is like an isolated 
island of information that cannot be bridged and connected 
without considerable effort. 

To illustrate, consider how flight data is stored within the data 
systems replicated in Sherlock. Although a ‘flight’ is a key entity 
to track and manage within the ATM domain, none of the 
government data systems we examined had any explicit record 
structures corresponding to a flight. Instead, all of the systems 
contained records that made reference to a flight’s ‘callsign’ (its 
flight identifier, e.g. UA237) as a proxy for the flight. Formulating 
a true flight record would require discovering and assembling 
various bits and pieces of flight metadata from the different data 
tables or records in which the callsign appears. To complicate 
matters further, the callsign by itself is not a unique identifier and 
must be paired with temporal and spatial data to disambiguate 
among multiple flights with the same identifier. If one wishes to 
go further and integrate flight data with other types of data, there 
are additional problems.  For example, although weather data 
measures the meteorological properties of the airspace through 
which a given flight flies, integrating weather data with flight data 
is a real challenge due to the different spatial and temporal 
representations used by weather data sources.  

Sherlock’s lack of ability to integrate replicated data using a 
common model has two principal impacts on aeronautics 
customers. First, users who need to access data across two or 
more data sources must expend whatever programming effort is 
necessary to integrate the data themselves, on an as-needed basis. 
This process can be error-prone, and requires considerable 
knowledge of the original data – something users do not generally 
possess. It also leads to duplicative effort because multiple users 
may end up doing similar integration work. Second, because there 
is no common view over all the data, it is not possible to 
formulate queries across the different sources. There would be 
significant benefits if users were able to execute cross-source 
queries using a comprehensive store of current and historical air 
traffic management data. In particular, this capability could assist 
in diagnosis of bottlenecks in the air traffic control system and in 
the design and development of new processes and procedures to 
improve the system.   

                                                                    
1 Efforts are underway to deploy a Hadoop-based Big Data 

implementation to cover a subset of Sherlock’s data. 

3. SEMANTIC DATA INTEGRATION 
Our approach to addressing these impacts was to establish a 
common description of ATM data using an ontology model, and 
then apply semantic integration techniques [4,5] to populate a 
triple store with data from Sherlock. The integrated triple store 
can be queried using SPARQL to answer cross-cutting questions 
about ATM operations. We developed a prototype system to 
demonstrate this capability with a limited subset of Sherlock’s 
data. The system includes four components (see Figure 1), 
described in the following subsections.  

 
Figure 1: ATM Data Integration Architecture Components 

 

3.1 Data sources  
We selected three data sources from the Sherlock repository for 
integration: flight track data (from FAA’s ASDI Aircraft Situation 
Display to Industry XML feed [6], routinely used by commercial 
flight tracking software), airport weather data (from NOAA’s 
METAR [7] meteorological observation station data feed), and 
information on air traffic advisories2 (scraped routinely from the 
FAA Air Traffic Control System Command Center website [8]). 
Given limited resources, we did not attempt to integrate all of the 
different data sources archived in Sherlock as part of our proof-of-
concept prototype. However, we did find it necessary to 
incorporate some ATM infrastructure data that was not explicitly 
stored in Sherlock, including information from FAA and other 
sources on air traffic routes, traffic management facilities, 
airports, runways, airlines, and aircraft. These data were essential 
‘glue’ required for the integration process. 

3.2 Ontology & Triple Store 
We constructed an ATM ontology to provide a unified data model 
for integrating data from the various sources. The RDF-based 
ontology includes various classes and properties required to 
describe the state of the ATM system. Although a complete 
specification of the ontology is beyond the scope of this paper, a 
sampling of some of its representative classes and properties are 
included below: 
Sample Classes: Flight, FlightPath, FlightConstraint, Airport, 
AirspaceInfrastructureElement (ArrivalRoute, DepartureRoute, 
NavigationFix, ATCsector, Airway), MeteorologicalCondition, 
AirCarrier, AircraftModel, AircraftSystem, AircraftManufacturer, 
AirportInfrastructureElement (Runway, Taxiway, DeicingPad, 

                                                                    
2 Air traffic advisories consist of modifications issued by the Air 

Traffic Control Command Center to manage the flow of aircraft 
under congested operations or in adverse weather conditions. 
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Gate, Terminal), AirspaceControlFacility (AirTrafficCmdCtr, 
TeminalRadarCtrlCtr, Tower), TrafficManagementInitiative, etc.  

