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Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an 

alternate approach for treating wastewater streams during space exploration.  While the technology 

provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need 

for harsh stabilization chemicals, several challenges must be addressed before adoption of the 

technology in future missions.  One challenge is the transportation of bioreactors containing intact, 

active biofilms as a means for rapid start-up on the International Space Station or beyond.  Similarly, 

there could be a need for placing these biological systems into a dormant state for extended periods 

when the system is not in use, along with the ability for rapid restart.  Previous studies indicated that 

there was little influence of storage condition (4 or 25ºC, with or without bulk fluid) on recovery of 

bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required 

(20+ days).  Bioreactors with fully established biofilms (13 months) were able to recover from a 7-

month dormancy within 4 days (~1 residence).  Further dormancy and recovery testing is presented 

here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle 

capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems.  Another 

challenge that must be addressed is the possibility of antibiotics entering the wastewater stream.  

Currently, for most laboratory tests of biological water processors, donors providing urine may not 

contribute to the study when taking antibiotics because the effects on the system are yet 

uncharacterized.  A simulated urinary tract infection event, where an opportunistic, pathogenic 

organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, 

was completed to study the effect of the antibiotic on reactor performance and to also examine the 

development of antibiotic-resistant communities within the system. 

Nomenclature 

AOB = Ammonia-oxidizing bacteria 

BF = with bulk fluid 

BWP = Biological water processor 
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DNRA = Dissimilatory nitrate reduction to ammonium 

DO = Dissolved oxygen 

GFP = Green fluorescent protein 

HPLC = High-performance liquid chromatography 

ISS = International Space Station 

KSC = Kennedy Space Center 

MABR = Membrane-aerated biofilm reactor 

NBF = without bulk fluid 

NOB = Nitrite-oxidizing bacteria 

ppm = Parts per million 

ssMABR = Sub-scale membrane-aerated biofilm reactor 

TN   = Total nitrogen 

TOC  = Total organic carbon 

UTI  = Urinary tract infection 

I. Introduction 

A. Dormancy-Recovery Cycling in Biological Water Processors (BWPs) 

hile terrestrial establishment of biofilms and operation of biological water processors (BWPs) has been 

examined for many years with batch reactors, membrane-aerated reactors, and similar systems, unique 

challenges are presented when exploring their use in microgravity1, 2.  These challenges include transport of the system 

to its destination, whether that be the International Space Station (ISS) or beyond, as well as procedures for storing 

the system for various durations of nonuse (e.g., if the ISS or a beyond Earth habitat was to be unmanned for a period 

of time) with rapid recovery when operations are restarted.  Few studies have examined an intentional stop, store, and 

start operating regime as proposed; these perturbations could introduce stresses to the microbial communities essential 

for wastewater processing.  However, numerous studies, some using small-scale biological reactors, have examined 

the impact of chemical waste streams, changes in feed composition, and potential starvation conditions due to 

industrial process shut downs and less than optimal environmental conditions on wastewater treatment plants; the 

impact on microbial communities involved in conversions of carbon and nitrogen compounds has also been explored3-

6.  Strategies to restore a functioning microbial community to a wastewater treatment process can be utilized in smaller-

scale systems.  Examples include re-inoculation of a system with viable bacteria, selection for certain groups of 

microbes by change in feed composition, or mitigation of the impact of detrimental conditions on the microbial 

communities.  Biological nitrogen removal depends on the establishment and maintenance of slower growing 

ammonia and nitrite oxidizing bacteria (AOB/NOB) with concomitant denitrification accomplished by faster growing 

organisms.  In addition, rapidly growing carbon oxidizing bacteria present in the system compete for resources such 

as oxygen.  Membrane-aerated biofilm reactors (MABRs) provide a solution for partitioning resources for these 

diverse groups of microorganisms encouraging the establishment of nitrifying bacterial biofilms on the surface of the 

membrane where oxygen is concentrated.  Bacteria in biofilms are less susceptible to chemical and environmental 

stresses than planktonic populations and have the ability to recover to pre-stress metabolic activities and growth when 

more optimal conditions are restored4-6
. 

Throughout 2014, Kennedy Space Center (KSC) explored several dormancy processes for established bioreactors 

to determine optimal storage and recovery conditions.  This work focused on complete isolation of the microbial 

community from an operational standpoint (no recycle flow, no feed, no gas flow, etc.).  Two major considerations 

were tested: 1) storage temperature and 2) storage with or without the reactor bulk fluid.  The first consideration was 

tested from a microbial integrity and power consumption standpoint; both ambient (25°C) and cold (4°C) storage 

conditions were studied.  While room temperature would be optimal for low power consumption (no need for cooling), 

cold storage was also tested to determine if better microbial recovery could be obtained.  The second consideration 

was explored, again, for microbial integrity as well as plausible real-world scenarios of how terrestrially-established 

bioreactors could be transported to space and stored for periods of time between operations.  Established biofilms 

were stored without the reactor bulk fluid to simulate transport of established biofilms into space, while other biofilms 

were stored with the reactor bulk fluid to simulate the most simplistic storage condition to initiate in preparation for 

an extended period of nonuse in a habitat (i.e., simply turning off power, pumps, feed, etc., without the need for 

extended storage preparations).  Detailed results from these studies can be found in previous reports and publications7.  

Briefly, KSC’s 1-L MABR 30-day dormancy studies demonstrated that there did not appear to be a dormancy 

condition (with/without bulk fluid, 4°C/25°C) that was better at preserving reactor performance metrics.  While all 

reactors in the study (reactors 11-14) recovered and even experienced improved performance, the recovery period was 
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not satisfactory (20+ days).  Several factors may have contributed to such a long recovery period.  First, the biofilms 

in these studies were not mature (48 days of reactor operation prior to dormancy initiation), and may not have been 

robust enough to handle full wastewater feed directly after a four-week dormancy period.  Second, the amount of 

nitrifying and denitrifying communities may not have been well enough established in the biofilms to provide adequate 

conversion rates.  A long duration dormancy experiment with a 1.8-L sub-scale MABR (ssMABR), containing fully 

established and more mature biofilms (13 months old), showed the system was able to recover from a 7-month 

dormancy period to steady state operation within 4 days (~1 residence cycle). Both the maturity of the biofilms and 

the addition of a “buffer” bulk fluid to dilute the introduction of the full wastewater feed likely helped to speed up the 

recovery period. 

Further examination of dormancy-recovery cycles was continued after the aforementioned initial testing to 

expound relationships between biofilm maturity, dormancy duration, and dormancy condition with the ability to 

rapidly recover systems to acceptable conversion metrics.  Three additional dormancy-recovery experiments have 

been completed to date focusing on longer duration cycles of 8-9 months, under varied storage conditions.  The 1-L 

and ssMABR systems utilized in the 2014 studies were put into a second dormancy cycle to also examine the ability 

for repeated cycling of dormancy and operational states. 

