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Abstract 
Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, 

civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for 

damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the 

literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with 

uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent 

uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based 

frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. 

Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that 

delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also 

affect each other’s progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the 

material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based 

framework for predicting a structure’s remaining useful life with consideration of multiple co-existing damage-mechanisms. The 

framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been 

shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. 

The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the 

algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model is provided. Then, the paper 

describes how the model is embedded within the prognostic framework and how the prognostics performance is assessed using 

observations from run-to-failure experiments. 

Keywords 
CFRP; matrix cracks; delamination; fatigue damage prognosis; particle filtering; sequential Monte Carlo. 

 

1. Introduction 

Recent advancements in real-time structural health monitoring (SHM) methods enable an any-time in-situ 

assessment of damaged and aging structures’ condition and allow collecting data on the progressive, inevitable 

damage growth due to operating and contingent loads. SHM technologies are increasingly used for fatigue-induced 

degradation monitoring of composite structures, where the damage may be hidden in the internal layers and barely 

visible on the outer surfaces. The availability of information on damage type and damage extent would facilitate also 

the prediction of the remaining useful life (RUL) of the structure through the estimation of the fatigue damage 

progression. Addressing the RUL prediction by real-time methods can revolutionize the maintenance policies of 

aeronautical, mechanical and civil industry, moving from the current damage tolerance approach to condition-based 

or predictive maintenance strategies. 



However, real-time prediction of RUL of composite materials is a challenging task that must factor in the 

coexistence of multiple damage mechanisms or multiple damage-modes (MDMs). These damage modes interact 

with one another and might also generate new damage modes. A typical example is the interaction caused by matrix 

cracks, delamination and buckling. Matrix cracks can induce local delamination, which can become global 

delamination, and the delaminated layers can fail because of buckling in case of negative load ratios (i.e., when the 

load falls below zero) [1]. In addition to the coexistence of MDMs, the RUL prediction is inherently affected by 

several sources of uncertainty. Fatigue of materials is uncertain in nature, since it is driven by inclusions and 

impurities caused by the manufacturing process and complex physical nano- and micro-scale phenomena not 

accounted for in common engineering models. Where damage is measured with using automated SHM tools, there 

are additional uncertainties about current damage location and extent that further complicate the prediction of the 

damage growth. This makes stochastic approaches a logical choice for real-time RUL prediction.  

While highly desirable, real-time damage prognosis of composite laminates has so far been only sparsely explored. 

It requires a methodology to predict the damage evolution that merges stochastic approaches and real-time 

diagnostic information in the prognostic stageto update the RUL prediction. Recently, Bayesian filters have shown 

promising results in predicting the evolution of matrix cracks and consequent stiffness degradation of cross-ply 

laminates by including SHM data in the prognostic stage [2]. However, the effect of co-existing damage 

mechanisms was not incorporated in the damage progression model, and the resulting stiffness degradation was only 

linked to the presence of matrix cracks. 

The present work reported herein follows the methodology proposed in [2] and extends the Bayesian framework by 

including an energy-based MDM model. This model was recently investigated in [3], where the authors showed 

successful predictions of the stiffness degradation caused by matrix cracks and delamination in cross-ply fiber-

reinforced laminates. In this study here, the MDM model is embedded in a Bayesian filtering algorithm commonly 

referred to as particle filtering [4], which aims at simultaneously monitoring three degradation processes: matrix 

crack density, delamination and stiffness reduction. The energy-based MDM model enables the estimation of the 

interacting damage growth rates, and the embedding of the mechanical model into the Bayesian framework allows 

the probabilistic estimation of the RUL conditioned upon the available diagnostic data. The developed model-based 

prognostic framework is assessed against tension-tension fatigue damage progression data on a carbon fiber-

reinforced polymer (CFRP) laminate. The growing damages were observed through X-ray radiographies and their 

extents are provided to the algorithm sequentially, thus simulating a real-time condition where a SHM system 

provides regular information on the damage extent as time passes by. 

The rest of the paper organizes as follows: Section 2 introduces the MDM model and the equations to predict the 

damage progression, Section 3 shows the probabilistic framework based on particle filtering and the basic 

probability density functions (PDFs) to implement the algorithm and Section 4 shows the application on CFRP 

damage growth data. Section 5 draws some conclusions. 