Sample Datatype properties: aircraftHeading, groundspeed, 
actualDepartureTime, maxRunwayVisibility, airportArrivalRate, 
manufactureYear, ICAOcarrierCode, aircraftEquipmentCode, etc. 

Sample Object properties: arrivalRunway, adjacentSector, 
operatedBy, manufacturedBy, aircraftFlown, departureConstraint, 
surfaceWindCondition, hasAircraftFix, hasAgreementWith, etc. 

Figure 2 illustrates the ontology representation for a Flight, a key 
entity in the domain. The flight itself has connections to its 
departure and arrival airports, the air carrier operating the flight, 
the aircraft being flown, and its flight route, which is demarcated 
by a sequence of radar track positions (elaborated further in 
Figure 3). The color-coding in Figure 2 shows how data from 
different sources (aeronautical, flight, weather, equipment, and 
industry) are merged together by the ontology. 

 
Figure 2: Ontology Representation for a Flight 

At the time of this writing, the ontology features more than 150 
classes, 150 datatype properties, 100 object properties, and 450K 
instances. These instances cover one day’s worth of integrated 
ATM data for a single airport. The instances reside on a dedicated 
Linux server running the AllegroGraph [9] triple store. 

3.3 Translators 
We wrote data source specific, custom Python and Java code to 
translate ATM data from its original source format and convert it 
into ATM ontology triples. For data stored within Sherlock, the 
sources were either raw, record-oriented files or SQL tables; for 
ATM infrastructure data gathered elsewhere, the sources were csv 
files, html files, web service outputs, etc. This data translation step 
corresponds to a conventional ETL (extract-transform-load) 
process in a relational data warehouse, except that the target 
format is RDF triples and that the mappings from the original 
sources to the triples are often more complex than can be handled 
with simple ETL mapping tools. 

3.4 Query & Download Service 
The last component of our prototype has yet to be implemented. 
Even though it is possible to query data in our triple store using its 
native SPARQL capabilities, and to download data using vendor-
supplied functionality, we feel this is insufficient for our needs. 
Requiring aeronautics users to understand the ATM ontology and 
learn SPARQL syntax is not realistic. Our vision is to develop a 
specialized graphical user interface that allows for entry of queries 
in a simpler, more intuitive and domain-relevant fashion. In 
addition, we plan to supply a download capability tailored to the 
needs of aeronautics and aviation researchers. 

3.5 Alternative Approach 
One alternative to our semantic approach would have been to 
utilize conventional relational database warehousing technology 
and build a common database schema to be populated by an ETL 
process. However, we believe that ontology-based approaches 
offer key advantages over conventional relational approaches, 
principally based on their modifiability, ease of maintenance, 
built-in inference capabilities, and potential for reuse [10]. 
Modifiability is particularly important because additional data 
sources are regularly added to Sherlock, and existing data sources 
are periodically revised by their producers. Our common data 
model must be flexible and easily altered without requiring us to 
rebuild the entire repository. Wholesale rebuilding of tables is 
often necessary with relational schema changes; due to the finer 
granularity of RDF, ontology changes have less impact on 
preexisting triples in a repository. 

Although the semantic integration approach we pursued was not 
particularly novel, it is the first application of these integration 
techniques to a complex aviation data domain – based on our 
survey of the open literature. 

