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ABSTRACT   

Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-

energy astrophysics.  Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution 

using a full shell mirror approach.  Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors 

using a segmented approach.  This paper describes a new approach, called meta-shells, which combines the fabrication 

advantages of segmented optics with the alignment advantages of full shell optics.  Meta-shells are built by layering 

overlapping mirror segments onto a central structural shell.  The resulting optic has the stiffness and rotational symmetry 

of a full shell, but with an order of magnitude greater collecting area.  Several meta-shells so constructed can be 

integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. 

The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount.  The four point 

mount deterministically locates the segment in its most performance sensitive degrees of freedom.  Extensive analysis 

has been performed to demonstrate the feasibility of the four point mount and meta-shell approach.  A mathematical 

model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been 

developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per 

meta-shell.  The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective 

area.  To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a 

meta-shell was created.  Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients. 
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1. INTRODUCTION  

Advancements in x-ray optics fabrication technologies are required to enable future discoveries by space-based x-ray 

telescopes [1].  While both lightweight and high resolution mirror fabrication technologies exist, no spaceflight proven 

technology currently achieves both at once.  Lightweight and relatively low cost mirror assemblies have been 

constructed for both the Suzaku and NuSTAR missions, with relatively low resolution of 110 arc-seconds HPD and 60 

arc-seconds HPD respectively.  The low mass of the optics allows for large photon collecting area at the expense of 

focusing performance.  Mission such as Chandra and XMM-Newton have achieved superior angular resolutions of 0.5 

arc-seconds HPD and 15 arc-seconds HPD respectively with relatively small collecting area and at a very high cost.  

Suzaku and NuSTAR used thin segmented mirrors to achieve their low mass, while Chandra and XMM-Newton used 

relatively thick full shell optics to achieve their excellent resolution.  A hybrid approach, called meta-shells, that 

combines the benefits of both lightweight segmented optics and stiff full shell optics is being pursued by the Next 

Generation X-ray Optics (NGXO) team at NASA GSFC. 
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2. META-SHELL APPROACH TO MODULAR X-RAY OPTICS 

2.1 Full shell versus segmented optics 

The basic optical elements of current x-ray mirrors can be divided into two types: full shell mirrors, such as those used 

on ROSAT, Chandra, and XMM-Newton, and segmented mirrors such as those used for Suzaku and NuSTAR.  While 

full shell optics have advantages in stiffness, due to the full annulus, and integration, due to symmetry and reduced 

number of optics to integrate, they are not amenable to making large lightweight mirror assemblies.  As optics increase 

in collecting area they must also decrease in mass and per unit area to accommodate existing launch vehicles.  However, 

as they decrease in mass, optics become thinner, more flexible, and therefore more easily distorted, particularly during 

fabrication and mounting. Thus far, full shell optics with a diameter greater than 1 m and a thickness less than 1 mm 

have not been successfully fabricated.  For example, Chandra’s largest shell was 1.2 m in diameter with a thickness of 23 

mm [2].  For this reason, the majority of x-ray mirror technology development to enable future large collecting area 

missions such as Athena and X-Ray Surveyor focuses on thin segmented mirrors [3]. 

 

Figure 1.  Mirror assembly constructed from wedge-shaped modules. 

2.2 Wedge shaped modules versus meta-shells 

Large mirror assemblies envisioned for future missions have typically been divided up both radially and azimuthally into 

many wedge shaped modules [4,5] as shown in Figure 1.  This paradigm has the advantage of requiring many identical 

modules of modest size.  However, it has distinct disadvantages.  First, it sacrifices the rotational symmetry inherent in 

full shell optics leading to difficulty in establish an optical axis and high sensitivity to roll misalignment (about the 

modules center of gravity) during module integration.  Second, mounting to the module structure leads to over-constraint 

of the mirror segment which generates mounting distortion. 

The meta-shell approach divides the mirror assembly up radially, similar to Chandra, but with each radial division 

containing dozens of optical shells rather than a single shell.  Each radial element, or meta-shell, consists of a thick 

structural shell (non-optical) onto which many thin shells are layered in an interlocking pattern as shown in Figure 2.  

