Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

Matthew R. Bolcara
Lee Feinberga, Kevin Franceb, Bernard J. Rauschera,
David Reddingc, and David Schiminovichd

With help from the LUVOIR Science & Technology Definition Team, Study Office, and Technology Working Group

26 June 2016
Edinburgh, Scotland, UK
Paper 9904-18

aNASA Goddard Space Flight Center, bUniv. of Colorado,
cJet Propulsion Laboratory, dColumbia Univ.
A Brief History of LUVOIR

• pre-2010: Advanced Technology Large Aperture Space Telescope (ATLAST) mission concept study

• 2010: 2010 Decadal Survey, New Worlds, New Horizons
 – “...lay the technical and scientific foundations for a future space imaging and spectroscopy mission...” [page 20]
 – Recommended the definition of a future UV-optical space telescope

• 2013: NASA Astrophysics 30-year Roadmap
 – First mention of LUVOIR as a “Formative Era” mission

• 2013+: Additional work on ATLAST
 – Goddard, JPL, Marshall, Space Telescope Science Institute

• 2015: AURA From Cosmic Births to Living Earths
 – Recommend the High Definition Space Telescope

• 2016: Formation of LUVOIR Science & Technology Definition Team
A Brief History of LUVOIR

- **pre-2010**: Advanced Technology Large Aperture Space Telescope (ATLAST) mission concept study

- **2010**: 2010 Decadal Survey, *New Worlds, New Horizons*
 - “…lay the technical and scientific foundations for a future space imaging and spectroscopy mission…” [page 20]

- **2013+**: Additional work on ATLAST
 - Goddard, JPL, Marshall, Space Telescope Science Institute

- **2015**: AURA *From Cosmic Births to Living Earths*
 - Recommend the High Definition Space Telescope

- **2016**: Formation of LUVOIR Science & Technology Definition Team

For a much more detailed history, see:

The LUVOIR STDT

• Tasked with:
 – Identify a compelling science case
 – Define a design reference mission with strawman payload
 – Prioritize and roadmap necessary technologies

• Supported by the Study Office at Goddard Space Flight Center
• Tasked with:
 – Identify a compelling science case
 – Define a design reference mission with strawman payload
 – Prioritize and roadmap necessary technologies

• Supported by the Study Office at Goddard Space Flight Center

See poster 9904-181 for more details on the LUVOIR study plan
LUVOIR Science*

• Broad array of general astrophysics
 – Wide-field of view, high-resolution imaging in the Hubble bandpass (UV – NIR)
 – Wide-field of view, multi-object UV spectroscopy
 – Sensitivity at wavelengths at least as short as 100 nm

• Direct imaging of dozens of habitable exoplanets
 – Spectroscopic search for biosignatures
 – High-precision astrometry and/or radial velocity
 – Comparative planetology

• Local solar system observations

*Subject to further definition by the STDT
LUVOIR Science*

• Broad array of general astrophysics
 – Wide-field of view, high-resolution imaging in the Hubble bandpass (UV – NIR)
 – Wide-field of view, multi-object UV spectroscopy
 – Sensitivity at wavelengths at least as short as 100 nm

Implies a need for precision UV optics and sensitive UV detectors.

• Direct imaging of dozens of habitable exoplanets
 – Spectroscopic search for biosignatures
 – High-precision astrometry and/or radial velocity
 – Comparative planetology

• Local solar system observations

*Subject to further definition by the STDT
LUVOIR Science*

• Broad array of general astrophysics
 – Wide-field of view, high-resolution imaging in the Hubble bandpass (UV – NIR)
 – Wide-field of view, multi-object UV spectroscopy
 – Sensitivity at wavelengths at least as short as 100 nm

• Direct imaging of dozens of habitable exoplanets
 – Spectroscopic search for biosignatures
 – High-precision astrometry and/or radial velocity
 – Comparative planetology

• Local solar system observations

*Subject to further definition by the STDT
Technology Prioritization for 2016 Cycle

<table>
<thead>
<tr>
<th>Technology Area</th>
<th>Difficulty</th>
<th>Urgency</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Contrast Segmented-Aperture Coronagraphy</td>
<td>CRITICAL</td>
<td>CRITICAL</td>
</tr>
<tr>
<td>Ultra-Stable Opto-mechanical Systems (includes Sensing, Control, Mirrors, and Structures)</td>
<td>CRITICAL</td>
<td>CRITICAL</td>
</tr>
<tr>
<td>Large Format, High Sensitivity, High-Dynamic Range UV Detectors</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>Vis/NIR Exoplanet Detectors</td>
<td>HIGH</td>
<td>MED</td>
</tr>
<tr>
<td>Starshade</td>
<td>HIGH</td>
<td>MED</td>
</tr>
<tr>
<td>Mirror Coatings</td>
<td>MED</td>
<td>MED</td>
</tr>
<tr>
<td>MIR (3–5 μm) Detectors</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>
High-Contrast, Segmented-Aperture Coronagraphy

