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ABSTRACT 

The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the 

universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well 

underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two 

optical test programs leading up to the final flight verification program. The details of the telescope mirror integration 

will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground 

support equipment cryo tests will be shown and how these plans fold into the flight verification program. 
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1. INTRODUCTION

The James Webb Space Telescope (Figure 1.1) is the successor to the Hubble Space Telescope. JWST will operate in the 

infrared region of the electromagnetic spectrum to allow the science community to observe far red shifted stars and 

galaxies as they were originally forming after the Big Bang 13.8 billion 

years ago. The scientists call JWST the first light machine since it will 

actually observe the first stars “turning on” and early galaxy formation. Even 

though the light from these early stars and galaxies was created billions of 

years ago, that light is just getting to our solar system now. They are moving 

away from us at nearly the speed of light Doppler-shifting the visible light 

into the infrared. In order to image this phenomenon, the telescope must also 

image in the infrared spectrum. This means that the telescope and all the 

systems that create that image must be very cold. That is why JWST 

operates at 40°K. This extreme temperature creates many challenges for the 

engineers and scientists that are building and testing the observatory. This 

paper will provide an overview of the Alignment, Integration, and Test 

(AI&T) program and provide specific details on the OTIS integration effort 

and the preparation for the final cryo test before the OTIS delivery to JSC. 

2. OTIS INTEGRATION

The subsystems that will comprise the final observatory are completed. The Optical Telescope Element (OTE) 

integration has been discussed in paper 9904-2 in these conference proceedings. The Integrated Science Instrument 

Module also successfully completed its cryogenic verification test program. The next step is the completion of what is 

commonly called the OTIS (OTE plus ISIM). In reality, the ISIM is more than just the instruments. Figure 2.1 provides 

an overview of the three major components of the ISIM. The figure shows the ISIM that contains the physical 

instruments. There is also the IEC (ISIM Electronics Compartment) and the HR (Harness Radiator). The OTIS also has 

various thermal radiators and blankets that need to be installed in order to finalize the flight configuration. 

Figure 1.1:  The James Webb Space 

Telescope in its fully deployed 

configuration. 



 

 
 

 

 

Figure 2.1:  The ISIM components are 

shown above.  Upper left – ISIM 

instruments, Middle – Harness radiator, 

Bottom – ISIM Electronics compartment. 

Figure 2.2:  The completed 

OTE is show in the assembly 

stand. 

Figure 2.3:  The OTE was moved from the 

assembly stand shown at the top of the 

photograph to the High Capacity Roll and 

Turnover Fixture.  Some blanketing and 

radiator installation will occur here before 

being flipped over for ISIM integration. 

 

To install the ISIM, the telescope needs to be flipped over to provide access to the rear of the Backplane Support Frame. 

In order to do that, the telescope is moved from the integration stand (Figure 2.2) over to the High Capacity Roll and 

Turnover Fixture (Figure 2.3). While it is this configuration, thermal blankets and a large radiator are attached before the 

reach and access are blocked due to the ISIM installation and before being turned over, the protective covers that have 

covered the gold-coated mirrors have to be removed since they are merely sitting on the mirrors. The “big reveal” took 

place over two days with technicians removing the covers (Figure 2.4). Needless to say, this was a very exciting time for 

the JWST team and a proud moment for Dr. John Mather in the ultimate selfie in a reflection off the 18 segment primary 

mirror (Figure 2.5). 

 

Figure 2.4:  Before flipping over, the 

protective covers have to be removed by 

technicians on diving boards (left). The 

primary mirror, fully revealed, is finally 

visible (right). 

Figure 2.5:  Dr. John Mather’s 

reflection can be seen in the primary 

mirror. 

Figure 2.6:  The OTE is shown 

rotated and placed back in the 

assembly stand in preparation for 

ISIM integration. 