This paradigm has the advantage of creating a lightweight and stiff optic with a large collecting area.  The meta-shell 

approach is similar to the construction of the NuSTAR mirrors [6] though it is designed to be scalable for larger mirror 

assemblies and differs in the particulars of the mirror segment mounting as described in Section 2.3 below. Additionally, 

the meta-shell is rotationally symmetric which simplifies aligning several meta-shells into a mirror assembly.  The same 

approaches used to align and mount full shell optics for Chandra and XMM-Newton can be used with meta-shells.  

Finally, the continuous annular structure simplifies thermal design by allowing a conduction path through the structural 

shell as opposed to wedge-shaped modules which must be individually thermally controlled. 
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Figure 2.  Mirror assembly constructed from meta-shells.  Mirror segments are layered onto the structural shell in an interlocking 

pattern to form the meta-shell.  Several meta-shells can be co-aligned to create a large mirror assembly. 

2.3 Four post kinematic mount 

To minimize mirror distortion, a kinematic mount is desired.  With a kinematic mount, the stress state is deterministic 

and the distortion due to gravity can be easily calculated and optimized using Finite Element Analysis (FEA).  In 

comparison, an over-constrained mount can distort a thin mirror segment in ways that are difficult to predict and 

measure, since the sensitivity to displacement of over-constrained mounts can be as high as 35 arc-seconds HPD / µm 

[7]. To this end, a kinematic mount using four posts of a prescribed height has been developed. 

As three points describe the location and orientation of a plane, so four points describe the location and orientation of a 

cylinder or cone.  A mirror segment mounted on four points has its four most crucial degrees of freedom (dof) 

constrained, namely de-center (2 dof), pitch, and yaw.  The remaining two degrees of freedom are roll, which has no 

effect on the focus quality due to rotational symmetry, and de-space, which is orders of magnitude less sensitive.  Once 

the mirror is so located, it can be bonded in place to a CTE matched structure (silicon in this case) with minimal 

distortion as shown in Figure 3.  Axially, the mounts are located at the Airy points to minimize axial distortion, and 

azimuthally the mounts are located at the 1/4 points to allow for staggered mounting of the subsequent layer of mirror 

segments as shown in Figure 2. 

Gravity, which provides the nesting force needed to ensure the mirror contacts all four points, distorts the mirror by a 

predictable amount.  The distortion of a 300 mm diameter silicon mirror segment with gravity acting radially, as during 

mounting to the meta-shell, is 2.2 arc-seconds HPD.  If the mounted mirror is then turned 90 degrees, such that gravity 

acts azimuthally, the distortion reduces to 0.5 arc-seconds, allowing the mirror to be tested in a horizontal x-ray beam 

line.  With gravity completely absent on orbit, only 0.2 arc-seconds of distortion, frozen in during the bonding process, 

remain.  The minimal distortion of the four post mount has been verified experimentally as shown in Figure 3. 



 

 
 

 

 

Figure 3.  Four point mount bonding development platform (left).  The mirror is bonded at four posts, then rotated 90 degrees for 

interferometric measurement.  The change in mirror figure (blue line) is within the metrology system repeatability of 0.15 µm. 

2.4 Constructing a meta-shell 

Constructing a meta-shell involves five major steps.  First, the structural shell is fitted with temporary end-caps and 

mounted to an air bearing spindle as shown in Figure 4.  The axis of rotation defines the optical axis of the meta-shell.  

Second, posts are bonded to the structural shell to provide the mounting points for the first layer of mirror segments. To 

simplify alignment, both primary and secondary mirrors are mounted to the same structural shell.  Third, the post heights 

are set using in-situ machining to the required tolerance.  The post heights are verified by installing a mirror segment and 

checking its focus.  Fourth, a layer of mirror segments are bonded on top of the posts.  Steps two, three, and four are 

repeated for each layer of mirror segments.  The number of mirror segments in a meta-shell is determined by the optical 

design and bond strength as described in Section 3 below.  Finally, the temporary end caps are removed and the meta-

shell is mounted to a Ground Support Equipment (GSE) structure for transportation, testing, and alignment into the 

mirror assembly. 