- Coronagraphy + large aperture (> 8m) provides high-yield exoEarth detection & characterization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal</th>
<th>State-of-the-Art (WFIRST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Type</td>
<td>Obscured, Segmented</td>
<td>Obscured, Monolith</td>
</tr>
<tr>
<td>Raw Contrast</td>
<td>1×10^{-10}</td>
<td>8.54×10^{-9}</td>
</tr>
<tr>
<td>Inner Working Angle</td>
<td>$2 \lambda/D @ 1 \mu m$</td>
<td>$3 \lambda/D @ 0.55 \mu m$</td>
</tr>
<tr>
<td>Bandpass (Instantaneous)</td>
<td>10 – 20%</td>
<td>10%</td>
</tr>
<tr>
<td>Bandpass (Total)</td>
<td>400 nm – 1.8 \mu m</td>
<td>523 nm – 578 nm</td>
</tr>
<tr>
<td>Throughput</td>
<td>> 10 %</td>
<td>< 5 %</td>
</tr>
<tr>
<td>LOWFSC Controllable Modes</td>
<td>Pointing, Z4-Z11</td>
<td>Pointing</td>
</tr>
<tr>
<td>LOWFSC Speed</td>
<td>> 1 kHz</td>
<td>~1 kHz</td>
</tr>
<tr>
<td>LOWFSC Accuracy</td>
<td>< 10 pm RMS</td>
<td>< 0.5 mas RMS per axis</td>
</tr>
<tr>
<td>Post-processing Contrast Gain</td>
<td>> 10×</td>
<td>3×</td>
</tr>
</tbody>
</table>
High-Contrast, Segmented-Aperture Coronagraphy

• Recommendations:

 – Continue the Segmented Coronagraph Design & Analysis study:
 • Improve model fidelity with dynamics, wavefront error, etc.
 • Continue “cross-pollination” and design collaboration

 – Viable candidates must be demonstrated on a UV-compatible, segmented aperture testbed prior to 2020 Decadal Survey
 • Need to establish credibility of segmented aperture coronagraphy
Ultra-Stable Opto-Mechanical Systems

• High-contrast imaging with a coronagraph requires wavefront stability ~10 pm RMS per wavefront control step

• Three general components to achieving wavefront stability:
 – Sensing Technologies
 – Control Technologies
 – Stable Structures & Mirrors

• An architecture involving all three is likely necessary to achieving the necessary stability
Sensing Technologies:

• **Image-based techniques**
 – Use the light from the object being observed
 • e.g. Zernike wavefront sensor, phase retrieval, etc.
 – Usually photon-starved, and therefore slower
 • Wavefront updates at 10s of minutes or hours

• **External metrology**
 – Use absolute metrology of optical system
 • e.g. laser trusses, edge sensors, etc.
 – Can be made arbitrarily fast, at the expense of added complexity
 • Provide wavefront updates at a few Hertz

• **Use both:**
 – Image-based techniques to control slow thermal drifts
 – External metrology to control faster dynamic drifts
Control Technologies:

• Primary Mirror Segments
 – Rigid body actuation in 6 degrees-of-freedom (a la JWST)
 – Higher-order control via warping harness or embedded actuators

• Macro-scale deformable mirrors
 – Currently used by most coronagraphs for speckle nulling
 – Continuous facesheets

• MEMs deformable mirrors
 – Continuous facesheet or segmented
 – Segmented can be mapped 1-to-1 to primary mirror segments for fast control of segment (tip/tilt)

• All require stable, precise, fast electronics
Stable Structures and Mirrors:

• Thermally stable mirror materials
 – ULE®, Zerodur® for low CTE at room temperature
 – SiC for high thermal conductivity, low CTE at colder temps

• Thermally stable structures
 – Composites with low CTE, CME
 – Better understanding of joints and lurches

• Requires better modeling and validation of linearity assumptions at picometer levels
Ultra-Stable Opto-Mechanical Systems

• Recommendations:

 – Systems-level approach to solving the problem
 • Mirrors, structures, sensors, actuators, materials, modeling, and the overall architecture must be developed together