 

2. Modeling of concurrent damage progression 

Most of the models for damage growth prediction in composites resort on finite element methods because of the 

complexity of the damage mechanisms and their interactions. Though, the computational costs of finite elements 

commonly prevent the applicability in stochastic algorithms for real-time applications. Analytical damage 

progression models are therefore preferred in real-time prognostic scenarios: the model complexity can be scaled 

down to perform a fast estimation of the damage progression using simplified formulations of the stress state [3]. In 

addition, the tuning of analytical models is usually easier because of the limited number of model parameters. 

The approach proposed here, which follows [2], resorts on a strain energy release rate (SERR) model, since the 

stress intensity factor, widely adopted in metal fatigue, loses its usefulness when several cracks and different 

damage mechanisms affect the material. The formulation of the SERR includes the effect of matrix cracks and 

delamination, 𝐺 = 𝐺(𝜌, 𝐷), which are the two most common damage mechanisms affecting fiber-reinforced 

laminates. The model provides also an estimation of the Young’s modulus of the damaged laminate 𝐸𝑥, enabling the 



monitoring of the stiffness degradation. 

The SERR range Δ𝐺, caused by fatigue loads, is used as input to power laws for the estimation of the damage 

growth rates, intended as damage growth per load cycle [5]. These power laws are commonly named modified 

Paris’ laws, given the similarity with the Paris’ law used for metallic alloys. The growth rates of matrix crack 

density 𝜌 and delamination 𝐷 are therefore expressed using equations (1) and (2), respectively. 

d𝜌

d𝑁
= 𝐴(Δ𝐺(𝜌, 𝐷))

𝛼
          (1) 

d𝐷

d𝑁
= 𝐵(Δ𝐺(𝜌, 𝐷))

𝛽
          (2) 

The closed form solution of (1) and (2) rarely exists, since 𝐺 is mostly a highly nonlinear function of the amount of 

damage. So, the alternative is the estimation of the damage progression using a linear damage accumulation rule (3)-

(4).  

𝜌𝑘 = 𝜌𝑘−1 +
d𝜌

d𝑁
|
𝜌𝑘−1,𝐷𝑘−1

Δ𝑁         (3) 

𝐷𝑘 = 𝐷𝑘−1 +
d𝐷

d𝑁
|
𝜌𝑘−1,𝐷𝑘−1

Δ𝑁         (4) 

Where Δ𝑁 is the number of load cycles between two discrete time-steps, k-1 and k. Since 𝐺 of composite laminates 

is particularly high during the first stage of the fatigue life, large time steps (i.e., large Δ𝑁) can generate inaccurate 

solutions. Therefore, Δ𝑁 is usually kept equal to 1 to simulate the damage growth correctly. Once the amount of 

damage has been calculated, the ratio of the current elastic modulus 𝐸𝑥 (depending on 𝜌 and 𝐷) and the initial elastic 

modulus 𝐸𝑥,0 determines the normalized remaining stiffness of the laminate, (5). 

𝑆 =
𝐸𝑥(𝜌,𝐷)

𝐸𝑥,0
           (5) 

The work in [3] investigated the capability of both matrix crack-induced delamination models and edge 

delamination models in describing the SERR as a function of matrix cracks and delamination and in estimating the 

laminate remaining stiffness as well. The study pointed out as the edge delamination model proposed by Zhang, 

Soutis and Fan [6] appeared as the best in describing the stiffness reduction of a notched cross-ply laminate already 

utilized in [2]. Zhang et al. analyzed the pioneering work of O’Brien [7], introducing the effective elastic modulus of 

a partially-delaminated laminate, and they enhanced this model including the effect of matrix cracks in the laminated 

region.  

The model requires some simplifying assumptions on the type and shape of delamination, crack pattern and crack 

location. Specifically, this model is valid for symmetric balanced laminates under tensile loading and matrix cracks 

spanning all the width of the 90° plies. Figure 1 shows a graphical representation of the model, using a [0n/90m]s 

stacking sequence. Delamination 𝐷 supposes to span all the height of the laminate (x-direction) and grow along the 

width, transversally to the applied load (y-direction). It is expressed in meters, m. The matrix crack density 𝜌 is 

measured as number of cracks per unit length, #/m. 



 

Figure 1. Zhang's model for a partially-delaminated cross-ply laminate. 