B. Pathogenic and Antibiotic Dosing of BWPs 

In current bioreactor testing at KSC, urine donor requirements restrict donations if the individual is currently 

taking, or has taken within the last week, any antibiotics which could irreversibly damage the microbial community.  

If such systems were ever implemented for future long-duration missions, a firm understanding of the effects of 

antibiotics on these biological systems is pertinent to the success of the technology.  While similar microbial 

communities in typical wastewater treatment plants come into contact with wastewater streams containing antibiotics 

and their metabolites on a regular basis, the overall size and design of the treatment plants are not easily translated to 

a smaller MABR system.  To test a relevant scenario, a simulated urinary tract infection (UTI) was carried out where 

pathogenic organisms where introduced to an MABR followed by treatment with an antibiotic. 

To simulate bacteria excreted in urine due to a UTI, Escherichia coli was chosen for these experiments since it is 

the causative agent for 85% of such infections.  The beginning of the UTI event was initiated by inoculation of a 

reactor with the E. coli followed by antibiotic dosing three days later.  The presence of >103 bacteria per mL of urine 

collected for testing constitutes a positive diagnosis for a UTI8; the inoculum used in these studies was adjusted to 104 

bacteria per mL to fall within the mid-range of concentrations reported to be present in UTI cultures.  E. coli strain 

K12, with a Green Fluorescent Protein (GFP) marker, was utilized to enable tracking of the bacterium in the reactor 

effluent over the course of the experiment.  The bacteria was added to the urine component of the waste stream, which 

comprises about 15.5% of the total influent, for the first four days of the experiment.  It was assumed urine would be 

cleared of the bacterium after 72 hours of treatment as has been shown in clinical studies. 

Two main antibiotics are available to crewmembers during ISS missions: sulfamethoxazole/trimethoprim (brand 

name, Bactrim) and ciprofloxacin.  Both options were researched for excretion of the compound itself, as well as 

metabolites, from urine; metabolite antimicrobial capacity was also considered.  For Bactrim, both compounds, as 

well as a metabolite, N4-acetylsulfamethoxazole, with high antimicrobial properties, are excreted in urine9; to 

accurately demonstrate the effects on an MABR system, the cost of the metabolite to simulate the concentrations 

found in urine was prohibitively expensive.  While ciprofloxacin has four metabolites, as well as the parent compound, 

excreted in urine, the metabolites either do not possess antimicrobial properties, or are orders of magnitude lower in 

activity than the ciprofloxacin itself, eliminating the need of the metabolites in the study10.  Common treatment for a 

UTI with ciprofloxacin is an oral dose of 250-500 mg every 12 hours for 7-14 days11; for this study, a conservative 

dose of 250 mg for a 7-day duration was chosen for 1 of 4 crewmembers infected.  The average percentage of the dose 

recovered in urine is 40-50%12. After a 250-mg dose, urine concentrations have been seen to exceed 200 μg/mL during 

the first two hours, and 30 μg/mL 8-to-12 hours after dosing.  Urine was dosed with 22 μg/mL (ppm) of ciprofloxacin 

for an expected concentration in the influent feed of 3.42 μg/ml. 

The objectives of this experiment were to 1) determine if the antibiotic persists in the system as shown by 

breakthrough of the original compound or expected metabolites in the effluent for consideration for downstream 

treatment for potable water, 2) determine the impact of the introduction of a pathogen and antibiotic on the 

performance metrics of the reactor, 3) examine the possibility of antibiotic resistance increases in E. coli introduced 

into the system as well as other members of the microbial community, and 4) elucidate if particular types of bacteria 

are impacted by the antibiotic, especially those integral to the metabolic processes necessary for carbon oxidation and 

nitrification.  In both repetitions of this experiment, a set of our reactors were used with the following experimental 

setup: a control reactor, a ciprofloxacin-dosed reactor, an E. coli-dosed reactor, and an E. coli-dosed reactor 

subsequently treated with ciprofloxacin. 



 

International Conference on Environmental Systems 
 

 

4 

II. Methods 

A. Reactor Operations, Storage, and Recovery 

A total of eight 1-L MABR systems (reactors 11-18) and a 1.8-L sub-scale MABR system (CR2) were used for all 

dormancy-recovery studies.  An overview of reactor dormancy and recovery parameters is outlined in Table 1.  During 

all dormancy cycles, reactors were completely isolated (i.e., no gas flow, no recirculation, no influent feed) and stored 

at the specified temperature with or without the bulk fluid within the reactor.  Successful recovery was evaluated based 

on each individual reactor’s ability to regain or surpass its pre-dormancy performance metrics rather than a direct 

comparison between reactors.  To recover the reactors stored with their bulk fluid, after the dormancy period, full-

strength wastewater at either a 3.79- or 5.00-day residence was immediately introduced to the reactors and allowed to 

slowly dilute into the bulk fluid over time.  To recover those stored without their bulk fluid, the reactors were filled 

with a buffer solution consisting of wastewater without urine, and full-strength feed at the desired residence time was 

immediately introduced; the buffer allowed the biofilms to be gradually introduced to the feed without completely 

overwhelming the system.  Detailed methods are documented in previous work7 and throughout the results section of 

this paper. 

Table 1: Reactor Dormancy-Recovery Parameters 

Reactor 
Storage 

Conditions* 

Biofilm Age at 

First Dormancy 

Dormancy 

Cycle 1 

Total 

Recovery 

Period 

Dormancy 

Cycle 2 

11 4°C, NBF 

7 weeks 4 weeks 8 weeks 8 months 
12 25°C, NBF 

13 4°C, BF 

14 25°C, BF 

15 4°C, NBF 

14 weeks 9 months 4 months N/A 
16 25°C, NBF 

17 4°C, BF 

18 25°C, BF 

CR2** 
4°C, NBF 

25°C, NBF 
13 months 7 months 1.5 months 9 months 

* BF: Stored with bulk fluid; NBF: Stored without bulk fluid. 

** Dormancy cycle 1 for CR2 was carried out at 4°C, while dormancy cycle 2 was carried out at 25°C. 

B. Pathogenic and Antibiotic Dosing 

1-L MABR set 11-14 were used in the first antibiotic dosing experiment with the following scheme: reactor 11 

received ciprofloxacin dosing, reactor 12 received inoculation with E. coli followed by introduction of ciprofloxacin 

3 days later, reactor 13 received inoculation with E. coli and no antibiotic dosing, and reactor 14 served as a control 

/reactor.  A duplicate study was performed with 1-L MABR set 15-18 with the following scheme: reactor 15 served 

as a control reactor, reactor 16 received inoculation with E. coli and no antibiotic dosing, reactor 17 received 

inoculation with E. coli followed by introduction of ciprofloxacin 3 days later, and reactor 18 received ciprofloxacin 

dosing.  For reactors receiving the E. coli spike, an inoculum adjusted to 104 bacterial mL was added to the urine 

component of the influent waste stream for the first four days of the experiment.  On day four, the reactors receiving 

antibiotic treatment had ciprofloxacin added to the influent waste stream at a concentration of 3.42 µg/mL.  