 
Once rotated with the primary mirror facing down, the OTE was placed back in the assembly stand (Figure 2.6) in 

preparation for the ISIM integration. Rolling platforms were included in the assembly stand to allow excellent reach and 

access behind the mirrors and into the ISIM cavity in the telescope backplane structure. A specially designed extendable 

diving board was also designed that actually extends through the telescope that allows access to the interior of the 

telescope structure. The ISIM will be attached to the telescope via six kinematic struts that are shown in Figure 2.7. 

These struts are adjustable in length allowing the ISIM to be aligned to the telescope. Critical metrology measurements 

provide the data to align the telescope and instrument pupil locations in zero gravity at cryo temperatures. To accomplish 



 

 
 

 

this in gravity and room temperature, calibrated finite element models are used to bias the installation location so that the 

optimal alignment is achieved once on-orbit. Figure 2.8 shows the ISIM being installed into the telescope. 

 

Figure 2.7:  The ISIM instrument subsystem is attached to 

the telescope via six kinematic struts (Two monopods and 

two bipods). These struts are adjustable to allow the 

telescope and instrument pupils to be aligned. 

 

Figure 2.8:  The ISIM is carefully lowered into the telescope 

and attached via the 6 struts. 

 

This paper did not allow the inclusion of the remaining subsystems 

prior to the publication date. The hardware is comprised mainly of 

thermal radiators and thermal management hardware and is staged and 

ready for installation per plan. 

Once the OTIS is completed, it will go through a series of 

environmental tests at the Goddard Space Flight Center. This includes 

a pre and post center of curvature testing of the telescope with a three-

axis vibration test and an acoustic test program to verify the ability to 

withstand the rigors of the launch to space. Once that is completed, the 

STTARS (Space Telescope Transporter for Air Road and Sea) 

shipping container (Figure 2.9) will be used to move the OTIS from 

Maryland to the Johnson Space Center in Houston, Texas. Once there, 

an end-to-end optical test will be done at the operating temperature in 

order to verify the on-orbit performance of the system. 

In preparation for that critical test program, a series of tests using the 

JWST Pathfinder telescope has been ongoing for the past year. A series 

of three tests are planned prior to the OTIS test. Optical Ground 

Support Equipment (OGSE) Test #1 and #2 are complete. A final 

Thermal Pathfinder (TPF) test is planned to start late summer 2016. 

3. JSC ENVIRONMENTAL TEST SYSTEM 

The cryogenic testing will take place at the Johnson Space Center (JSC) in Houston, Texas. The JSC Chamber A is a 

legacy vacuum chamber originally built for the Apollo program in the 1960’s. This chamber was never intended to be an 

optical test chamber or a cryogenic test facility capable of creating a 20K test environment. Therefore, a major retrofit 

was in order that took several years to complete. 

The basic chamber was fully functional and with its large 40-foot (12.2m) diameter door, it was really a perfect choice 

for JWST. Therefore, the original solar lamps that illuminated the Apollo Command Module (Figure 3.1) were removed 

and the existing liquid Nitrogen (LN2) shrouds were refurbished. While that was going on, an inner set of thermal 

shrouds were fabricated and installed that would support the gaseous Helium (GHe) cryogen enabling a 20K test 

Figure 2.9:  Once completed, the STARRS 

shipping container will be used to move the 

system to the Johnson Space Center in Houston, 

Texas for the cryogenic optical test. 



 

 
 

 

environment. Once that work was completed, it was time to start to install all the Optical Ground Support Equipment 

(OGSE) that will allow the ground test of the JWST OTIS. 

 

 
Figure 3.1:  Chamber A was originally built to test Apollo 

spacecraft and has been refurbished for its new role to test 

JWST. 

Figure 3.2:  The JWST cryo test configuration is shown 

inside Chamber A. 

 

Figure 3.2 is a CAD model of the chamber with the OGSE installed. A brief description of each major piece of OGSE 

will be discussed below: 

• Starting at the top of the chamber, there are six isolators manufactured by Minus-K. These six isolators allow the 

test team to transform the very noisy Apollo vacuum chamber into a quiet environment capable of supporting a 

precision optical test program. These six isolators support a total suspended mass of about 60,000 pounds   

(27,000 kg). 