 

In this case, the outer sub-laminates are aligned with the direction of the remote tensile stress 𝜎0 indicated by the 

thick arrows (0° sub-laminates). The inner sub-laminate is perpendicular to the load direction (90° sub-laminate) and 

is affected by fatigue-induced matrix cracks. The laminate is split in three parts, two of them are equal to one 

another. So, the symmetric geometry generates two regions with different features. Region I is the laminated region 

where delamination is absent and the matrix cracks in the 90° plies reduce the sub-laminate stiffness. Region II is 

the fully-delaminated region where the 0° sub-laminates disconnect from the 90° sub-laminate. The two regions 

have different longitudinal elastic moduli named 𝐸𝑥,𝐼 and 𝐸𝑥,𝐼𝐼, respectively. The effective elastic modulus of the 

laminate is the weighted average of the two elastic moduli (6). 

𝐸𝑥(𝜌, 𝐷) = 𝐸𝑥,𝐼(𝜌) + [𝐸𝑥,𝐼𝐼 − 𝐸𝑥,𝐼(𝜌)]
𝐷

𝑊
        (6) 

𝐸𝑥,𝐼𝐼 depends on the number of delaminated interfaces. If both the interfaces between the 0° and 90° sub-laminates 

are delaminated (as has been shown in Figure 1), 𝐸𝑥,𝐼𝐼 can be easily calculated from the laminate theory [1]. The 

matrix crack density 𝜌 influences 𝐸𝑥,𝐼, and this influence has been modeled in [6] by means of in-situ damage 

effective functions (IDEFs), Λ = Λ(𝜌), which reduce the stiffness matrix 𝑄 of the 90° plies, (7). 

𝑄(𝜌) = [

𝑄11,0 𝑄12,0 0

𝑄21,0 𝑄22,0 0

0 0 𝑄66,0

] − [

𝑄12,0
2 𝑄22,0⁄ 𝑄12,0 0

𝑄21,0 𝑄22,0 0

0 0 𝑄66,0

] [

Λ22(𝜌)

Λ22(𝜌)

Λ66(𝜌)
]    (7) 

The IDEFs Λ22(𝜌) and Λ66(𝜌) were determined by Zhang and coauthors in previous works [8]. They are based on a 

modified two-dimensional shear lag analysis and they describe the in-situ constraint conditions of the 90° plies. The 

equations to derive the IDEFs are not reported here for the sake of brevity. The interested reader is referred to the 

original papers [6]-[8] for finer details. Eventually, the SERR is calculated using (8), which already neglects any 

thermal effect. 

𝐺(𝜌, 𝐷) = (𝜀(𝜌, 𝐷))
2 ℎ

𝑛𝑑
(𝐸𝑥,𝐼(𝜌) − 𝐸𝑥,𝐼𝐼)        (8) 

Where 𝜀(𝜌, 𝐷) = 𝜎0 𝐸𝑥⁄ (𝜌, 𝐷). As explained above, the SERR 𝐺 is embedded into the damage growth rate and the 

longitudinal elastic modulus of the damaged laminate 𝐸𝑥(𝜌, 𝐷) is used to estimate the remaining stiffness. It is 

worth noting that the SERR range Δ𝐺 has been defined using (9) and (10). In this way, the mean load effect, which 

can alter the similitude criterion, is neglected [9].  



Δ𝐺 = (√𝐺𝑚𝑎𝑥 − √𝐺𝑚𝑖𝑛)
2
          (9) 

𝐺𝑚𝑎𝑥 = 𝐺(𝜎0,𝑚𝑎𝑥)

𝐺𝑚𝑖𝑛 = 𝐺(𝜎0,𝑚𝑖𝑛)
          (10) 

The SERR range in (9) feeds equation (1) and (2) to calculate the damage growth rates, and the model underneath 

particle filtering is then composed by equations (3)-(5). 

 

3. Particle filtering-based prognosis 

This section describes the prognostic framework that composes of the MDM model in Section 2 and particle 

filtering. Specifically, a bootstrap sequential importance resampling algorithm with systematic resampling has been 

chosen to build the Bayesian framework [10]. Furthermore, a sub-algorithm has been used to update the model 

parameter during run-time. The fundamental equations of the algorithm are summarized and directly tailored for the 

fatigue damage prognosis problem below. 

Let us consider the system’s state 𝒙 governed by a dynamic state-space (DSS) model (11).  