 

Figure 4.  Meta-shells are assembled in on air-bearing spindle (left).  After assembly they are mounted to a GSE spider structure for 

transportation, testing, and alignment (right). 



 

 
 

 

2.5 Meta-shell mirror assembly 

Several meta-shells can me aligned and bonded onto a carrier structure to form a mirror assembly.  Proven techniques 

from Chandra and XMM-Newton have been adapted.  Similar to XMM-Newton, the meta-shells, which combine 

primary and secondary mirrors, are mounted at the forward (primary mirror) end to a carrier structural with thin radial 

spokes called the spider [8] as shown in Figure 5.  During integration they are supported by the GSE structure at the 

secondary mirror end where they can be manipulated for alignment.  As with Chandra, alignment can be checked with a 

steerable auto-collimated beam at the focus which is retro-reflected off a flat mirror at the aperture [9].  Once aligned, 

the meta-shell is bonded to flexures allowing a radial degree of freedom, again following the Chandra approach [2]. 

The spider structure, being at the space-facing end of the mirror, can be used to mount stray-light baffles and can also be 

heated to provide a warm surface to radiate to the mirror segments.  The completed mirror assembly includes the spider 

with mounted meta-shells, the interface ring to provide mounting for the telescope tube and spacecraft, and a thermal 

pre-collimator as shown in Figure 5.  The thermal design is also adapted from Chandra and previous x-ray mission 

studies [10].  

 

Figure 5.  The meta-shells are mounted to a spider structure.  The spider structure has additional heated vanes for thermal control.  

Both the spider structure and thermal pre-collimator are mounted to an interface ring that provides mounting interfaces to the 

spacecraft and telescope tube. 

3. META-SHELL STRUCTURAL ANALYSIS 

To verify the feasibility of the meta-shell approach and to optimally size the meta-shell components, structural and opto-

mechanical analysis has been performed to check the launch stress in the assembly, the distortion due to gravity, and 

distortion due to thermal gradients 

3.1 Bond strength versus bond size, mirror span, and number of layers 

With hundreds of thin optical elements bonded onto the structural shell, the strength of the meta-shell when subject to 

launch loads is an obvious concern.  Analysis shows that the weakest point in the design is the bond stress in the 

adhesive between the structural shell and the innermost mounting post where the load from all the subsequent 

cantilevered layers of mirrors must be transferred.  A mathematical model which calculates the adhesive stress at the 

bond joints was developed.  The model calculates the shear, tensile, and bending stresses in the bond joint and finds the 

margin of safety based on a conservative safety factor of 3.0.  Launch loads of 12.3 g axial and 3.4 g axial were applied 

based on the International X-Ray Observatory (IXO) mission study coupled loads analysis with a model uncertainty 

factor of 2.0 applied to the loads [7].  The meta-shell design parameters effecting the bond stress are (1) the diameter of 

the bond between the mirror segment / structural shell and mounting post (2) the azimuthal span of the mirror segment, 



 

 
 

 

which determines the number of bonds around the meta-shell circumference and (3) the number of mirror layers on the 

meta-shell, which determines how much load must be carried by the inner-most bonds.  Based on these three parameters, 

the mathematical model was iterated to determine the feasible design region shown in Figure 6.  Designs with 

parameters below the surface shown are feasible, while those above the surface have a negative margin of safety. 

 

Figure 6.  Feasible designs with positive stress margins are below the surface (left).  Total bond area can be increased by decreasing 

the mirror span or increasing the post diameter (right). 