• Connected to the isolators are six downrods. These downrods also make the transition from the external air 

environment to the internal vacuum environment via a set of stainless steel bellows. These downrods are vertical 

and reach down to suspend the optical test system below. 

• The main support structure is called the Upper Support Frame (USF) and is shown in Figure 3.3. The USF 

provides interfaces for the Center of Curvature Optical Assembly (CoCOA), the three, 1.5m auto collimating flats 

(ACF’s), and the six telescope rods that support the OTIS at the bottom of the chamber. 

 

Figure 3.3:  The Upper Support Frame (ISF) is shown in the 

JSC clean room.  The stepladder shown is 12 feet (3.7m) 

tall. 

Figure 3.4:  The Center of Curvature Optical Assembly 

(CoCOA) is shown at the Marshall Space Flight Center 

during early risk reduction testing.  Note that the thermal 

panels have not yet been installed in this photo. 

 



 

 
 

 

• The CoCOA (Figure 3.4) is one of the major optical test systems for the JWST cryo test. The essence of the 

CoCOA is basically a two element null and a 4D multiwavelength interferometer (MWIF). The MWIF allows the 

test team to quickly align and phase the segmented primary mirror. It also provides a full aperture evaluation of 

the primary mirror since we only sample the end-to-end system aperture through our three subaperture ACF’s. 

There are various features within the CoCOA to aid in the identification and alignment of the primary mirror. See 

Reference 2 for a complete discussion of the CoCOA. 

• The three ACF’s are lightweight borosilicate mirrors manufactured by HEXTEK (Figure 3.5). Borosilicate was 

used for the ACF’s since the operating temperature of the mirrors is at the zero coefficient of expansion (CTE) of 

the glass. Therefore, the surface figure is very stable at the cryo test temperatures. The ACF’s are cryo null 

figured at the operating temperature prior to installation at JSC. 

 

Figure 3.5:  The ACF assembly is shown with the 

three-actuator assemblies suspending the 1.5m 

lightweight mirror underneath. 

Figure 3.6:  The Hardpoint/Offleader Support Structure (HOSS) 

is shown after painting.  The structure is approximately 30 feet 

(9m) in length and width. 

 
• There are six telescope rods that hang from the USF and 

support the Hardpoint/Offloader Support Structure 

(HOSS). The very large stainless steel structure      

(Figure 3.6) holds the flight OTIS in a kinematic 

configuration of two monopod struts on one end and two 

sets of bipods on the other end. 

• There are four photogrammetry (PG) systems 

manufactured by Johns Hopkins University Instrument 

Development Group that are attached to the walls of the 

chamber (Figure 3.7). The camera systems inside 

pressure tight enclosures that are thermally controlled. 

Each system rotates in a windmill fashion through 360 

degrees of rotation. This PG system allows the test team 

to understand where the hardware is in the chamber to 

about 100 microns. 

This comprises the Optical Ground Support Equipment that will 

be used to test the flight OTIS. There is additional thermal 

ground support equipment that completes the test equipment suite. The thermal equipment is discussed in Section 5. 

4. OPTICAL GSE TEST PROGRAM RESULTS 

One of the main purposes of the Pathfinder telescope was to exercise all the test equipment, the test processes, and the 

test personnel; proving to be valuable experiential training for the upcoming test on the OTIS. The Pathfinder includes 

two Primary Mirror Segment Assemblies (PMSAs) and a Secondary Mirror Assembly (SMA) with nearly similar 

functions as the OTIS mirrors (Figure 4.1). A simulator for the Science Instruments, called the Beam Image Analyzer 

Figure 3.7:  The four-photogrammetry systems are 

shown in their final “windmill” configuration in the 

JSC vacuum chamber. 



 

 
 

 

(BIA), placed a near infrared detector array, similar to arrays in the 

Science Instruments, at the Pathfinder telescope focal surface on 

stages to allow translation in all directions and small tilts to allow 

placing the detector anywhere on the focal surface. 

The Pathfinder optical tests consisted of two cryogenic test cycles. 

