Performance of an Active Watering System for Veggie

Dr. Oscar Monje
Air Revitalization Lab
Kennedy Space Center, FL 32899
2016 International Space Station Research & Development Conference
Veggie – Experimental system

• Platform for food production experiments - 0.25 m²
• Uses a Passive Watering system
Food Production

• Large Scale – Scale from Experimental to Production
 • 50 g salad per day for Crew = 6
 • 1 m² Planting area

• Performance criteria:
 • Productivity – maximal
 • Consistency – repeatable
 • Crew Time - minimal
Veggie - Performance

• Productivity
 • Not optimal
 • Edible

• Inconsistent
 • Hard to control delivery rates in 0 g
 • Uneven germination – water stress

• Crew Time
 • Hand watering
Active Watering System for Veggie

• Uses power – 10 W
• Automated operation - Water on-demand
• Additional resources – Laptop, sensors, pumps
• How robust is the system?
• Can it be scaled?
Pillow Assembly
Pillow Assembly
Pillow Assembly
Planting
Chamber Study
Results
Productivity

Germination - 100%
Head Mass - 40 g Fresh Weight
 Hydroponic - 80-100 g
 Veggie - 25-30 g
Power Use - 10 W continuous
Conclusions

• Active system was built and tested
• Issues – handling leaks, refilling water bag
• Performance
 • Higher productivity than Veggie – not optimal
 • Reliable – all plants germinated
 • Crew time - minimal