Ciprofloxacin treatments continued at this level for seven days.  Effluent samples were monitored daily for changes 

in performance metrics, ciprofloxacin concentration, and for the development of antibiotic resistant strains.  Biofilm 

samples were also collected prior to E. coli addition, prior to ciprofloxacin addition, and 14 days after all treatments 

were ended; these samples were preserved for future microbial community analysis. 

C. Chemical Analysis and System Monitoring 

Chemical analyses to calculate performance metrics including urea removal, ammonia removal 

(nitrification/denitrification), and total carbon removal were performed by collecting and analyzing reactor effluent a 

minimum of three times per week.  Further, continuous data monitoring of other system metrics including pH, 

dissolved oxygen (DO), gas flow rates, system back pressures (liquid and gas) was also attained using Opto 22 

software. 
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1. Quantification of Urea 

Urea analysis was completed using an Agilent 1100 HPLC system equipped with a Zorbax HILIC Plus column 

(4.6 x 100 mm) and Zorbax guard column (4.6 x 12.5 mm).  The mobile phase utilized was acetonitrile: 20 mM K2PO4 

(90:10 v/v) at a flow rate of 1.5 mL min-1; the sample injection volume was 30 µL with detection at 210 nm using a 

diode array detector.  All samples were diluted with acetonitrile so that no more than 10% of the sample volume was 

water and filtered through a 0.45 µm nylon filter; if required, samples were concentrated under a nitrogen stream prior 

to analysis. 

2. Quantification of Total Organic Carbon & Total Nitrogen 

Total Organic Carbon (TOC) samples were collected and analyzed within one week; samples were filtered through 

0.2 µm SFCA filters with a GF pre-filter and stored in 4°C until analyzed.  The TOC analysis was performed on an 

OI Analytical Aurora 1030C TOC/TN Analyzer; a 10 to 400 ppm carbon quantification range was utilized. 

3. Quantification of Ionic Species 

A dual Dionex ICS-2100 system, configured to simultaneously analyze anions and cations, equipped with a 

conductivity cell (DS6), vacuum degasser, column heater, eluent generator, and self-regenerating suppressor (Dionex 

ASRA 300, 4 mm and CSRS 300, 4 mm) was used for ion chromatographic analysis of samples using a modified 

version of EPA Method 300.1.  Separation was achieved isocratically on a Dionex IonPac AS18 and IonPac CS12A 

column (4 x 250 mm) using 32 mM potassium hydroxide and 20 mM methanesulfonic acid, both with a flow rate of 

1 mL min-1, column temperature of 30°C, and 5 mL sample volume (through a 25-µL injection loop and Dionex AS-

DV autosampler).  Samples were filtered through 0.2-µm SFCA filters with a GF pre-filter and stored at 4°C until 

analyzed. 

4. Quantification of Ciprofloxacin 

Ciprofloxacin analysis was completed using a Thermo Scientific Accela HPLC system equipped with a Varian 

Polaris 3 C18-A (2.0 x 100 mm).  The mobile phase utilized was acetonitrile: 2% acetic acid in water (14:86 v/v) at a 

flow rate of 200 µL min-1; the sample injection volume was 5 µL with detection at 280 nm using a photodiode array 

detector.  All samples were filtered through a 0.20-µm nylon filter prior to analysis. 

III. Results & Discussion 

A. Dormancy-Recovery Cycling Studies 

1. 1-L MABR Set 11-14 

As previously discussed, 1-L MABRs 11-14 underwent a 30-day dormancy period which demonstrated that the 

storage condition did not seem to play a role in the recovery capacity of the reactors; further, all of the reactors 

recovered and even experienced improved performance, though the time it took to reach appreciable conversion 

metrics was not satisfactory (20+ days).  Recovery and monitoring of these systems lasted for approximately 8 weeks 

to allow for further development of the biofilms before a second dormancy period was initiated (Table 1).  This second 

dormancy cycle mirrored previous conditions and lasted 8 months. 

Recovery of the systems after the long-duration dormancy cycle included introduction of full-strength feed 

containing urine, flush water, hygiene wastewater, laundry wastewater, and humidity condensate, at a 3.79-day 

residence period for all reactors.  For reactors that contained no bulk fluid, the reactor was filled with fluid containing 

typical levels of humidity condensate, hygiene wastewater, and laundry wastewater (with no urine) as a buffer solution 

to assist in easing the microbial community back into operation, as this was seen to assist in fast recovery for the 

ssMABR CR2 reactor previously.  Figure 1 shows average performance metrics for 1-L MABRs 11-14 for both 

dormancy cycles completed.  Reported average values for post-cycle 1 conversion rates are for metrics obtained after 

21 days of recovery, as previously discussed.  Average values for post-cycle 2 conversion rates remained consistent, 

and similar to pre-dormancy rates, after 7 days of recovery with minimal further improvement as time progressed.  In 

an attempt to improve reactor conversion rates further, 100% oxygen as a gas feed was introduced into reactors 12 

and 14; both of these systems had undergone dormancy at 25°C and appeared to have slightly lower conversion metrics 

than reactors 11 and 13, having undergone their dormancy cycles at 4°C.  Further, on Day 55 of recovery, automated 

heating of all four reactors to 28°C was initiated.  Room temperature for the laboratory remained between 21 and 

23°C, with several sharp decreases to as low as 18°C on several occasions due to building maintenance.  It is known 

that AOB perform optimally between 25-30°C; with an increase of 10°C, growth rate of nitrifiers can triple13; due to 

the fickle nature of the room temperature control, localized heating of the reactors to the optimal range for AOB was 

initiated.  An increase in ammonia removal was observed after these changes in operation from Days 55 to 85 (Figure 

2) for all reactors; those with 100% oxygen instead of air as a gas feed showed slightly higher removal, though this 
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difference is likely not statistically significant.  Urea hydrolysis and Total Organic Carbon (TOC) removal were 

already at maximum conversion and were not seen to have any obvious alternations. 

Over the course of the recovery of all reactors, 1 M HCl was added to the influent feed in an attempt to lower 

reactor pH; pH in all reactors ranged from 8.3-8.7, far above the range where nitrifying communities perform 

optimally.  Reactors were slowly weaned off acid dosing after three months of operation, when it appeared that acid 

did not assist in lowering pH values or have any positive effect on the systems.  From Days 87-92, as acid in the feed 

was decreased to nothing, a sharp decrease in ammonia removal for reactors 11 and 13 (air feed) was observed (Figure 