The first test cycle, OGSE 1, tested the full test configuration without 

the prime Aft Optical Assembly (AOS), which contains the fine 

steering mirror and the tertiary mirror. The second test cycle, OGSE 

2, added the AOS and the AOS Source Plate Assembly (ASPA) with 

its optical point sources at the Cassegrain focus to allow the 

execution of all optical tests before delivering the AOS for 

integration into the OTE. 

The first order of business was to check alignments after a ~250° K 

cool down. From photogrammetry measurements, the alignment of 

the primary mirror relative to the CoCOA and the ACFs were well 

within tolerance. The CoCOA allows 6 degrees of freedom, although clocking about the optical axis is not used. Table 

4.1 shows the ample remaining adjustment range available after the cool down alignment shift for the CoCOA. 

 

Table 4-1:  Remaining range of adjustment in the CoCOA after the alignment shift from the cool down. 

 V1 

(mm) 

V2 

(mm) 

V3 

(mm) 

RV1 

(µrad) 

RV2 

(µrad) 

RV3 

(µrad) 

Range +/- 24.6 +/- 32 +/- 32 N/A +/-5.6 +/-5.6 

Cryo Position (margin) 
-7.4 

(70%) 

7.2 

(76%) 

0.4 

(98%) 
-0.6 

0.5 

(92%) 

-0.5 

(90%) 

 

The ACFs have adjustment in tilt to move the collimated beam to selected field angles and piston, though piston is not 

used. Knowledge of the decenter and clocking positions of the ACF optical surfaces is important to remove the ACF 

surface figure from the telescope’s images. The decenter position is also limited to prevent light leakage from adjacent 

PMSAs during Wavefront Sense and Control operations for the three PMSAs within the clear aperture of the ACF. The 

two Pathfinder tests only had one of the three ACFs installed – the ACF reflecting through the two PMSAs on the 

Pathfinder. The alignment and function of the other two ACFs will occur in the upcoming thermal test of the Pathfinder 

(Section 5 below). Table 4.2 shows the range margin for the tilt relative to the PM and the position margin for decenter 

relative to the PMSAs. 

 

Table 4-2:  Remaining tilt range of adjustment in the ACF and the decenter position relative to tolerance after the alignment 

shift from the cool down. 

 Decenter 

(mm) 

Tilt 

(mrad) 

Range  10.8 

Cryo Position (margin) (70%) 0.15  

(99%) 

 

Figure 4.1:  Pathfinder telescope with flight AOS 

before second cryogenic test. 



 

 
 

 

Photogrammetry is then used to align the PM and SM relative to the AOS (Reference 14). The accuracy of the 

photogrammetry system was compared against laser tracker measurements prior to the cryogenic tests. The measured 

dimensions of Invar bars with measured coefficients of thermal expansion and the dimensions of the beryllium mirrors 

were checked against expectations at the cryogenic test temperatures. The repeatability at cryogenic temperatures was 

also determined (Reference 15). The results did reveal issues with the mechanical interface of a few of the 

photogrammetry targets with the PMSAs that will be resolved before the OTIS test. Table 4.3 shows the repeatability of 

the photogrammetry system. With this repeatability, Table 4.4 contains the accuracy of the measurements. 

 
Table 4-3:  Example repeatability measurements 

with the photogrammetry system. 

 

Table 4-4:  Photogrammetry accuracy. 

 

 
With the PMSAs and SM globally aligned to the AOS, the PMSAs are then aligned and phased to within a piston error 

of 32 nm for best wavefront error (WFE) (Reference 16). The WFE matched model prediction within the uncertainty of 

the measurement and the model at 31 nm RMS WFE – see Figure 4.2 for the WFE of the inner segment. 

 

  

 

Next, the BIA was placed relative to the AOS focal surface at multiple field positions using calibration metrology, 

gravity analysis, and photogrammetry. Then the detector position was compared to the best focus position of the images 

from the inward optical sources on the ASPA (Figure 4.3 and Table 4.5). The comparison averaged across the field 

positions agreed to within 0.435 mm along the focal direction and within 0.166 mm laterally, approximately half of the 

value of the expected uncertainty. 