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝜽, 𝒖𝑘−1, 𝝎𝑘−1)

𝒛𝑘 = 𝑔(𝒙𝑘 , 𝜼𝑘)
         (11) 

The system’s state vector contains the three damage modes 𝒙𝑘 = [𝜌𝑘, 𝐷𝑘 , 𝑆𝑘]
𝑇, while the measurement vector 

contains the observations of the true (unknown) system’s state 𝒛𝑘 = [𝜌̂𝑘 , 𝐷̂𝑘, 𝑆̂𝑘]
𝑇
. The evolution equation 𝑓 

describes the system’s state dynamics and is driven by equations (3)-(5). Instead, the observation equation 𝑔 links 

the measures with the damage state. The uncertainties affecting the system’s state dynamics and the measurement 

system are embedded in the DSS using random processes called process noise 𝝎𝑘, and measurement noise 𝜼𝑘, 

respectively. Since both the system’s state vector and the measurement vector are three-dimensional, the noises have 

been split in three independent contributions. Following the discussion in [11], the errors affecting the matrix crack 

density and delamination models are defined as log-Normal random processes 𝑒𝜔, while the error of the stiffness 

degradation model is an unbiased Gaussian random process (12). The measurement noises are modeled as 

independent, unbiased Gaussian processes (13). 

𝒙𝑘 = [

𝜌𝑘

𝐷𝑘

𝑆𝑘

] =

[
 
 
 
 
 𝜌𝑘−1 +

𝑑𝜌

𝑑𝑁
(𝜽, 𝒖𝑘−1)|

𝜌𝑘−1,𝐷𝑘−1

𝑒𝜔𝜌

𝐷𝑘−1 +
𝑑𝐷

𝑑𝑁
(𝜽, 𝒖𝑘−1)|

𝜌𝑘−1,𝐷𝑘−1

𝑒𝜔𝐷

𝐸𝑥(𝜌𝑘,𝐷𝑘)

𝐸𝑥,0
+ 𝜔𝑆 ]

 
 
 
 
 

       (12) 

𝒛𝑘 = [

𝜌̂𝑘

𝐷̂𝑘

𝑆̂𝑘

] = [

𝜌𝑘 + 𝜂𝜌

𝐷𝑘 + 𝜂𝐷

𝑆𝑘 + 𝜂𝑆

]          (13) 

Equation (12) shows the dependence of the damage growth rates on the model parameter vector 𝜽 and the input 

vector 𝒖. The latter is the far-field stress range that drives Δ𝐺, so 𝒖 → 𝑢 = Δ𝜎0 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛. As already 

presented in [11], the use of a log-Normal random process with specific relation between mean and variance 

produces an unbiased evolution equation. The process noise 𝝎 follows equation (14), while the measurement noise 

is unbiased Gaussian 𝜼 ∼ 𝑀𝑉𝑁(0, Σ𝜂). 



𝝎 = [𝜔𝜌, 𝜔𝐷 , 𝜔𝑆] ∼ 𝑀𝑉𝑁(𝜇𝜔, Σ𝜔)

𝜇𝜔 = [−
𝜎𝜔,𝜌

2

2
, −

𝜎𝜔,𝐷
2

2
, 0]

𝑇

Σ𝜔 = [

𝜎𝜔,𝜌
2 0 0

0 𝜎𝜔,𝐷
2 0

0 0 𝜎𝜔,𝑆
2

]

         (14) 

The process and measurement noises have been modeled as stationary random processes. Therefore, their 

dependence from the time step k has been neglected. The model parameter vector 𝜽 can be updated during run time 

to improve the prediction performance of the algorithm. Here, the artificial dynamics sub-algorithm has been used 

for its simplicity and effectiveness [12]. It introduces a perturbation of the model parameter values using a random 

disturbance 𝜸, usually defined as an unbiased Gaussian process (15). 

𝜽𝑘 = 𝜽𝑘−1 + 𝜸𝑘−1          (15) 

Where 𝜸𝑘 ∼ 𝒩(0, Σ𝜸,𝑘). The covariance matrix Σ𝜸,𝑘 must decrease as time passes by to guarantee the convergence 

of the algorithm [12].  In this application, the variance follows equation (16), chosen empirically according to the 

authors’ experience. 