2); only a minor decrease in performance was seen in reactors 12 and 14 (oxygen feed); this sudden change in 

performance points to a positive effect of acidifying the feed, even if pH values within the reactor were not greatly 

changed.  It took both reactors 11 and 13 nearly two weeks to recover ammonia removal capacity, unlike the other 

two reactors, recovering in only 2-3 days.  After the end of acid dosing, both air-supplied reactors also experienced a 

slight decrease in urea hydrolysis and TOC removal as well as increase in pH from 8.1-8.3 to 8.8 and remained at this 

high level throughout the remainder of the study.  Oxygen-supplied reactors also saw an increase in pH from 7.5-7.8 

to 8.0, followed by a rapid decrease back into the mid-to-low 7 range, with no disruption in urea hydrolysis and TOC 

removal capacity.  By Day 111 (Figure 2), all reactors had increased their ammonia removal capacity to high levels; 

however, it is apparent that the addition of 100% oxygen to reactors 12 and 14 not only helped the microbial 

community better handle the elimination of acidified feed more than those receiving only air, but also had allowed 

both reactors to maximize ammonia removal to ~90% - roughly 15-20% higher removal than reactors 11 and 13.  As 

seen in the metrics reported in Figure 2, while pH has remained high in reactors 11 and 13, conversion rates have not 

seemed to suffer greatly.  It was hypothesized that the NOB communities, while present, may have suffered from 

repeated dormancy cycles.  All reactors demonstrated appreciable ammonia removal, showing AOB activity.  There 

existed a persistence of nitrite (50-175 ppm) in all four reactors, while no buildup of nitrate was seen; this trend shows 

that NOB communities may have been weakened after the long-duration dormancy cycle.  What nitrite was converted 

to nitrate appears to have been subsequently denitrified by other communities, or nitrite was directly denitrified and 

never processed by NOB. 

  

 

Figure 1: Performance metrics for 1-L MABRs 11-14 prior to any dormancy cycle, after dormancy cycle 1, 

and after dormancy cycle 2.  Error bars represent standard deviation. 
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To address why processes changed over the course of this study, biofilms were sampled in all reactors for 

determination of the community profile after reactor inoculation from the KSC inoculum tank, prior to a dormancy 

cycle, at the beginning of the recovery phase, and after extended recovery when the reactors had reached steady state.  

Upon completion of a 16s rRNA PCR reaction, which barcoded each sample with a unique identifier, a sequencing 

library was constructed with equimolar concentrations of each sample and sequenced on the Illumina MiSeq next-

generation sequencer.  Table 2 highlights the general sequencing results to the genus and species level for reactors 11-

14 throughout each phase of the dormancy cycles.  “Prehib-1” includes the establishment of biofilm after the initial 

reactor inoculation while “Posthib” represents the state of the biofilm as the system was taken out of the dormancy 

cycle to begin recovery.  “Stabilize” refers to biofilm samples taken after extended recovery at the end of all dormancy-

recovery experiments. 

Table 2: Reactors 11-14 Dormancy conditions and General Sequencing data to the genus and species taxonomic 

categories.  The Shannon Index indicates the level of diversity. 

Sample Dormancy 
Conditions 

Total 
Reads 

Total 
Reads PF 

# Genus 
ID 

# Species 
ID 

Shannon 
Index 

011-Prehib-1 4°C/NBF 444,520 391,211 375 514 2.099 

011-Posthib-1 4°C/NBF 607,590 556,715 370 497 2.111 

011-Prehib-2 4°C/NBF 376,418 339,916 416 567 2.454 

011-Posthib-2 4°C/NBF 461,465 405,672 439 575 2.376 

011-Stablize 4°C/NBF 645,450 578,725 455 659 2.389 

012-Prehib-1 25°C/NBF 704,840 627,258 422 621 2.221 

012-Posthib-1 25°C/NBF 422,152 343,090 379 460 1.930 

012-Prehib-2 25°C/NBF 596,268 528,619 456 632 2.097 

012-Posthib-2 25°C/NBF 403,262 359,351 444 591 2.330 

012-Stablize 25°C/NBF 525,039 462,963 494 739 2.692 

013-Prehib-1 4°C/BF 512,575 464,212 409 603 2.429 

013-Posthib-1 4°C/BF 422,152 384,874 379 508 2.346 

013-Prehib-2 4°C/BF 596,974 530,967 438 596 2.288 

013-Posthib-2 4°C/BF 402,216 353,757 456 596 2.493 

013-Stablize 4°C/BF 612,975 547,970 487 711 2.650 

 

Figure 2: Ammonia removal for 1-L MABRs 11-14 after addition of 100% oxygen gas feed for reactors 12 

(Day 43) and 14 (Day 38), temperature control to 28°C for all reactors (Day 55), and end of acid dosing to 

feed (Days 87-92). 
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014-Prehib-1 25°C/BF 466,473 409,651 401 510 1.913 

014-Posthib-1 25°C/BF 554,761 496,104 427 613 2.293 

014-Prehib-2 25°C/BF 436,972 385,399 415 575 1.740 

014-Post-2 25°C/BF 31,718 27,240 215 217 2.489 

014-Stablize 25°C/BF 643,845 570,418 497 725 2.489 

 

Sequencing results indicated that the inoculum used for the reactors 11-14 had low diversity and was primarily 

populated with numerous species of Pseudomonas. However, after initial biofilm formation, it appeared that the 

community diversity changed and the Pseudomonas was outcompeted and replaced by other species.  For example, in 

Table 2, the number of genus and species, as well as the Shannon Diversity Index, is reported for each biofilm at each 

stage and each treatment.  The first dormancy cycle for reactor 11 was 4°C with no bulk fluid. During the first 

dormancy period, there was a small loss in the number of species with no significant difference in diversity.  After 8 

weeks of recovery, the number of species increased along with an increase in diversity.  A longer, second dormancy 

period lasting 8 months was completed with no significant difference in the number of species or diversity indicating 

that the lower temperature may not have a negative effect upon an established biofilm.  After a recovery period, the 

stabilized reactor showed a significant increase in the number of species.  Reactor 13, also stored at 4°C but with bulk 

fluid showed similar trends with a small, initial decrease in the number of species during the first dormancy period, 

but upon recovery, continued a gradual increase (Table 2).  This may be due to the fact that cellular metabolism of the 

bacterial species present may be slower at the lower temperature and the nutrients available (i.e., carbon) would be 

sufficient to maintain the biofilm community.  This may indicate that bulk fluid may not be required to sufficiently 

maintain the bioreactor during a dormancy period.  A longer dormancy study with replication to confirm this would 

be required. 

Reactors 12 and 14, which were both stored at 25°C, without bulk fluid and with bulk fluid, respectively, presented 

a different trend with a decrease in the number of species during each dormancy period (Table 2).  During the time 

between cycles, however, both reactors recovered and the species numbers increased indicating that though the higher 

temperature may have a negative effect on the bioreactors, they were able to recover once placed back into service.  

Reactor 14, though following the same trend as 12, had a larger loss in the number of species and in diversity during 

dormancy cycle 2, but again after a period of stabilization, was able to respond and diversity increased from 1.7 to 2.4 

(Table 2). Over 700 species in nearly 500 genera were identified near the completion of this dormancy study. Of the 

most abundant genera present in Bioreactor 14, the Denitrobacter, an aerobic denitrifying bacteria, had the largest 

decrease during dormancy cycle 2, and remained at the reduced numbers throughout the remainder of the study.  Even 

though the loss of the Denitrobacter may have had some influence on the denitrification process within the bioreactor, 

other species present, though less abundant were capable of denitrification or dissimilatory nitrate reduction to 

ammonium (DNRA). 