4. SCALING ISSUES 
For our prototype, we processed only one day’s worth of 
commercial US domestic flights to and from Atlanta airport (1342 
flights), and transformed associated flight, weather, air traffic, and 
advisory data into triples within our semantic store. The result was 
~2.4M triples. Estimating conservatively at 25,000 US domestic 
flights per day, processing data from all US domestic flights 
would generate approximately 29M triples daily, or over 10B 
triples yearly. Researchers often require multiple years of flight 
data for their analytical studies, so the potential volume of data to 
be integrated and queried is significant, and quickly enters the 
realm of big semantic data. Although our prototype has significant 
potential, that potential cannot be realized if scaling cannot be 
achieved successfully. 

4.1 Benchmarking 
Prior to purchasing a commercial triple store to support this work, 
we conducted some experiments to evaluate the performance and 
scalability of two triple store products under consideration: 
AllegroGraph v5.1 [9] and GraphDB v6.1 [11]. Part of our goal 
was to examine the feasibility of scaling up our prototype from a 
single day of Atlanta operations to a month’s worth of data. We 
developed a set of 17 benchmark SPARQL queries to investigate 
the impact of scale-up. These sample queries were developed in 
response to feedback provided by domain experts, and address 
topics of potential interest to NASA aeronautics researchers. In 
addition – to illustrate the benefits of data integration – these 
queries require data from multiple Sherlock sources, and cannot 
be answered using one data source alone. Among these 
benchmark SPARQL queries are the following (translated into 
English): 

• F1: Find Delta Airlines flights using Airbus A319 
equipment departing any Atlanta region airport; 

• F3S: Find flights with rainy departures from Atlanta-
Hartsfield airport; 

• S4: Find which US airspace sector was traversed by the 
most flights during a given hour; 

• S1S: Find flights that passed through a given airspace 
sector within 30 minutes of each other; 

• S6: Find the busiest airspace sectors in the US on a given 
day, aggregating hourly; 

• T1: Find flights that were subject to airport ground delays; 
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• W1: Calculate the hourly Weather-Impacted Traffic Index 
at Atlanta-Hartsfield airport 

(See Appendix for actual SPARQL queries corresponding to F1, 
F3S, S4, and S1S.) After formulating the benchmark queries, we 
loaded one day of flights into each of the two candidate triple 
stores, and ran the queries. Query execution times for the 
benchmark queries ranged anywhere from 11 milliseconds to 9.6 
seconds (average = 1.19 seconds), depending on the query. Next, 
we synthetically generated and processed one month of flight data 
and reloaded the triple stores with the resulting 36M triples (an 
amount 15 times greater than the 2.4M triples generated for a 
single day). This time, query execution times ranged from 8 
milliseconds to 27 minutes (average = 96.65 seconds). (See 
Appendix for execution timing statistics.) 

Depending on the computational complexity of the SPARQL 
graph-matching problem and the efficiency of the implementation, 
the results for scaling up from one day to one month varied. 
Execution time for most of the queries (~60%) scaled up roughly 
in proportion to the increase in number of triples. In a smaller 
number of queries (~30%), the increase in execution time was 
negligible – virtually the same in both cases. However, for at least 
one query, the time increase appeared to be exponential: 350 or 
700 times longer, depending on which triple store product was 
used. Benchmarking for another query surfaced significant 
performance discrepancies between the triple stores; one 
implementation reported a modest 4x increase for one month of 
data, while the other reported a 1400x increase on the same query.  
Overall, the results of our benchmarking exercise do not bode 
well for an effortless scale-up experience. Clearly, if we wish to 
scale up to analyze multi-year data, new strategies will be 
required to answer queries in reasonable response timeframes; 
many of these queries would require hours or even days to 
produce responses over multi-year data. 