Σ𝜸,𝑘 =
1

2𝑘
Σ𝜸,0           (16) 

Where Σ𝜸,0 is the initial covariance matrix and k is the time step. The model parameter vector contains the empirical 

parameters of the modified Paris’ laws in equations (1) and (2), 𝜽 = [log 𝐴 , 𝛼, log 𝐵 , 𝛽]𝑇 . The two parameters 𝐴 and 

𝐵 have been embedded using their logarithmic form, since they are log-Normally distributed [13]. 

The sequential importance resampling method allows the approximation of the conditional PDF of the system’s state 

and model parameter given the observations, 𝑝(𝒙𝑘, 𝜽𝑘|𝒛0:𝑘), using 𝑁𝑠 weighted samples (17). 

𝑝(𝒙𝑘 , 𝜽𝑘|𝒛0:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)𝛿(𝒙𝑘

(𝑖) − 𝒙𝑘)(𝜽𝑘
(𝑖) − 𝜽𝑘)

𝑁𝑠
𝑖=1        (17) 

Where the pairs {𝒙𝑘
(𝑖), 𝜽𝑘

(𝑖)}
𝑖=1

𝑁𝑠
 are Monte Carlo samples of the system’s state and model parameters, which are 

weighted by the weights 𝑤𝑘
(𝑖), 𝑖 = 1, … , 𝑁𝑠. Following the bootstrap particle filtering theory, the samples 𝒙𝑘

(𝑖)
 and 

𝜽𝑘
(𝑖)

 are generated through the evolution equation and the artificial dynamics equation, (18). 

𝒙𝑘
(𝑖) = 𝑓(𝒙𝑘−1

(𝑖) , 𝜽𝑘−1
(𝑖) , 𝒖𝑘−1, 𝝎

(𝑖))

𝜽𝑘
(𝑖) = 𝜽𝑘−1

(𝑖)
+ 𝜸𝑘−1

(𝑖)
         (18) 

Where 𝜸𝑘−1
(𝑖)

is a sample from 𝒩(0, Σ𝜸,𝑘) and 𝝎(𝑖) is a sample from 𝑀𝑉𝑁(𝜇𝜔, Σ𝜔). It should be noted that the 

subscript k on the model parameter vector refers to the fact that the samples are from the k-th posterior estimation, 

because the true 𝜽 is not time-varying. The weights 𝑤𝑘
(𝑖)

 depend on the likelihood of the observation given the 

sample 𝑝(𝒛𝑘|𝒙𝑘
(𝑖)), and are then normalized to sum up to 1, (19). 

𝑤̃𝑘
(𝑖) = 𝑤𝑘−1

(𝑖) 𝑝(𝒛𝑘|𝒙𝑘
(𝑖))

𝑤𝑘
(𝑖) =

𝑤̃𝑘
(𝑖)

∑ 𝑤̃𝑘
(𝑖)𝑁𝑠

𝑗=1

          (19) 

The prognostic stage is carried out by propagating the samples of the system’s state in the future using the evolution 

equation 𝑓(⋅). At each time step, the system’s state sample 𝒙(𝑖) is altered by a sample of the model error 𝝎(𝑖), which 

simulates the unpredictable fluctuations of the damage growth rates caused by small-scale phenomena neglected in 

the model. The prognosis is analytically expressed through the p-steps ahead prediction equation (20), [14]. 



𝑝̂(𝒙𝑘+𝑝|𝒛0:𝑘) = ∑ 𝑤𝑘
(𝑖)

∫ 𝑝(𝒙𝑘+1|𝒙𝑘
(𝑖)) ∏ 𝑝(𝒙𝑗|𝒙𝑗−1)𝑑𝒙𝑘+1:𝑘+𝑝−1

𝑘+𝑝
𝑗=𝑘+2𝒟

𝑁𝑠
𝑖=1     (20) 

Where 𝑝(𝒙𝑗|𝒙𝑗−1) is the transition density function, which comes from the probabilistic form of the evolution 

equation 𝑓(⋅). Once the posterior distribution of the system’s state has been computed, the samples 𝑥𝑘
(𝑖)

 are projected 

in the future using the transition density function (i.e., the evolution equation). The concept behind the prediction 

equation (20) can be further extended to calculate the number of fatigue load cycles to reach a pre-determined 

critical threshold, 𝒙𝐶𝑅. The samples of the system’s state are propagated using the transition density function until 

they reach the threshold, i.e., 𝒙𝑘+𝑙
(𝑖) = 𝒙𝐶𝑅. The number of fatigue load cycles corresponding to the time step 𝑘 + 𝑙 is 

defined as the end of life of the sample, 𝑁𝑓
(𝑖)

. Thus, the RUL of the i-th sample is the difference between 𝑁𝑓
(𝑖)

 and 

the number of load cycles of the current time step, RUL𝑘
(𝑖) = 𝑁𝑓

(𝑖) − 𝑁𝑘. Once all the samples have reached the 

critical state, the sample pairs {RUL𝑘
(𝑖), 𝑤𝑘

(𝑖)}
𝑖=1

𝑁𝑠
 enable the estimation of the RUL distribution, (21). 