 • Substantial participation of industry is necessary

 – Design and development activities to demonstrate closed-loop picometer-class stability for segmented apertures

 – Competitive development of picometer component sensing and control technologies and architecture feasibility demonstrations
Large Format, High Sensitivity, High Dynamic Range UV Detectors

- Micro-channel Plates (MCPs) are current state-of-the-art for UV detectors
 - Limited dynamic range (cannot view bright objects)
 - Limited lifetime (“gain-sag” issue)
 - Difficult to tile in large arrays

- EMCCD & sCMOS are of interest
 - *Must first be evaluated for radiation hardness and noise performance*
 - Could provide a path for large-format, high dynamic range
 - Need improvement in UV sensitivity
Large Format, High Sensitivity, High Dynamic Range UV Detectors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal</th>
<th>State-of-the-Art (MCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Bandpass</td>
<td>90 nm – 400 nm</td>
<td>90 nm – 300 nm</td>
</tr>
<tr>
<td>Read Noise</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dark Current</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spurious Count Rate</td>
<td>≤ 0.05 counts / cm² /s</td>
<td>0.05 counts / cm² /s</td>
</tr>
<tr>
<td>Quantum Efficiency (Peak)</td>
<td>75 % (FUV – NUV)</td>
<td>45 – 20% (FUV – NUV)</td>
</tr>
<tr>
<td>Resol Size</td>
<td>≤ 10 μm</td>
<td>20 μm</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>≥ 10⁴ Hz / resol</td>
<td>40 Hz / resol; 5 MHz global</td>
</tr>
<tr>
<td>Time Resolution</td>
<td>≤ 100 ms</td>
<td><< 1 ms</td>
</tr>
<tr>
<td>Format</td>
<td>≥ 8 – 16 k pixels per side</td>
<td>8k x 8k</td>
</tr>
<tr>
<td>Radiation Tolerance</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Recommendations:

- Technology-only balloon/rocket programs and laboratory demonstration can accelerate development
 - Minimize time spent on science instrumentation; focus on detector evaluation

- Evaluate/develop EMCCD and sCMOS for radiation hardness and noise performance
 - If acceptable, pursue δ-doping for UV sensitivity
 - Also benefits the Vis/IR Detectors for Exoplanet Science technology need
Vis/IR Detectors for Exoplanet Science

• For high exoEarth yields, require extremely low-noise detectors
 – < 1 e⁻/pixel read noise; < 0.0010 counts/pixel/s dark current

• Candidate technologies:
 – EMCCD:
 • Must be made radiation hard

 – sCMOS:
 • Must be evaluated for read noise, dark current, and radiation hardness

 – MKID/TES:
 • Energy resolving detectors require cryogenic operation which may be incompatible with picometer stability requirement
Starshade

• Alternative means to starlight suppression for exoplanet science
 – Trades telescope stability for added complexity of additional spacecraft flying in precise formation with observatory
 – Risk reduction should coronagraphy or stability prove too challenging
 – Mission enhancing for NIR exoplanet characterization

• Starshade Readiness Working Group (SSWG) recently formed
 – Develop “a technical concept and risk reduction plan” for starshade validation
Mirror Coatings

• Require broadband, high-performance coatings that are compatible with coronagraphy:
 – Maintain high reflectivity over band between 90 nm and 2.5+ μm
 – High uniformity over 10-m class aperture
 – Minimize polarization aberration and cross-polarization leakage

• Need investigations in deposition processes to improve reflectivity and uniformity

• Demonstration of high-contrast imaging with UV-compatible coated segmented aperture is needed prior to 2020
MIR (3-5μm) Detectors

• Depending on operating temperature of LUVOIR, varying degrees of MIR science is possible
 – Observations are limited by telescope’s thermal background
 – Even with a room-temperature telescope, cold instruments can enable some MIR transit spectroscopy

• Need to better understand needs of science observations relative to background limitations
 – Define detector needs and evaluate the technology gap
Conclusion

• Prioritized 7 technologies for LUVOIR, based on preliminary science case

• Three technologies elevated as urgent for 2016 investment:
 – High Contrast, Segmented Aperture Coronagraphy
 – Ultra-stable Opto-mechanical Systems
 – Large Format, High Sensitivity, High Dynamic Range UV Detectors

• Additional technologies will require development as
 – (a) the science case is further defined,
 – (b) the above gaps begin to narrow, and/or
 – (c) additional information is made available about current capabilities