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Introduction

The Primordial Inflation Explorer (PIXIE) [1, 2]
e Space-based polarizing Fourier transform spectrometer (FTS).

e Designed to measure the polarization and intensity spectra of the
CMB.

e Multimode “lightbucket” design enables nK-scale sensitivity across
2.5 decades in frequency with just 4 thermistor-based bolometers.

e Like other FTSs [3, 4, 5, 6], PIXIE's design and experimental
approach? represent a significant departure from imagers often used
for CMB measurements. This is especially true for the detectors.

o Large etendue (AQ = 4 cm? sr).

e Handle large optical load (120 pW).

e Large and mechanically robust absorber structure (30x larger than
the spider web bolometers on Planck [7]).

e Limited sensitivity to particle hits.

e Sensitive to all optical frequencies of interest (15 GHz - 5 THz).

e Photon-noise limited (NEP < 1 x 107! W/v/Hz).

?See Al Kogut's poster on systematic error mitigation and Dale Fixsen's talk on beams. 2



Instrument description

Incident radiation:

Ejpe = A% + BY (1)

Measured power:
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Inverse Fourier transform:

sbwy=na2 - 82.

Each focal plane has two st

(v)=B2 — A2.
polarization-sensitive bolometers sfoy=a3 - 8.

mounted back-to-back with their sy () = B) — A

polarization axes orthogonal.  gjona/ — small modulated component

in a bright (~ 120 pW) background. 3



Instrument description

e Mirror position z — optical path difference ¢: z ~ (/4.

Mirror velocity v: v = z/ (3 sec) = 1.73 mm/sec.

Optical path difference £ — interfering radio frequency v: £ = c/v.

Radio frequency v — Audio (FTS) frequency w: w = 4vv/c.
e CMB: w < 15 Hz.
e Dust: w < 100 Hz.
These constraints drive the bolometer bias and bandwidth requirements.
Detectors must be photon noise limited across all FTS frequencies
(0 — 100 Hz) under large, near-constant (~ 120 pW) optical bias.



Detector design and fabrication



Detector design - overview

Detectors are fabricated using standard microfabrication techniques.
They consist of three main components:
e Absorber structure - absorb single linear polarization
e Endbanks - measure incident optical power with silicon thermistors
e Frame - thermal sink and interface to readout

Each beam'’s focal plane will consist of two indium bump-hybridized
detectors mounted < 20 um apart with their absorbers orthogonal.
— measure orthogonal polarizations of nearly the same electric field.



Absorber structure - overview

e Consists of a grid of suspended, micromachined, ion implanted
silicon wires.
e Wires are degenerately doped to be metallic at all temperatures.
e Effective sheet resistance of the whole structure is 377 Q/C.
e Absorber area sets low frequency cutoff of instrument (15 GHz); grid
spacing (30 pm) sets high frequency cutoff (5 THz).
e Wire widths and thicknesses are highly uniform across the array.
e Thickness set by starting SOI device layer thickness (1.35 pm).
e Wires are etched to width with an ICP RIE process. 6



Absorber structure - mechani characterization
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e Doping induces compressive stress in absorber wires; previous devices
had their wires buckle and protrude up to 20 um from the frame.
— problematic for a hybridized pair of bolometers.
e Detectors subject to vibrations and acoustic excitations at launch.
— need resonant frequencies of absorber structure to be much
greater than excitation frequencies of launch.
e Solution: deposit highly tensile Al;Og3 film on absorbers outside of
active optical region.
— Fabricated absorbers are flat and expected to oscillate with
amplitudes of < 0.4 um rms during launch. v



Endbanks - overview

e Consists of a gold bar for
thermalization and two doped
silicon thermistors on a
crystalline silicon membrane.

e The gold bar also sets the heat
capacity of the endbank.

e Endbank is formed from the
device layer of the SOI
substrate.

e Endbanks are connected to the chip frame through eight silicon legs.
e Thermistors are doped to operate below metal-insulator transition.
Electron transport mechanism is variable range hopping [8]:

R(T)_Roxexpﬁ, (4)

where Ry and Ty are constants largely determined by geometry
and doping, respectively. 8
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Figure 1: replace this with In bump SEM

e The chip frame is designed so that any two bolometer chips can be
hybridized together.

e Large gold-covered areas serve as heat sinks.



Package and readout




Package and readout - dark tests

e Thermistor operates under current bias (Rpias >> Riherm)-
e Bolometer is connected to a cryogenic (130 K) JFET amplifier with
tensioned leads, mitigating capacitive microphonic contamination of
the signal band. We use Interfet NJ14AL16 JFETs that are screened
for low noise performance (5.5 nV/v/Hz at 100 Hz).
e Amplifier converts the high source impedance of the thermistors
(MQ-scale) to the low output impedance of the JFETs (1.8 kQ).
e Low impedance signal is AC coupled to a room temperature
amplifier.
10



Detector performance




Performance - load curves
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e Determine Ry and Ty from the measured resistances under low

electrical bias.

— To =15.11 K and Ry = 911 Q. Operating resistance: 5.42 MQ.
e Determine average thermal conductance G between the thermistors
and the bath from the high-bias end of the load curves:

G:

'Dbias

-T2 &

e Fit to the measured G with a function G = Gy x T7.

— The fit is close to the expected value (Bpronon = 3)-

11



Performance - thermal model

e For the endbank geometry,
break Au bar, thermistors, and
legs into small elements.

e Solve for the etendue AQ;; i
beween all elements.

e Heat flow between elements
(e.g., between i and j) is given
by Pj = Ay (T} = T7).

e Determine G between elements, determine C from material
properties/geometries, measure VRH parameters Ry and Tp, and
solve for non-equilibrium bolometer noise [9]:

1 ]
NEPbolometer2 - 714kb T2 G + ? (724kb TR+ e/% +’Y3 ’3 R+’Y4NEPexcess2) .
(6)
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Performance - noise

—— Measured bolometer noise
—— Measured JFET noise

~ ~ Modeled bolometer noise
~ = Modeled JFET noise

Voltage noise [V/Hz"?]
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e Thermal model reproduces the measured G well.

e Modeled noise fits the measured noise well for multiple bias
conditions.

e Running the model for the optical and electrical bias conditions

expected during flight, we calculate a bolometer NEP of
7.93 x 10717 W/+/Hz.

Expect to be photon noise limited across the entire PIXIE bandwidth. 13



Conclusions




Conclusions

o We designed, fabricated, and characterized large area
polarization-sensitive bolometers for the PIXIE experiment.

e Mechanical characterization of the fabricated PIXIE bolometers
shows that the tensioning scheme successfully flattens the absorber
strings.

e Enables indium bump hybridization of a pair of bolometer chips.
e Mitigates microphonic sensitivity during launch.
e The dark data provide significant insight into the thermal behavior
of the endbanks.
e Thermal model agress well with the data.
e The results indicate that the PIXIE bolometers satisfy the sensitivity
and bandwidth requirements of the space mission.

e Upcoming work:

e Characterize the absorber structure (dark measurements of thermal
transport and AC impedance, optical measurements with a cryogenic
blackbody source.)

e Subject a hybridized pair of bolometers to environmental testing.
14
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