4.2 Possible Approaches to Dealing with Scale  
Given that efficiency considerations can undermine the potential 
value of adopting semantic data representations, we must examine 
various approaches to improving the query performance of triple 
stores – especially in the world of big data. These approaches fall 
into several categories: hardware approaches (e.g., construction of 
specialized hardware appliances to store and process triples [12]); 
algorithm improvements (e.g., new graph-matching algorithms 
[13,14]); software approaches (e.g., SPARQL query planner 
improvements, triple storage and access improvements [15, 16]); 
query reformulation approaches (e.g., rewriting and/or 
reconceptualizing queries [17]); and triple reduction approaches 
(e.g., representation change, use of auxiliary non-triple storage). 
For an application builder using a commercial triple store (vs. a 
technology developer or a researcher), the last two categories 
represent the sole means available to improve efficiency. As such, 
we will discuss these two in more detail. 

4.2.1 Query reformulation 
With any large data store, it is necessary to consider efficiency 
when formulating queries. When using conventional relational 
database systems, specific tools are available to analyze and 
debug query performance issues by examining the query plan, 
calculating the size of the table joins, formulating indices, creating 
table partitions, etc. But when using semantic data stores, the 
current tools are not as mature, and it is more difficult to analyze 
and optimize queries. We found that although some query 
planning statistics could be generated using the triple stores we 
benchmarked, the support for query analysis was primitive and 
poorly documented. Furthermore, these systems provided little 

transparency as to how SPARQL queries were translated into 
code and executed, so it was difficult to determine how to go 
about rewriting queries to be more efficient. 

 
Figure 3: Ontology Representation of Aircraft Track Points 

4.2.2 Triple reduction 
When it is not possible to improve query performance due to the 
sheer size of the graph search space, it becomes necessary to 
rethink the underlying semantic representation and consider ways 
to reduce the size of the search space. In these cases, an 
unfortunate tradeoff between representational fidelity and 
efficiency must be considered. Consider an example from our 
ATM application domain, where much of the data volume is due 
to geospatial flight track information. Each flight is tracked by 
radar, and data is recorded about the position, altitude, and speed 
of each airborne aircraft every 30 seconds.3,4,5 Within the triple 
store, each tracking point is stored as a TrackPoint instance. The 
TrackPoint records the airspeed, heading, and time as datatype 
properties, and location of the aircraft as an object property 
(aircraftFix) whose range is a LatLonFix instance (see 
Figure 3). The LatLonFix is a subclass of PointLocation and 
NavigationFix, and captures the aircraft’s latitude, longitude, 
and altitude as datatype properties. Conceptually, this 
representation separates the temporally-dependent properties of 
the aircraft (e.g., speed, heading) at the track point from the static 
location in three-space through which the aircraft is passing (the 
LatLonFix).  

With this representation, it would be possible to record multiple 
aircraft passing through the same LatLonFix at different times, 
or to record the weather conditions at that location at different 
times. However this representational advantage comes at a penalty 
in terms of query efficiency, because for each radar track point, 
two linked instances are instantiated and stored in the triple store 
(one TrackPoint instance and one LatLonFix instance). These 
instances represent a majority of all instances in our triple store 
(~70%).  

An alternative and less costly representational approach – in terms 
of storage and query efficiency – would be to merge the location-
specific datatype properties and the aircraft-specific datatype 
properties into one class. This approach would reduce the size of 

                                                                    
3 FAA operational systems sample radar signals at a much higher 

frequency: once per second. 
4 The volume of aircraft data is significantly greater than just the 

geospatial tracking data available to the FAA; operational 
aircraft generate volumes of high frequency systems health data. 

5 The average number of tracking points per flight in our Atlanta 
dataset is 156, which corresponds to a 78-minute duration flight. 
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the triple store by ~35%. However, this representation 
compromises fidelity and is less flexible and extensible. 