2. 1-L MABR Set 15-18 

1-L MABRs 15-18, containing 14-week-old biofilms (twice the age of the biofilms tested in reactors 11-14 for 

their initial dormancy cycle), underwent a 9-month dormancy cycle under similar conditions (Table 1).  Recovery of 

the systems after the long-duration dormancy cycle included introduction of full-strength feed at a 5.00-day residence 

period for all reactors in an attempt to for the systems to recover more rapidly to a normal pH range.  For reactors that 

contained no bulk fluid, recovery included the same addition of buffer solution as previously discussed for reactors 

11-14.  Figure 3 shows average performance metrics for 1-L MABRs 15-18 prior to the dormancy cycle, after 1-week 

of recovery, and after 2-weeks of recovery.  Average conversion rates between one and two weeks remained 

consistent, and similar to pre-dormancy rates.  TOC removal was not included for this study as during the recovery 

phase, the instrument had encountered errors; as a result, a loss of data was experienced for this metric.  TOC analysis 

capabilities were restored by Day 29 of recovery, where all reactors were seen to maintain TOC removal between 92 

and 93%.  Extended monitoring of the recovery (67 days) of the four reactors showed that urea hydrolysis, ammonia 

removal, denitrification, and TOC removal remained consistent or continued to marginally increase.  A recovery 

period of approximately 7 days is much improved over that seen with the 30-day dormancy cycle and 7-week-old 

biofilms from reactors 11-14; the improvement may be attributed both to the more mature biofilms and higher 

residence period not overwhelming the microbial community.  Based on these results, conclusions based on chemical 

data analysis alone remain consistent that there is not a dormancy condition set proving to be better than another.  

These results, however, do indicate that mature, healthy biofilms play a significant role in the ability to hibernate 

biological water processor systems. 
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Similar to the second recovery cycle for reactors 11-14, 1 M HCl additions were also added to the feed for this set 

of MABRs in an attempt to better control pH during the initial recovery period.  All four reactors were weaned off of 

acid dosing by Day 32.  As seen in Figure 4, the performance metrics were not influenced by the end of acid dosing 

(Days 32-67), confirming similar findings that acid dosing did not seem to have any effect on performance from the 

cycle 2 results in reactors 11-14.  By Day 40 of recovery, reactor 15 began showing a drop in pH from 8.1 to 7.1 by 

Day 68, corresponding with increasing ammonia removal and TOC removal seen in Figure 4.  On Days 67 and 68 

post-recovery, all reactors were moved to a 3.79-day residence and 100% oxygen gas supply, respectively.  The 

residence time was lowered to reach the goal residence period for the systems, while the gas supply was altered based 

on the positive results seen in reactors 12 and 14, discussed previously.  As seen in Figure 4, reactor 15 responded 

well to the changes, with significant increases in ammonia removal and TOC removal.  The increase in ammonia 

removal for reactor 15 correlates with the appearance of significant levels nitrate in the effluent stream (from ~2ppm 

to ~300 ppm); with the introduction of oxygen, it appears that the NOB community in the reactor began performing 

at a higher level, and tolerated the change to a lower residence.  Reactors 16-18 did not show similar results, but rather 

suffered from these changes (note the lower TOC removal in Figure 4 directly after the changes were put in place).  It 

is expected that even with the move to 100% oxygen, the microbial community was not strong enough to overcome 

the lowered residence period.  It should also be noted that reactors 16-18 remained in the pH range of 8.5-8.8, never 

dropping like reactor 15; while they were able to still possess appreciable levels of removal similar to that seen in 

recovery cycle 2 for reactors 11-14 above, the systems overall were not robust. 

  

 

Figure 3: Performance metrics for 1-L MABRs 15-18 prior to any dormancy cycle, 1-week into recovery, 

and 2-weeks into recovery.  Error bars represent standard deviation. 
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Similar to the samples taken for reactors 11-14, biofilms were sampled in all reactors for determination of the 

community profile after reactor inoculation from the KSC inoculum tank, prior to the dormancy cycle, at the beginning 

of the recovery phase, and after extended recovery.  Table 3 highlights the general sequencing results to the genus and 

species level for reactors 11-14 throughout each phase of the dormancy cycles.  “Prehib-1” includes the establishment 

of biofilm after the initial reactor inoculation while “Posthib” represents the state of the biofilm as the system was 

taken out of the dormancy cycle to begin recovery.  “Stabilize” refers to biofilm samples taken after extended recovery 

at the end of all dormancy-recovery experiments. 

Table 3: Reactors 15-18 Dormancy conditions and General Sequencing data to the genus and species taxonomic 

categories.  The Shannon Index indicates the level of diversity. 

Sample Dormancy 
Condition 

Total 
Reads 

Total 
Reads PF 

# Genus 
ID 

# Species 
ID 

Shannon 
Index 

015-Prehib-1 4°/NBF 737,429 642,820 486 708 2.224 

015-Posthib-1 4°/NBF 931,496 823,306 521 778 2.341 

015-Stablize 4°/NBF 1,155,954 1,025,990 541 835 2.25 

016-Prehib-1 25°/NBF 643,100 545,357 456 656 2.106 

016-Posthib-1 25°/NBF 461,875 395,113 422 574 2.002 

016-Stablize 25°/NBF 1,081,758 956,885 478 787 2.392 

017-Prehib-1 4°/BF 774,731 664,255 470 711 2.181 

017-Posthib-1 4°/BF 685,778 599,386 485 698 2.279 

017-Stablize 4°/BF 985,919 857,102 499 803 2.34 

018-Prehib-1 25°/BF 1,217,062 1,059,494 505 794 2.314 

018-Posthib-1 25°/BF 557,559 486,663 479 688 2.422 

018-Stablize 25°/BF 1,058,769 929,293 517 824 2.469 

 

Figure 4: Performance metrics for reactors 15-18 after end of acid dosing to feed (Day 32), move to 3.79-

day residence (Day 67), and addition of 100% oxygen gas feed (Day 68). 
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As discussed, reactors 15 and 17 were stored at 4°C without bulk fluid and with bulk fluid, respectively.  During 

the dormancy period, reactor 15 (4°C, NBF) maintained the relative number of genus and species at each stage, 

whereas reactor 17 (4°C, BF) showed an initial decrease during the hibernation, followed by an increase in the number 

of species as well as diversity during recovery.  It is suspected that at 4°C, the metabolic pathways are greatly reduced 

and that little or no cell division occurs for the majority of the species present.  With little metabolic reactions ongoing, 

the presence of bulk fluid should have minimal influence.  The initial decrease in the number of species seen in reactor 