𝑝(RUL𝑘|𝒛0:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)𝛿(RUL𝑘

(𝑖) − RUL𝐾)
𝑁𝑠
𝑖=1        

 (21) 

Here, the critical threshold has been defined as a limit damage state 𝒙𝐶𝑅 = [𝜌𝐶𝑅 , 𝐷𝐶𝑅 , 𝑆𝐶𝑅]𝑇 that cannot be exceed to 

guarantee the safety of the structure. Once the i-th sample 𝒙𝑘
(𝑖)

 reaches one of the limits (either 𝜌𝐶𝑅, 𝐷𝐶𝑅  or 𝑆𝐶𝑅), the 

sample’s propagation stops and the related RUL𝑘
(𝑖)

 is recorded to compute the RUL distribution. 

 

4. Application to real fatigue-induced damages in CFRP laminates 

The algorithm in Section 3 is applied to fatigue damage progression data publicly available in the NASA prognostics 

data repository [15]. The picked experimental data refers to the notched cross-ply coupon L1S11 with dog-bone 

geometry and stacking sequence [02/904]s. Details on the tension-tension fatigue tests are available in [16]. The data 

acquisition stopped after 𝑁𝑓 = 100 000 load cycles characterized by a load frequency of 5 Hz, sinusoidal shape, 

maximum force 𝐹 = 31 kN and load ratio 𝑅 ≈ 0.14. The outer coupon dimensions are 152.4 mm × 254 mm [width 

× height], and the properties of the plies made of Torayca T700G are expressed in Table 1.  

 

Table 1. Ply properties. 

Young’s modulus  𝐸1 [GPa] 127.55 

Transverse elastic modulus  𝐸2 [GPa] 8.41 

In-plane Poisson’s ratio  𝜈12 [-] 0.309 

In-plane shear modulus 𝐺12 [GPa] 6.2 

Out-of-plane shear modulus 𝐺23 [GPa] 2.82 

Thickness 𝑡 [mm] 0.152 

 

A series of X-ray images collected during the test allowed the estimation of the inner damage (matrix crack density 

and delamination), and a strain gauge rosette on the outer surface was used to record the longitudinal strain, Figure 

2. 

 



 
(a) 

 
(b) 

Figure 2. Notched cross-ply coupon under test (a), and X-ray image (b). The light gray region close to the notch is the 

delaminated region, while the horizontal, light gray lines are the matrix cracks that span the width of the 90° sub-laminate. 

A post-processing phase of the X-rays was executed to measure the amount of matrix crack density, delamination, 

and the reduction of the stiffness. The work in [3] summarizes the procedure to extract the amount of damage from 

the X-rays. Given the first damage assessment, the algorithm provides an estimation of the RUL which is 

systematically updated once a new measurement becomes available. The number of samples used to run the 

algorithm is 𝑁𝑠 = 15000. The initial values of the noise variances and the model parameter vector are reported in 

Table 2. The model parameters have been initialized using the data coming from other coupons. The critical 

threshold is set equal to the amount of damage observed at 𝑁𝑓 = 100 000 load cycles, which is 𝒙𝐶𝑅 = [𝜌𝐶𝑅 , 𝐷𝐶𝑅 ,

𝑆𝐶𝑅]𝑇 = [422, 0.0229, 0.88]𝑇. 

Table 2. Initialization of random noises and model parameter vector. 