Yet a different path to triple reduction would be to develop a 
hybrid approach, where the fidelity of the semantic representation 
is not compromised, but a subset of the data is removed and 
accessed outside the triple store – in secondary storage. For 
example, the sequence of LatLonFix points constituting a flight 
route and the boundaries of airspace sectors and regions could be 
stored in a geographic database optimized for spatial 
representations and computations. (Indeed, several graph database 
vendors offer specialized functionality to support geospatial data 
[18].) A similar argument could be made for storing certain types 
of multidimensional weather data external to the triple store. 

5. RELATED WORK 
Although there is little indication that “bleeding edge” semantic 
data management approaches have been adopted as yet by the 
inherently conservative aviation sector, the technology has begun 
to emerge in a small number of prototypes and experimental 
efforts. A recent workshop on Semantic Web for Air 
Transportation [19] uncovered ten active projects sponsored by 
government agencies, standards bodies, and private companies. 
The air transportation industry is acutely aware of data 
interoperability problems and has been actively pursuing more 
mainstream approaches for some time, publishing UML-based 
XML exchange model standards for weather, flight, and 
aeronautical information [20]. However, these models lack the 
formal logic underpinnings of ontologies and therefore cannot 
support data inference – a much-vaunted key capability of 
semantic approaches. In addition, the focus of these models is on 
system interoperability through the provision of a standardized, 
cross-industry exchange language. The more challenging problem 
of assembling heterogeneous data from multiple sources to create 
a single integrated data view is not directly addressed. Similarly, 
in [21] a system for integrating aircraft surveillance data from 
geographically-distributed signal receivers using RDF as a 
uniform data layer is proposed. But this work uses a triple store as 
a means of aggregating homogenous standardized data from 
multiple sources; there is no complex integration involved. There 
is little published work on ontologies in the air traffic 
management domain. van Putten [22] describes an ontology 
developed to model people, processes, and products associated 
with air traffic management. Although there is some conceptual 
overlap with our ontology, the scoping and scaling of this work is 
quite restricted, and is a mismatch to our specific requirements. 

6. CONCLUSIONS 
In this paper, we described an approach to constructing an 
integrated, semantics-based air traffic management data resource. 
Our prototype provides a proof-of-concept implementation, scaled 
down to a manageable scope covering one day’s worth of 
commercial domestic flights arriving or departing a major US 
airport. If realized on a larger-scale basis, this data resource has 
significant potential to serve a broad community of aviation 
researchers, operational flight management personnel, policy 
makers, and beyond. There are many challenging tasks that must 
be addressed to realize our goals, but data scale-up is one of the 
most critical to our success. The burning question is whether 
semantic tools are up to the task, and whether big semantic data is 
practical for real-world, big data domains where complex queries 
must be issued and answered in an acceptable timeframe. Our 
experience thus far indicates that this question remains very much 
open; without further work to develop tools that support serious 
performance tuning, future prospects are in doubt.  
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9. APPENDIX 
9.1 Sample SPARQL Queries 
# F1: Find Delta A319s departing ZTL airports on 9/8/12 

SELECT ?flight ?departYear ?departMonth ?acModel 
WHERE {BIND (nas:ZTLcenter AS ?center) . BIND 
(2012 AS ?departYear) . BIND (9 AS ?departMonth) . 
BIND(eqp:A319AircraftType AS ?modelType) . 
BIND (nas:DALairline AS ?operator) . 
 ?flight a atm:Flight . 
 ?flight atm:actualDepartureDay ?departDay . 
 ?departDay nas:calendarYear ?departYear . 
 ?departDay nas:calendarMonth ?departMonth . 
 ?flight atm:operatedBy ?operator . 
 ?flight atm:aircraftTypeFlown ?modelType . 
 OPTIONAL {?flight atm:aircraftFlown ?ac . 
         ?ac eqp:hasAircraftModel ?acModel .} . 
 ?flight atm:departureAirport ?departAirport . 
  {{?tracon nas:hasLOAwith ?departAirport . 
    ?tracon nas:hasLOAwith ?center .} UNION 
  {?departAirport nas:hasLOAwith ?center .} . } .} 
 