17 is similar to the decrease seen in reactors 16 (25ºC, NBF) and reactor 18 (25ºC, BF).  Reactors 16 and 18, 

undergoing a dormancy cycle at approximately 25°C, without or with bulk, showed a loss of 82 and 106 species, 

respectively.  It should be noted, however, that after three months of extended recovery, the number of species 

increased in both reactors and progressed toward a more stable condition (Table 3).  Many of the same genera were 

apparent and abundant as detected in the reactors 11-14.  Denitrobacter was present in the community in all eight 

reactors and persisted throughout the hibernation evolution.  Denitrobacter increased in reactors 15 and 16 (both NBF) 

but decreased in 17 and 18 (BF). Nitrobacter (NOB) and Nitrosococcus and Nitrosospira (AOB) were also present but 

in low abundance. Other genera seen in reactors 15-18, but not as abundant or present in 11-14, possessed the 

capability to denitrify14, 15. It is most likely that some or all of these genera were participating in the denitrification 

process at a low rate. 
3. ssMABR CR2 

As seen in Figure 5, the quick recovery of this system was encouraging after a 7-month dormancy cycle at 4°C 

with no bulk fluid.  Extended monitoring of reactor metrics showed a slight decrease in denitrification over time, with 

all other parameters remaining consistent.  With this successful recovery cycle, a second dormancy cycle of 9 months 

was initiated with storage conditions being altered to 25°C with no bulk fluid to test whether the warmer temperature 

would compromise microbial integrity over time.  Within one week of recovery, urea hydrolysis, ammonia removal, 

and denitrification levels were comparable to values seen prior to the second dormancy cycle, while TOC removal 

was nearly 50% reduced (Figure 5).  Extended monitoring showed a return of TOC removal capacity within two weeks 

of recovery.  In both recovery phases, the reactor was filled with fluid containing typical levels of humidity condensate, 

hygiene wastewater, and laundry wastewater (with no urine) as a buffer solution to assist in easing the microbial 

community back into operation.  During the first residence cycle in both recovery phases, small doses of 1 M HCl 

were added to the feed for pH control.  Ammonia and Total Nitrogen (TN) levels are highly dependent on reactor pH; 

as pH decreased in the reactor, both were seen to also decrease, correlating with increased ammonia removal and 

denitrification.  All three of these metrics are dependent on influent nitrogen values as well.  The sharp decrease in 

these constituents around Day 50 of recovery is due to a weaker batch of feed introduced to the reactor system; feed 

samples from that period of operation showed ~30% lower TN compared to average values, likely due to a less 

concentrated batch of urine for that particular feed.  When real urine is utilized in the wastewater to be treated, vast 

differences in nitrogen concentration are not surprising and can cause large momentary changes in reactor performance 

as a result. 

 

Figure 5: CR2 reactor performance metrics prior to any dormancy cycle, after dormancy cycle 1, and after 

dormancy cycle 2.  Average values for 7-days and 14-days into recovery after dormancy cycle 2 are depicted.  

Error bars represent standard deviation. 
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Microbial community analysis for ssMABR CR2 was also completed; the bioreactor was first sampled when the 

biofilm was well established (13 months) and upon being placed back into operation after the 7-month dormancy cycle 

described previously.  Biofilm samples were taken from the at the top, middle, and bottom areas of the fibers within 

the reactor, as well as from fibers at the bioreactor core and versus outer portion of the fiber header. Characterization 

of the genus and species, including diversity derived from sequencing of the 16s rRNA gene can be viewed in Table 

4. There was no statistical difference between overall regions (T, M, B, or inner vs. outer) (p>0.05). The numbers of 

species, and hence the diversity, was similar at all locations. This may be due to the fact that the biofilm was well 

established for 13 months prior to the first hibernation cycle.  At the genus taxonomic level, a comparison of the top 

species occurring in the CR2 bioreactor identifies 24 species that occurring greater than 1% of the total abundance.  

Of these, the most evident variation occured in the Denitrobacter and Vogesella genera. Both change significantly 

during the recovery and second dormancy stage (p<0.05). In order to determine how each genus functions and 

influences the function of the bioreactor/film, further studies would be required though characterization of ribonucleic 

acids (RNA) by transcriptomics. Identifying the species that participate in various metabolic reactions would provide 

some insight in which long term storage conditions might provide the best survival hibernation and recovery 

conditions for these and other types of bioreactors. 

Table 4: Characterization of ssMABR CR2 to indicate number of Genus and species determined over time 

during hibernation study. Post 1 samples were taken after dormancy at 4 ºC; Pre2 samples were taken only 

from the outer region after a recovery period and prior to the second dormancy cycle; Post 2 samples were 

taken after a dormancy at 25 ºC. No bulk fluid were present. O=outer, I=inner, B=bottom, M=middle, T=top. 

Sample 
ID 

CR-2 

TOTAL 
Reads 

TOTAL 
Reads PF 

# Genus 
ID 

# Species 
ID 

Shannon 
Diversity Index 

IBPost1 197,064 184,815 378 529 2.208 

IMPost1 175,581 162,771 382 518 2.020 

ITPost1 232,907 215,834 412 563 2.077 

OBPost1 226,613 209,480 387 508 2.153 

OMPost1 230,353 211,453 391 533 2.199 

OTPost1 245,666 227,389 409 550 2.063 

OBPre2 216,115 196,170 408 525 2.084 

OMPre2 171,065 157,231 360 449 2.078 

OTPre2 223,776 204,169 386 475 2.078 

IBPost2 231,464 212,416 433 582 2.127 

IMPost2 156,085 141,835 372 459 1.954 

ITPost2 147,506 134,235 383 509 2.111 

OBPost2 211,973 192,598 432 578 2.104 

OMPost2 229,587 207,317 414 533 2.041 

OTPost2 186,905 171,138 389 493 2.005 

B. Antibiotic Studies 

4. 1-L MABR Set 11-14 

1-L MABR set 11-14 were used in the first antibiotic dosing experiment with the following scheme: reactor 11 

received ciprofloxacin dosing, reactor 12 received inoculation with E. coli followed by introduction of ciprofloxacin 

3 days later, reactor 13 received inoculation with E. coli and no antibiotic dosing, and reactor 14 served as a control 

reactor.  The concentration of ciprofloxacin in reactor 11 and 12 feed was 2.97 and 3.07 μg/mL, respectively; the 

ciprofloxacin persisted in low levels in both dosed reactors for 3 weeks.  Reactor 11, which received ciprofloxacin 

dosing and no E. coli shows the initial dose, with a rise in concentration to nearly 2.50 μg/mL starting to decrease 
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after 5 days, and another slight increase in concentration after the second dose was introduced.  Reactor 12, which 

was inoculated with E. coli then treated with the antibiotic showed a much slower rise in ciprofloxacin concentration 

in the effluent, and maximum values did not reach those seen in reactor 11.  A multitude of explanations exist for the 

effluent concentration differences.  Microbial community diversity in the biofilms between the two reactors could 

vary greatly; while feed bottle concentrations were near equivalent, some of the antibiotic may not have fully dissolved 

or may have not been well mixed causing a lower amount to enter reactor 12; differences in reactor operation pH and 

gas feed may also play a role in ciprofloxacin persistence and build up.  Biofilm sampling was completed prior to and 

after the study for sequencing to answer some of these questions. 

