The Challenges of Developing a Food System for a Mars Mission

Michele Perchonok, Ph.D.
Manager, Program Science Management Office
NASA Human Research Program

Layers at the Base of Mount Sharp (taken by Curiosity)
The goal of HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration.
HRP Integrated Path to Risk Reduction

Planetary DRM (Mars)

<table>
<thead>
<tr>
<th>Risks</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
<th>FY27</th>
<th>FY28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Radiation Exposure (Radiation)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Cognitive or Behavioral Conditions (BMed)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Medications Long Term Storages (Stability)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Vision Impairment/Intracranial Pressure (VIP)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Inadequate Food and Nutrition (Food)</td>
<td>3x4</td>
<td></td>
</tr>
</tbody>
</table>

Team Performance Decrements (Team)

Inflight Medical Conditions (Medical)	3x4														
Human-System Interaction Design (HSID)	3x4														
Bone Fracture (Fracture)	3x4														
Renal Stone Formation (Renal)	3x4														
Sensorimotor Alterations (SM)	3x3														
Injury from Dynamic Loads (OP)	3x3														
Altered Immune Response (Immune)	3x3														
Host-Microorganism Interactions (Microhost)	3x3														
Injury Due to EVA Operations (EVA)	3x3														
Hypobaric Hypoxia (ExAtm)	3x3														
Sleep Loss (Sleep)	3x3														
Reduced Muscle Mass, Strength (Muscle)	3x3														
Reduced Aerobic Capacity (Aerobic)	3x3														
Celestial Dust Exposure (Dust)	TBD														
Decompression Sickness (DCS)	3x3														
Orthostatic Intolerance (OI)	3x2														
Cardiac Rhythm Problems (Arrhythmia)	3x4														

Milestones

- **ISS Required**
- **ISS Not Required**
- **Ground-based Milestones**
- **Mission Milestone**
- **Anticipated Milestone Shift**
- **End ISS**

Legend

- **Hi LxC**
- **Mid LxC**
- **Low LxC**
- **Optimized**
- **Insufficient Data**
Ultimate goal is to provide a food system that supports all aspects of a Mars mission

- Develop a food system that is **Safe, Nutritious, Acceptable and**
- Efficiently balances appropriate vehicle resources such as: volume, mass, waste, water, power, cooling, air, crew time

Example: To maintain an adequate food system may require more packaging mass which conflicts with minimization of mass.
<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Highly engineered foods (Meal in a Pill concept) – cubes, tubes</td>
</tr>
<tr>
<td>Gemini</td>
<td>Highly engineered food with new introductions (Pudding, Chicken and Vegetables)</td>
</tr>
<tr>
<td>Apollo</td>
<td>Thermostabilized food, spoon bowl, natural form foods</td>
</tr>
</tbody>
</table>
Evolution of the Space Food System

Skylab
- Freeze-dried, thermostabilized, natural form and frozen foods
- No resupply – all food stored at the time of launch

Shuttle / MIR
- Higher quality food in lighter packaging
- Assignment of 9-month shelf life on food

International Space Station
- Irradiated items (meats) through special FDA allowance.
- Aluminum film overwraps allow 12-18 month shelf life for most food.
Current Space Food System – 130 options

- Natural Form Foods
- Rehydratable Foods
- Intermediate Moisture Foods
- Irradiated & Thermo-stabilized Foods
- Beverages

Not pictured: Extended shelf-life breads and fresh food (limited basis)
Food System Considerations

International Space Station:
- 6 month microgravity missions
- No refrigerators or freezers for food storage, all food processed and prepackaged
- Regularly scheduled resupply
- Eight to eleven day standard menu cycle augmented by crew preference foods

Mars Expedition Scenario:
- 32 month mission; microgravity and reduced gravity
- Possibility of refrigerators or freezers for food storage
- No resupply; food may be prepositioned to accommodate high mass and volume
- Radiation impact is unknown
- Current food system is mass constraining and will not maintain nutrition/acceptability
Prepackaged Food – 5 Year Challenge

Focus on nutritional stability, acceptability, health promotion, and mass reduction

<table>
<thead>
<tr>
<th>Human Research Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
</tr>
<tr>
<td>Processing</td>
</tr>
<tr>
<td>Packaging</td>
</tr>
<tr>
<td>Environment</td>
</tr>
<tr>
<td>Closed System</td>
</tr>
</tbody>
</table>