The three parameters must be traded against each other to develop an optimal design considering bond strength, mirror 

effective area, and manufacturability.  Increasing the bond size increases the bond strength but blocks incoming x-rays, 

reducing the effective area.  Decreasing the mirror span increases the bond strength but results in more mirror segments 

that must be fabricated and assembled into the meta-shell.  Decreasing the number of layers per meta-shell increases the 

bond strength but reduces the effective area requiring additional meta-shells to be fabricated.  An example of a feasible 

1.3 m mirror assembly design using 0.4 mm thick silicon mirror segments is shown in Table 1.  For this design, the 

azimuthal span, determined by degree of segmentation of the annulus, was selected to yield a mirror segment chord 

width approximately equal to the 100 mm axial length of segments.  The approximately square length-to-width aspect 

ratio is convenient for fabrication, metrology, and mounting.  The bond diameter was selected to be 4 mm, which blocks 

9% of the mirror area.  The feasibility of the design, accuracy of the mathematical model, and assumption that bond 

strength is the limiting factor were verified using a detailed Finite Element Model (FEM) of the meta-shells shown in 

Figure 8. 

Table 1.  Example of a 1.3 m diameter, 5 m focal length mirror assembly made from six meta-shells 

Meta-shell 
number 

Structural shell 
thickness 

(mm) 

Innermost 
mirror 

diameter (mm) 

Outermost 
mirror 

diameter (mm) 

Layers in 
meta-shell 

Mirror 
segments in 
meta-shell 

1 keV effective 
area (cm2) 

1 5 349 455 24 768 211 

2 7 480 597 23 920 338 

3 9 625 752 22 1056 487 

4 11 791 922 20 1200 616 

5 13 973 1106 18 1296 722 

6 15 1164 1296 16 1344 782 

   Totals 123 6584 3157 

 



 

 
 

 

3.2 Structural shell thickness 

The required thickness of the silicon structural shell is determined in two ways.  First, the stress in the structural shell 

must be low.  Figure 7 shows a plot of structural thickness versus maximum stress.  Second, the flexibility of the 

structural shell should have a minimal impact on the bond strength.  Put another way, the structural shell should be well 

approximated by an infinitely rigid constraint relative to the mirror segment and mounting post stiffness.  In the case of 

the innermost meta-shell of the design shown in Table 1, a thickness of 5 mm satisfies both of these criteria.  Analysis 

shows the structural shell thickness should increase approximately linearly with diameter, as with the Chandra full shell 

design [2]. 

 

Figure 7.  Stress plot of a structural shell (left).  The stress decreases as the shell thickness increases (right). 

3.3 Opto-mechanical analysis 

A high fidelity FEM of a meta-shell was generated using a custom software tool that reads in the optical prescription and 

outputs a NASTRAN compatible FEM with hundreds of mirror shells accurately represented.  This model was used to 

perform opto-mechanical analyses wherein the distortions determined by FEA are ray-traced to predict the resulting x-

ray performance.  This method was used to verify the gravity distortions are sufficiently small to support ground based 

x-ray testing and determine the sensitivity to thermal gradients pending the completion of a full Structural Thermal 

Optical Performance (STOP) analysis.  Table 2 summarizes the opto-mechanical analysis results.  Figure 8 shows the 

distortion and performance of a meta-shell subjected to an axial gravity load. 

Table 2.  Summary of opto-mechanical analysis results. 

Load Case HPD (arc-sec) RMSD (arc-sec) 

1 g axial 0.2 0.4 

1 g lateral 1.9 5.2 

1°C bulk temperature change 0.3 0.4 

1°C axial temperature gradient 0.1 0.1 

1°C lateral temperature gradient 0.3 0.8 

1°C radial temperature gradient 0.3 0.4 

 



 

 
 

 

 

Figure 8.  Deformation of a meta-shell under axial gravity load (left) and predicted x-ray image (right). 

4. CONCLUSIONS 

The meta-shell approach combines the fabrication advantages of segmented x-ray optics with the integration advantages 

of full shell optics.  A meta-shell construction method using a four point semi-kinematic mount to layer interlocking 

mirror segments onto a central structural shell has been developed.  Initial testing shows the distortion of the four point 

mount is minimal.  Extensive analysis was performed to demonstrate the feasibility of the four point mount and meta-

shell approach.  A mathematical model was developed to aid in the selection of meta-shell design parameters and verify 

the assembly can accommodate launch loads.  A detailed FEM of a meta-shell was used to verify the mathematical 

model and perform opto-mechanical analysis predicting the x-ray performance under various mechanical and thermal 

loads. 
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