# F3S: Find rainy departures from ATL on 9/8/12 
SELECT DISTINCT ?flight 
WHERE {BIND (nas:KATLairport AS ?departAirport) . 
 ?flight a atm:Flight . 
 ?flight atm:departureAirport ?departAirport . 
 ?flight atm:actualDepartureDay ?departDay . 
 ?flight atm:actualDepartureTime ?departTime . 
 ?departAirport data:hasMETARreport ?metarRpt . 
 ?metarRpt data:metConditionStartDay ?departDay . 
 ?metarRpt data:metConditionStartTime ?rptTime . 
 ?metarRpt data:hasWeatherCondition ?wxcond . 
 ?wxcond data:weatherPhenomenon "rain" . 
 BIND (hours(?departTime) AS ?dptHour) . 

 BIND (minutes(?departTime) AS ?dptMins) . 
 BIND (hours(?rptTime) AS ?rptHour) . 
 BIND (minutes(?rptTime) AS ?rptMins) . 
 BIND (((?rptHour * 60)+ ?rptMins)AS ?totRptMins). 
 BIND (((?dptHour * 60)+ ?dptMins)AS ?totDptMins). 
 BIND (abs((?totRptMins - ?totDptMins))  
    AS ?reportingLagMins) . 
 FILTER (?reportingLagMins < 30) .} 
ORDER BY (?flight) 
 
# S4: Find which sector controlled the most    
#      flights during a given hour 
SELECT DISTINCT ((COUNT(?flight)) AS ?totalFlight)  
       ?sector 
WHERE {BIND (2 AS ?hourExamined) . 
    ?flight atm:hasActualRoute ?route . 
    ?route gen:hasSequencedItem ?posn . 
    ?posn atm:reportingTime ?time . 
    ?posn atm:aircraftFix ?fix . 
    ?fix atm:locatedInSector ?sector . 
    FILTER (hours(?time) = ?hourExamined) .} 
GROUP BY ?sector 
ORDER BY DESC (?totalFlight) 
 
# S1S: Find flights passing through a given sector  
#          within 30 minutes of each other 
SELECT DISTINCT ?flight1 ?flight2 
WHERE {BIND (nas:ZTLsector040 AS ?sector1) . 
    ?flight1 atm:hasActualRoute ?route1 . 
    ?flight1 atm:callSign ?callSign1 . 
    ?flight1 atm:actualDepartureDay ?departDay . 
    ?route1 gen:hasSequencedItem ?posn1 . 
    ?posn1 atm:reportingTime ?time1 . 
    ?posn1 atm:aircraftFix ?fix1 . 
    ?fix1 atm:locatedInSector ?sector1 . 
    ?flight2 atm:hasActualRoute ?route2 . 
    ?flight2 atm:callSign ?callSign2 . 
    ?flight2 atm:actualDepartureDay ?departDay . 
    ?route2 gen:hasSequencedItem ?posn2 . 
    ?posn2 atm:aircraftFix ?fix2 . 
    ?posn2 atm:reportingTime ?time2 . 
    ?fix2 atm:locatedInSector ?sector1 . 
BIND (hours(?time1) AS ?rptHour1) . BIND (minutes 
(?time1) AS ?rptMins1) . BIND (hours(?time2) AS 
?rptHour2) . BIND (minutes(?time2) AS ?rptMins2) . 
BIND (((?rptHour1 * 60) + ?rptMins1) AS 
?totRptMins1) . BIND (((?rptHour2 * 60) + 
?rptMins2) AS ?totRptMins2) . BIND (abs 
((?totRptMins1 - ?totRptMins2)) AS ?deltaTime) . 
FILTER ((?deltaTime < 30) &&  
            (?callSign1 < ?callSign2)) .} 
ORDER BY (?flight1) (?flight2) 

9.2 Benchmark Timing Statistics 

 