Figure 4.2:  Measured WFE of inner PF mirror segment compared to model prediction – the triad error results from the 

radius of curvature actuator compensation of the gravity sag of the light weighted mirror. 



 

 
 

 

Figure 4.3:  ASPA Inward source is imaged by AOS and best focus position compared to detector position set by 

photogrammetry. 

 

Table 4-5:  Comparison of image location based in phase retrieval analysis of image vs. expected location based on metrology 

and finite element model predictions. 

  
Best Image Location Metrology Location PRMS -  Prediction 

Instrument 

FOV 

ASPA 

Source 

Designation M1 (mm) M2 (mm) M3 (mm) M1 (mm) M2 (mm) M3 (mm) 
dM1 

(mm) 

dM2 

(mm) 

dM3 

(mm) 

NIRCamB I-1 -1809.338 -41.378 -325.920 -1810.325 -41.515 -325.799 0.987 0.137 -0.120 

NIRCamB I-3 -1811.261 -34.780 -332.990 -1811.839 -34.835 -332.594 0.578 0.055 -0.395 

NIRCamB I-4 -1811.047 -34.666 -332.468 -1811.839 -34.835 -332.594 0.792 0.168 0.127 

NIRCamA I-5 -1808.646 89.324 -347.837 -1809.430 88.997 -347.686 0.784 0.327 -0.151 

NIRCamA I-6 -1808.681 88.822 -347.878 -1809.430 88.997 -347.686 0.749 -0.176 -0.192 

FGS1 I-7 -1790.147 156.513 -462.293 -1790.725 156.482 -462.090 0.579 0.030 -0.204 

FGS1 I-8 -1791.067 163.177 -462.404 -1791.598 163.164 -462.228 0.531 0.013 -0.176 

FGS1 I-9 -1793.820 163.421 -469.502 -1793.987 163.321 -469.287 0.167 0.099 -0.215 

FGS2 I-11 -1793.662 -15.854 -462.467 -1794.608 -15.915 -462.375 0.946 0.060 -0.092 

FGS2 I-13 -1796.089 -9.200 -469.493 -1796.959 -9.269 -469.399 0.870 0.069 -0.094 

NIRISS I-15 -1786.456 -216.090 -456.663 -1786.327 -216.140 -456.396 -0.129 0.051 -0.267 

NIRISS I-16 -1783.960 -215.915 -449.566 -1784.044 -215.989 -449.378 0.084 0.074 -0.188 

MIRI I-23 -1808.903 -277.834 -238.417 -1808.916 -278.029 -238.552 0.013 0.195 0.135 

MIRI I-24 -1809.133 -277.921 -238.937 -1808.916 -278.029 -238.552 -0.217 0.108 -0.385 

NIRSPEC I-25 -1803.834 292.103 -271.288 -1804.099 292.001 -271.097 0.265 0.102 -0.191 

NIRSPEC I-26 -1805.759 298.933 -271.463 -1805.724 298.839 -271.217 -0.035 0.094 -0.247 

 

  Average 0.435 0.088 -0.166 

  StdDev 0.410 0.103 0.144 

              Range 1.204 0.503 0.530 

 



 

 
 

 

These measurements also provided a measurement 

of the AOS WFE for each field point to compare 

to the model prediction. The comparison varied 

between 9 and 40nm RMS WFE across the seven 

measured field points – less than the variation 

between alternative analysis software. 

The Secondary Mirror focus position was set by 

using an upward source on the ASPA to retro-

reflect from the auto-collimating flat mirror near 

the top of the chamber to form an image on the 

BIA detector, and then moving the SM to set the 

focus to the detector position. Due to higher than 

expected vibration of the primary mirror segments, 

the images from the two segments required 

separation to analyze the images without confusion 

from the vibration effect. By calibrating the 

relative tilt positions of the segments with the CoCOA, a Hartmann analysis could be used to determine focus and other 

lower order image quality measurements (Reference 17) nearly as well as stable phased PMSAs within the ACF 

subaperture (Figure 4.4). 

