LOW DENSITY SUPERSONIC DECELERATOR (LDSD)
SUPersonic Flight Dynamics Test (SFDT)
PLume Induced Environment Modelling

B. L. Mobjley$, S. D. Smith$, J. W. Van Norman$, S. Muppidi and I. Clark$

Objectives:
• Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1)
• Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

Approach:
• Star48 and Small Solid Nozzle Flow Fields – RAMP engineering code
• Star48 and Small Solid Plume Flow Fields – Loci/CHEM 3.3 CFD code
• Plume Radiation – Reverse Monte Carlo (RMC) radiation code
• Reynolds Averaged Navier-Stokes (RANS) Simulations (varying fidelity, grids)
• Two-phase Flow (Gas + Al_2O_3 particles)
• Two Gaseous Species (thermally perfect, equivalent air and plume, frozen chemistry)

1Aerospace Engineer, EV33 Aerospace Branch, Marshall Space Flight Center, Huntsville, Alabama, 35812
2Senior Aerospace Engineer, Plumetech, Huntsville, Alabama, 35812
3Senior Project Engineer, Analytical Mechanics Associates, Hampton, Virginia, 23666
4Research Scientist, ERC, Mountain View, California, 94043
5LDSD Principal Investigator, Jet Propulsion Laboratory, Pasadena, California, 91109

SFDT-1 SPIN MOTOR PLUME IMPINGEMENT
Pre-flight Heating Contours

SFDT-2 STAR48 PLUME INDUCED AERODYNAMICS
CFD, Mach = 0.7, Angle-of-Attack = 17.1°

Loci-CHEM CFD AERODYNAMIC PREDICTIONS VERSUS POST-FLIGHT, BEST EQUIVALENT TRAJECTORY (BET)

SFDT-1 Trajectory, Altitude (km)
SFDT-2 Trajectory, Altitude (km)

SFDT-1 Trajectory, Mach Number
SFDT-2 Trajectory, Mach Number

SFDT-1 SPIN-UP MOTORS (2 PAIRS)
SFDT-2 SPIN-DOWN MOTORS (2 PAIRS)

ORBITAL-ATX STAR48 (20% OFFLOADED TO REDUCE BURN TIME)