LOW DENSITY SUPERSONIC DECELERATOR (LDSD)
SUPERSONIC FLIGHT DYNAMICS TEST (SFDT)
PLUME INDUCED ENVIRONMENT MODELLING

B. L. Mobley1, S. D. Smith2, J. W. Van Norman3, S. Muppidi4 and I. Clark5

Objectives:

- Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1)
- Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

Approach:

- Star48 and Small Solid Nozzle Flow Fields – RAMP engineering code
- Star48 and Small Solid Plume Flow Fields – Loci/CHEM 3.3 CFD code
- Plume Radiation – Reverse Monte Carlo (RMC) radiation code
- Reynolds Averaged Navier-Stokes (RANS) Simulations (varying fidelity, grids)
- Two-phase Flow (Gas + Al\textsubscript{2}O\textsubscript{3} particles)
- Two Gaseous Species (thermally perfect, equivalent air and plume, frozen chemistry)

1Aerospace Engineer, EV33 Aerosciences Branch, Marshall Space Flight Center, Huntsville, Alabama, 35812
2Senior Aerospace Engineer, Plumetech, Huntsville, Alabama, 35812
3Senior Project Engineer, Analytical Mechanics Associates, Hampton, Virginia, 23666
4Research Scientist, ERC, Mountain View, California, 94035
5LDSD Principal Investigator, Jet Propulsion Laboratory, Pasadena, California, 91109