Vector 

𝝎 𝜼 𝜽 

𝜔𝜌 𝜔𝐷 𝜔𝑆 𝜂𝜌 𝜂𝐷 𝜂𝑆 log 𝐴 𝛼 log 𝐵 𝛽 

[-] [-] [-] [#/m] [m] [-] [
# 𝑚⁄

(𝐽 𝑚2⁄ )𝛽
] [-] [

𝑚

(𝐽 𝑚2⁄ )𝛽] [-] 

𝜇 -5 -0.5·10-3 0 0 0 0 -11.5 3.3 -21.9 3.5 

𝜎2 10 1·10-3 5·10-6 80 1·10-6 7·10-5 0.85 0.01 0.85 0.01 

 

The filtered estimate of the damage progression is shown in Figure 3. Every time a new observation becomes 

available, the updating of the weights 𝑤𝑘
(𝑖)

 consents to estimate the posterior distribution of the system’s state. The 

expected values and the confidence bands of the filtered estimates are representative of the goodness of the 

algorithm in monitoring the multiple, concurrent damage mechanisms. The matrix crack density seems to be well-

estimated by the algorithm; the expected value approaches the observed matrix crack density as time passes by. 

Delamination is slightly underestimated by the algorithm for most of the fatigue life, while the estimated trend of the 

normalized stiffness has very narrow confidence bands, insomuch as most of the experimental observations fall 

outside the 99% of the 𝜎-band. Though, the observations of the stiffness degradation appear noisy, and the estimated 

trend seems to fall in between the observations. Then, the algorithm seems able to filter out disturbances and 

concentrates the samples in between the noisy observations correctly. 



 
 (a) 

 
(b) 

 
(c) 

Figure 3. Posterior estimation of the damage growth against load cycles; matrix crack density (a), delamination (b) and 

normalized stiffness (c). 

After every posterior estimation of the damage state, the samples are further projected in the future using the 

prediction equation (20) to predict the RUL. The sequential estimation of the RUL is reported in Figure 4. The RUL 

prediction is already close to the true RUL at the very beginning of the fatigue life, after few load cycles. Though, 

the wide confidence band of the prediction suggests that the information is characterized by large uncertainty. Then, 

the confidence band shrinks over time, but the average RUL moves away from the true value (between 10 000 and 

40 000 load cycles). This implies that the value of the model parameters is sensibly changing during this stage to 

better fit the available data. After N = 40 000 load cycles, the expected RUL converges to the correct value. The 

confidence band also keeps shrinking around the average RUL, thus improving the prediction performance. 

 

Figure 4. RUL prediction. The two additional lines indicating the band RUL ± 10% of the end of life help in evaluating the 

goodness of the prediction. 

5. Conclusions 

This work proposes a model-based Bayesian framework for composite laminates exhibiting concurrent damage 

mechanisms. An energy-based model able to estimate the SERR and the longitudinal elastic modulus constitutes the 

core of the fatigue damage accumulation model, and the latter is embedded into a Bayesian framework based on 

particle filtering. The approach has been already presented in the recent literature for monitoring the matrix crack 

density, but the framework proposed here enables the real-time monitoring and prediction of coexisting damage 

modes, which interact with one another and their combined effect influences the remaining life of the structure. The 

methodology has been successfully applied to CFRP damage progression data obtained through tension-tension 

fatigue experiments. 

The filtered estimation of the damage extent emphasizes that the algorithm slightly underestimates the observed 

delamination growth. The posterior expectation of the matrix crack density is in line with the observed 𝜌, and the 

estimated stiffness degradation appears well-centered on the noisy observations made with the strain gauge. High 

fluctuations of the RUL predictions characterize the early-mid stage of the fatigue life, but the expected value 

successfully converges to the true RUL after 50 000 load cycles and remains close to the target RUL until the end of 



the test.  

Future research should include the application of the prognostic method to other fatigue damage progression data. 

This is an importantstep to verify algorithm performance and generalize the validity of the approach. The number of 

samples 𝑁𝑠 has been chosen with a trial & error approach, and it is likely not the overall best choice to explore the 

state-space correctly. The use of refined methods to select 𝑁𝑠 can improve the algorithm performance or save 

computational time. In line with this idea, real-time, non-parametric methods to select (or update) the variance of the 

artificial dynamics perturbation can enhance the model parameter updating. Also, the use of refined sub-algorithms 

for the real-time parameter updating, like the kernel smoothing method may speed-up the convergence of the RUL 

prediction. Eventually, the definition of the end-of-life of CFRPs according to the asymptotic damage behavior 

should be further investigated. As a matter of fact, the horizontal asymptote representing the critical damage can 

sensibly change with the coupon because of the natural, inherent variability of the material. Therefore, a general and 

unified guideline to define the RUL of a composite laminate would be desirable. 

