LOW DENSITY SUPERSONIC DECELERATOR (LDSD)
SUPERSONIC FLIGHT DYNAMICS TEST (SFDT)
PLUME INDUCED ENVIRONMENT MODELLING

B. L. Moley, S. D. Smith, J. W. Van Norman, S. Muppidi and I. Clark

Objectives:

• Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1)
• Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

Approach:

• Star48 and Small Solid Nozzle Flow Fields – RAMP engineering code
• Star48 and Small Solid Plume Flow Fields – Loci/CHEM 3.3 CFD code
• Plume Radiation – Reverse Monte Carlo (RMC) radiation code
• Reynolds Averaged Navier-Stokes (RANS) Simulations (varying fidelity, grids)
• Two-phase Flow (Gas + Al₂O₃ particles)
• Two Gaseous Species (thermally perfect, equivalent air and plume, frozen chemistry)

* Aerospace Engineer, EV33 Aerospace Branch, Marshall Space Flight Center, Huntsville, Alabama, 35812
* Senior Aerospace Engineer, Plumetech, Huntsville, Alabama, 35866
* Senior Project Engineer, Analytical Mechanics Associates, Hampton, Virginia, 23666
* Research Scientist, ERC, Mountain View, California, 94043
* LDSD Principal Investigator, Jet Propulsion Laboratory, Pasadena, California, 91109

SFD-1 SPIN MOTOR PLUME IMPINGEMENT

Pre-flight Heating Contours Post-flight Charring

SFD-2 STAR48 PLUME INDUCED AERODYNAMICS

CFD, Mach = 0.7, Angle-of-Attack = 17.1°

Loci-CHEM CFD AERODYNAMIC PREDICTIONS VERSUS POST-FLIGHT, BEST EQUIVALENT TRAJECTORY (BET)

SFDT-2 Powered Phase, 0 ≤ M ≤ 4.1

SFDT-2 Powered Phase, 0 ≤ M ≤ 6.0