Fortification
- Food Matrix
- Functional Foods
- Meal Replacement
- Variety

Processing
- Pressure Assisted Thermal Sterilization (PATS)
- Lyophilization Improvement
- Microwave Sterilization
- 3D Printing (SBIR)

Packaging
- Improve barrier
- Mass reduction
- In Suit Delivery System

Environment
- Atmosphere
- Temperature
- Radiation
- Microgravity
- Partial Gravity

Closed System
- Variety
- Limitations
- Psychosocial support
- Physiological impacts

Improved barrier
- Mass reduction
- In Suit Delivery System

Closed System
- Variety
- Limitations
- Psychosocial support
- Physiological impacts

NASA

12
Psychology of Food

There are **psychological benefits** of the food system

- Socialization during mealtimes.
- **Food quality, variety and acceptability** are important. Highly acceptable food is a familiar element in an unfamiliar and hostile environment.
Taste Changes in Microgravity

There are anecdotal reports that food does not taste the same in space:

- 85 – 90% of what you taste is what you smell
- Hot air (volatiles) does not rise in microgravity
- Food is not heated to very hot temperatures
- Food is eaten out of packages with small openings
- Fluid shifts in the body result in a feeling of congestion in the nasal passages
Critical micronutrients show concerning degradation in space food system after 1 year of storage.

Only 7 out of 65 thermostabilized foods are expected to be palatable after 5 years of storage. (Catauro. JFS. 2011)
Mass Reduction Opportunities

Current mass requirement for 3000 kcal per crewmember per day is 1.83 kg. Total mass for a Mars scenario (6 crewmembers, 1095 days) is 12,023 kg.

Orion has challenged the food system to a 25% mass reduction

- Four **Meal Replacement Bars** enabling 10% reduction in mass developed through Natick (NSRDEC); acceptability testing underway in four 2016 HERA missions; stability testing through 2018

- In the event of cabin depressurization, crewmembers may be required to don pressurized suits and will require nutrition during contingency operations
 - Guidelines were determined for contingency beverages that meet macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. These beverages could reduce mass for nominal operations
Integrate Bioregenerative Foods

International Space Station
Supplement prepackaged with “Pick and Eat” beginning with Veggie chamber

Mars Scenario
Optimize mission specific phased implementation and balance with prepackaged foods – based on nutrition, acceptability, resources

Research gaps
Infrastructure, resource use, radiation effects, safe handling/micro procedures, system integration, crew time usage
Potential Exploration Food Systems

Prepackaged
- Less Infrastructure
- Reduced Micro Risk
- Less Crew Time
- No Risk of Food Scarcity
- Nutrient Degradation
- Quality Loss
- High Mass and Volume
- No customization

Bioregenerative
- Lower Food Stowage Mass
- Agri-Therapy
- Higher Nutrient Density
- Fresher Food
- Variety / Customization
- High Crew Time
- Microbiological Risk
- Infrastructure
- Risk of Food Scarcity
Possible Bioregenerative Food System

Greenhouse Crops

<table>
<thead>
<tr>
<th>Greenhouse Crops</th>
<th>Lettuce</th>
<th>Tomato</th>
<th>Peas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinach</td>
<td>Strawberry</td>
<td>Snap Beans</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td>Radish</td>
<td>Sweet Potato</td>
<td></td>
</tr>
<tr>
<td>Green Onion</td>
<td>Bell Pepper</td>
<td>White Potato</td>
<td></td>
</tr>
<tr>
<td>Carrot</td>
<td>Mushrooms</td>
<td>Dwarf Plum</td>
<td></td>
</tr>
</tbody>
</table>

Bulk Ingredients

<table>
<thead>
<tr>
<th>Bulk Ingredients</th>
<th>Rice</th>
<th>Peanuts / Peanut Oil</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Beans</td>
<td>Wheat Berries / Wheat Flour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Food Preparation Current to Future

Food Warmer

Potable Water Dispenser

From top left: A) Pressure cooker, (B) Juicer, (C) Soymilk Maker, (D) Dehydrator, (E) Stand Mixer, (F) Pasta press, (G) Immersion blender, (H) Tofu mold, (I) Grain mill, (J) Induction burner
Thanks to current and former HRP Advanced Food Technology Team Members!
Questions?

Mars Explorers Wanted Poster