 

Nomenclature 

𝐴  modified Paris’ law parameter 

𝐵  modified Paris’ law parameter 

𝐷  transverse delamination 

𝐸𝑥  longitudinal elastic modulus  

𝐺  strain energy release rate 

𝑁  load cycle 

𝑁𝑓  end-of-life (in cycles) 

𝑁𝑠  number of samples 

𝑄  stiffness matrix of the 90° plies 

𝑄𝑖𝑗,0  stiffness element of the undamaged ply in the i-j direction   

𝑆  normalized stiffness 

𝑊  laminate half-width 

𝑓  evolution equation 

𝑔  observation equation 

ℎ  laminate half-thickness 

𝑘  time step 

𝑛𝑑  number of delaminated interfaces 

𝑢  input 

𝑤  sample’s weight 

𝑥  system’s state 

𝑧  observation 

 

Λ  in-situ damage effective function 

𝛼  modified Paris’ law parameter 

𝛽  modified Paris’ law parameter 

𝛾  Gaussian random process 

𝛿  Kronecker delta 

𝜀  far-filed strain 

𝜂  measurement noise 

𝜃  model parameter  

𝜌  matrix crack density 

𝜎0  fail-field stress 

𝜔  process noise 

 



References 

[1]. Talreja, R. & Singh, C. V. Damage and failure of composite materials. Cambridge University Press, 2012. 

[2]. Chiachio, M.; Chiachio, J.; Saxena, A.; Rus, G. & Goebel, K. Fatigue damage prognosis in FRP composites by combining 

multi-scale degradation fault modes in an uncertainty Bayesian framework. Proceedings of Structural Health Monitoring, 

2013; 1. 

[3]. Corbetta, M.; Saxena, A.; Giglio, M. & Goebel, K. Evaluation of multiple damage-mode models for prognostics of carbon 

fiber-reinforced polymers. International Workshop on structural Health Monitoring, 2015. 

[4]. Gordon, N. J.; Salmond, D. J. & Smith, A. F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE 

Proceedings F (Radar and Signal Processing), 1993;140:107-113. 

[5]. Degrieck, J. & Van Paepegem, W. Fatigue damage modeling of fibre-reinforced composite materials: Review. Applied 

Mechanics Reviews, American Society of Mechanical Engineers, 2001, 54, 279-300.  

[6]. Zhang, J.; Soutis, C. & Fan, J. Effects of matrix cracking and hygrothermal stresses on the strain energy release rate for edge 

delamination in composite laminates. Composites 1994;25:27-35. 

[7]. O’Brien, T. Characterization of delamination onset and growth in a composite laminate 

Damage in composite materials, ASTM STP, American Society for Testing and Materials, 1982, 775, 140-167. 

[8]. Zhang, J.; Fan, J. & Soutis, C. Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part 1: In-plane 

stiffness properties. Composites 1992;23(5):291-298. 

[9]. Rans, C.; Alderliesten, R. & Benedictus, R. Misinterpreting the results: how similitude can improve our understanding of 

fatigue delamination growth. Composites Science and Technology 2011;71:230-238. 

[10]. Arulampalam, M. S.; Maskell, S.; Gordon, N. & Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian 

Bayesian tracking. Signal Processing, IEEE Transactions on 2002;50:174-188. 

[11]. Corbetta, M.; Sbarufatti, S. & Giglio, M. Optimal tuning of particle filtering random noise for monotonic degradation 

processes. Third European Conference of the Prognostics and Health Management Society. Bilbao, Spain, 2016. 

[12]. Liu, J. & West, M. Combined parameter and state estimation in simulation-based filtering. Sequential Monte Carlo methods 

in practice, Springer, 2001, 197-223. 

[13]. Corbetta, M.; Sbarufatti, C.; Manes, A. & Giglio, M. On dynamic state-space models for fatigue-induced structural 

degradation International Journal of Fatigue 2014;61:202-219. 

[14]. Doucet, A.; Godsill, S. & Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and 

computing, Springer, 2000, 10, 197-208. 

[15]. Saxena, A.; Goebel, K.; Larrosa, C. & Chang, F.K. CFRP composites dataset. NASA Ames prognostics data repository, 

2008. 

[16]. Saxena, A.; Goebel, K.; Larrosa, C. C.; Janapati, V.; Roy, S. & Chang, F.-K. Accelerated aging experiments for prognostics 

of damage growth in composite materials. DTIC Document, 2011. 
 