Other parameters were measured including the PM collection area with an interferometer camera image, practice of the 

radius of curvature measurement with a Leica Absolute Distance Meter, and plate scale by tilting the ACF and a PMSA. 

The alignment of the primary mirror to the pupil mask near the Fine Steering Mirror in the AOS is accomplished by 

using linear arrays of LEDs at the PM edge and detecting which LEDs pass through the mask to reach the BIA detector. 

The LED locations are determined using metrology, finite element model predictions, and photogrammetry. Since the 

LED light does not pass through the PMSAs, this image is similar to the flight test. Figure 4.5 has a schematic of the 

LED locations and the test image of the LEDs that passed through the mask. The BIA has a second detector with a 

singlet lens to create the pupil image. Table 4.6 shows the nominal vs. actual alignment measured in the Pathfinder. The 

result was a measured 0.3% pupil shear from the nominal alignment. 

 

Figure 4.5:  Schematic of linear LED array locations relative to primary mirror.  Light emits towards the Secondary Mirror. 

 
Table 4-6:  Schematic of linear Led array locations relative to primary mirror.  Light emits towards the Secondary Mirror. 

Bar 1 2 3 4 5 6 

Nominal Last visible LED 20 18 21 17 13 16 

Actual last visible LED 19 18 22 18 13 17 

 

Figure 4.4:  Sensitivity of Hartmann configuration of the PMSAs 

compared to the baseline approach of phased mirror segments. 



 

 
 

 

Finally, an important test checked all the light paths 

through the ASPA structure and the AOS aperture in the 

cryogenic vacuum environment. This establishes a 

baseline image for the OTIS test. Any deviations in the 

image during the OTIS test can be confidently attributed 

to the structure between the AOS and the instrument 

detectors. This image is created using the LEDs 

mentioned above as a source. Since the LEDs are at a 

pupil conjugate, the imaged light (without a pupil 

imaging lens) spreads across the detector plane at the 

focal conjugate. Figure 4.6 shows the test image from 

the Pathfinder test. 

 

 

5. PLANS FORWARD TO OTIS CRYO TEST 

As the OTIS integration, work continues at GSFC in the SSDIF clean room, work is progressing to finalize the 

configuration for the Thermal Pathfinder (TPF) test at JSC. The Pathfinder has been fitted with thermal blankets and 

mirror simulators (Figure 5.1) to replicate as well as possible the flight configuration of the OTIS. 

 
Figure 5.1:  The Pathfinder has been fitted with mirror 

simulators for the Pathfinder thermal test.  The HOSS is 

shown on the left side of the photograph. 

 
Figure 5.2:  The DSERS and SVTS are shown on the HOSS.  

The flight system sits inside these thermal components to 

simulate the flight environment at L2. 

 

The ground support equipment is also being fitted with all the additional thermal hardware that was not needed for 

OGSE#1 and OGSE#2. This includes the Space Vehicle Thermal Simulator (SVTS) and Deep Space Edge Radiator 

Systems (DSERS) that are shown in the Figure 5.2 CAD drawing. Basically, the OTIS sits in a tub of specially designed 

actively cooled radiators that mimic the space environment. The SVTS simulates the spacecraft bus and the transition 

from the warm sun facing side to the cold observatory side. 

The TPF test will allow the test team to actually practice the cool down and observe the steady state environment that 

will be used for the flight OTIS. In addition, the performance of the thermal system can be evaluated to insure that the 

provided environment will provide the rigorous test program parameters required to insure that the OTIS would operate 

as expected at L2. 

6. SUMMARY 

The OTIS AI&T program is progressing per plan. The OTIS integration is well underway at the Goddard Space Flight 

Center and the final Pathfinder cryo test is being configured for later this summer. 

The OTIS cryo test is less than a year away! 

Figure 4.6:  Image created by scanning the BIA detector without 

a pupil imaging lens through the field using light from some 

LEDs used in the pupil alignment test. 
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