Table 5 shows the various changes in average urea hydrolysis, ammonia removal, denitrification, and TOC 

removal for the antibiotic and pathogen matrix detailed above.  One-way ANOVA and Sidak’s Multiple Comparison 

Test (95% confidence interval) was used to determine if changes in the averages before and after a treatment were 

statistically significant.  The only reactor that experienced a negative impact in any performance metrics was reactor 

11, which received ciprofloxacin dosing only.  Both ammonia removal and denitrification were found to be 

significantly lower after the antibiotic exposure.  Both reactors 12 and 14 experienced a significant increase in 

ammonia removal; it is expected that the systems were continuing to improve after the addition of 100% oxygen as 

the gas feed rather than as any effect from this study.  Reactor 13, which was inoculated with E. coli did not show any 

significant changes in performance, showing that the introduction of a pathogen left untreated had little short-term 

impact on reactor performance and is not surprising based on the already diverse community present in these biological 

systems. 

Table 5: Reactor Performance Metrics Pre- and Post-Antibiotic/Pathogen Introduction* 

 11: Before 11: Cipro 13: Before 13: E. coli 

Urea Hydrolysis 98.38 97.99 98.76 98.09 
Ammonia Removal 52.80 42.04 54.99 49.17 

Denitrification 48.93 37.30 50.81 44.70 
TOC Removal 84.42 83.78 84.37 86.48 

 12: Before 12: E. coli & Cipro 14: Before 14: Control 

Urea Hydrolysis 98.90 98.02 98.80 98.23 
Ammonia Removal 69.48 79.20 72.15 80.81 

Denitrification 61.38 69.88 66.10 71.94 
TOC Removal 94.11 93.77 93.26 94.17 

* Values in red are statistically lower than pre-antibiotic study parameters, while those in green are statistically higher; 

no text color signifies a statistically insignificant change in the parameter value. 

 

Samples collected for microbial analysis included biofilm samples (in triplicate) from each reactor before the 

introduction of E. coli, before the introduction of ciprofloxacin, and at the conclusion of the study (14 days after E. 

coli inoculation); reactor effluent samples were collected daily.  Biofilm samples were stained with Baclight 

Live/Dead stain to determine the fraction of live cells in the biofilm.  Effluent samples were plated on nutrient agar 

(NA) for heterotrophic plate counts (HPC), NA with ampicillin for E. coli with GFP marker detection (fluorescence 

detected by UV lamp), and NA with ciprofloxacin at concentrations of 2 and 4 μg/mL for detection of antibiotic 

resistant strains.  Bacterial growth from ciprofloxacin plates was inoculated into broth for minimum inhibitory 

concentration (MIC) testing to confirm bacterial resistance or sensitivity to the antibiotic.  The fraction of live cells in 

the biofilm in reactor 11, treated with Ciprofloxacin, was impacted significantly as illustrated in Figure 6.  

Interestingly, this effect was not seen in reactor 12, which was also treated with ciprofloxacin. 

Bacterial numbers in the reactor effluent, as assessed by plate counts, did not seem to be impacted by the antibiotic 

treatment with the exception of the presence of E. coli in reactor 12. The bacterium was not detected in reactor 12 

effluent 3 days after the introduction of ciprofloxacin; the E. coli was still detected on the last day of sampling in the 

reactor 13 which was inoculated with E. coli and was not treated with the antibiotic.  One could assume that other 

species of bacteria in the effluent sensitive to the antibiotic were also affected.  Figure 6 illustrates effluent sample 

plate counts over the course of the experiment. 
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Resistant, or intermediately resistant, strains of bacteria from the effluent samples were present in all the reactors 

at some point during the study.  Resistance is defined by growth at ≥ 4 μg/mL and intermediate (strains that could 

develop resistance) growth at 2 μg/mL.  Table 6 shows the development of resistant strains in the reactors.  With the 

introduction of ciprofloxacin in reactor 11, resistance is more prevalent throughout the course of the study.  Resistant 

strains of bacteria can be present naturally in urine and wastewater; with the introduction of ciprofloxacin into the 

reactors, resistant strains would be those that survive and proliferate while susceptible strains would decline.  The 

strain of E. coli introduced into reactor 12 is sensitive to the antibiotic and did not develop resistance as indicated by 

no growth on media containing ciprofloxacin. 

Table 6. Ciprofloxacin sensitivity as determined by broth dilution MIC on bacteria that grew on plates 

containing the antibiotic. 

 Day 0 Day 4 Day 6 Day 8 Day 10 Day 12 

Cipro (11) S S R R R R 

Cipro + E. coli (12) I S S R S S 

E. coli (13) S S S I R S 

Control (14) I S ND I I S 
S=Susceptible, I= Intermediate, R=Resistant. ND = No Data 

  

 

 

Figure 6: Top: Live bacteria (%) present in biofilm samples collected before and after ciprofloxacin 

treatment. Different letters (a and b) indicate significant differences (p≤.05 by Students t-test). Bottom: 

Colony forming units (CFU) per mL of effluent. 
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5. 1-L MABR Set 15-18 

A duplicate study was performed with 1-L MABR set 15-18 with the following scheme: reactor 15 served as a 

control reactor, reactor 16 received inoculation with E. coli and no antibiotic dosing, reactor 17 received inoculation 

with E. coli followed by introduction of ciprofloxacin 3 days later, and reactor 18 received ciprofloxacin dosing.  The 

concentration of ciprofloxacin in the feed for reactors 17 and 18 was 3.24 ± 0.32 μg/mL throughout the course of 

dosing. Similar to that seen in Run 1, the ciprofloxacin concentration level increased during the repeated dosing of the 

feed, then persisted in low levels in both dosed reactors for approximately 3 weeks. 

Table 7 shows the changes in average urea hydrolysis, ammonia removal, denitrification, and TOC removal for 

the antibiotic and pathogen matrix detailed above.  One-way ANOVA and Sidak’s Multiple Comparison Test (95% 

confidence interval) was used to determine if changes in the averages before and after a treatment were statistically 

significant.  All reactors, including the control reactor, experienced a statistically significant decrease in ammonia 

removal and denitrification.  While ammonia removal and denitrification decreased by ~16% and 28%, respectively 

for the control reactor (15), they decreased by nearly 65% and 70%, respectively, in all treated reactors (16, 17, and 

18).  The drastic decrease in performance is not expected to be solely due to the introduction of E. coli or ciprofloxacin 

in any of the reactors because all systems experienced a loss in performance.  This change in conversion metric is 

likely due to the inability of microbial community to process the wastewater at a 3.79-day residence (as was seen by 

lower metrics in the previous dormancy-recovery section) after an extended dormancy cycle.  Reactor 15, serving as 

the control reactor, likely responded to the residence change better than the others since it was already performing at 

higher conversion rates than the other three reactors.  The added stress of antibiotics and possible pathogenic bacteria 

added to reactors 16-18, may have caused the more dramatic change in metrics, but the data is confounded by the 

number of alterations made to the systems. 

Table 7: Reactor Performance Metrics Pre- and Post-Antibiotic/Pathogen Introduction* 

 15: Before 15: Control 16: Before 16: E. coli 

Urea Hydrolysis 99.57 99.94 98.53 97.68 
Ammonia Removal 69.68 58.37 47.02 15.20 

Denitrification 48.27 34.60 40.69 11.71 
TOC Removal 96.02 94.99 86.34 83.31 

 17: Before 17: E. coli & Cipro 18: Before 18: Cipro 

Urea Hydrolysis 95.94 92.37 98.12 96.60 
Ammonia Removal 43.78 15.67 48.07 17.28 

Denitrification 40.27 11.00 41.67 13.59 
TOC Removal 83.92 78.38 85.04 83.36 

* Values in red are statistically lower than pre-antibiotic study parameters; no text color signifies a statistically 

insignificant change in the parameter value. 

 

The methods used for the second run with reactors 15-18 were the same as the first described above.  Figure 7 

illustrates the percentage of live bacteria in biofilm samples collected before treatment and at the end of the run.  The 

only significant change could be seen in the reactor dosed with E. coli and ciprofloxacin with a significant loss of live 

cells.  Biofilm viability in the reactor treated with ciprofloxacin only was not impacted by the antibiotic.  This result 

is different than the first run in that the cipro- and cipro plus E. coli-dosed reactors were conversely affected.  This 

effect may be a function of specific types of bacteria present in the individual biofilms and possible antibiotic 

resistance.  Biofilm samples were collected throughout this experiment and have been preserved for future community 

analysis to better elucidate these findings. 

As with the first run, bacterial numbers in the reactor effluent did not seem to be impacted by the antibiotic 

treatment with the exception of the presence of E. coli in the dosed reactors. (Figure 7). The bacterium was not detected 

in reactor 17 effluent three days after the introduction of ciprofloxacin; E. coli was still detected until 14 days after 

inoculation and without the antibiotic dosing.  As with the first run, resistance of effluent bacteria that grew on agar 

plates containing ciprofloxacin was confirmed by MIC testing as described above.  Resistant bacteria were present 

throughout the second run in all reactors from day 1 (data not shown).  This suggests the presence of bacteria resistant 

to ciprofloxacin in the urine component of the feed stream. 
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IV. Conclusions 

C. Dormancy-Recovery Cycling within Biological Water Processors 

With these additional dormancy and recovery cycles, no matter the storage condition tested, all systems were able 

to recover with appreciable urea, ammonia, and TOC removal capacity within 7 days.  Most systems were also seen 

to continue improving with extended recovery periods (after 2-weeks).  An exact methodology for recovering these 

systems is yet to be fully elucidated; however, several trends can be noted.  It is apparent, that, for systems stored 

without bulk fluid, a buffer solution is required to assist in diluting the reintroduction of the urine-containing waste 

stream or the biofilms are overwhelmed.  For future testing, it is encouraged that acidification is not used, but rather 

the microbial communities be allowed to develop pH control on their own to limit input requirements for the bioreactor 

systems.  A residence time regime for starting recovery at a higher residence (5-days, 15-18) has not proven any more 

useful than resuming full feeding at shorter residence periods (3.79-days, 11-14) for recovery.  Ensuring the microbial 

community is not oxygen deprived was also an important factor during recovery stages as seen in reactors 12 and 14; 

had oxygen been added to reactors 15-18 early on in their recovery, 16-18 may have been able to better handle the 

move to a lower residence period by not starving the microbial community.  Introduction of more oxygen to both 

MABRs greatly improved performance metrics.  Lastly, based on the various biofilm ages tested, it appears that the 

more mature the biofilm, the more resilient the system becomes for dormancy capability; for instance, 13-month old 

 

 

Figure 7: Top: Live bacteria (%) present in biofilm samples collected before and after ciprofloxacin 

treatment. Significantly less live cells (p≤.05 by Students t-test) were seen in the biofilm treated with Cipro 

and E. coli.  Bottom: Colony forming units (CFU) per mL of effluent. 
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biofilms in CR2 have shown excellent recovery and 14-week-old biofilms were demonstrated to recover much faster 

than 7-week-old biofilms.  Further testing with multiple age biofilms could possibly determine a minimum maturation 

for the system prior to successful, rapid recovery.  Examination of the microbial communities in these MABR systems 

throughout the dormancy-recovery experiments shed light on changes in the community make-up and diversity.  From 

the molecular identification of genus and species, only trends could be seen; and does not elucidate dormancy 

conditions suitable for long term hibernation of bioreactors. From these trends it appears that a 4°C hibernation 

temperature may be inferred, but with respect to fluid storage, data does not either method.  All bioreactors were able 

to recover after multiple dormancy cycles; however, it should be kept in mind that after a period of time in bulk fluid 

and higher (though not optimal) temperatures, nutrient levels would drop and carbon sources could be depleted causing 

a negative effect on the biological system. 

Based on these results, if a recommendation for hibernation of a reactor were to be given without further testing, 

the following regime would be suggested: 1) use of 8-12-month-old biofilms demonstrating high conversion at desired 

operating parameters, stored at 4°C with or without bulk fluid; 2) upon recovery, resume full processing of wastewater 

at desired operating conditions with elevated oxygen levels in gas feed, if possible.  This calls for a compromise 

between up-mass and power consumption for a system launching into microgravity, but saves on power throughout a 

launch and allows for easy deactivation during periods of non-use in future long duration missions when crew are not 

present to run the system.  As stated, further in-depth examination of these results as well as further studies would 

assist in finalizing a dormancy-recovery strategy for these biological systems. 

D. Effect of Pathogenic Bacteria and Antibiotics 

These initial experiments on the effects of antibiotics and pathogens on biological wastewater processors 

have shed light on effects experienced by the reactors as well as added several questions yet to be answered.  Changes 

in the performance metrics in both studies were confounded by residual effects of operational changes to the reactors 

after finishing a series of dormancy-recovery experiments (e.g., addition of 100% gas supply causing an increase in 

performance, lowering of residence time hindering performance, etc.).  Due to a tight timeline, new systems were not 

able to be initiated for these experiments.  Regardless, the initial data indicates that the introduction of ciprofloxacin 

may have a slightly negative effect on a biological water processing system, but not to the extent that the system would 

be compromised.  The E. coli, the pathogenic species introduced as the on-set of a urinary tract infection in a 

crewmember, was eliminated within the reactor after the addition of ciprofloxacin, leaving little time for it to 

proliferate further.  Proliferation of antibiotic-resistant species was also denoted after exposure to the ciprofloxacin; 

further analysis of this effect on long-term operation is required.  Biofilm samples were collected and preserved for 

Next Generation Sequencing to further examine effects on the microbial community in future work.  Future work, 

past the scope of this project, should also assess various antibiotics, different concentration loading of antibiotics into 

reactor systems, and effects after multiple dose events over a long duration. 
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