26™ Annual INCOSE International Symposium (IS 2016)
Edinburg, Scotland, UK, July 18-21, 2016

A Process for Capturing the Art of Systems
Engineering

“Skip” Clark V. Owens III

NASA-LSP Kennedy Space Center Carrie Sekeres
Mail Code: VA-G2 Embry-Riddle Aeronautical University
Kennedy Space Center, FL. 32899 386-275-9015
321-867-2935 sekeresc(@my.erau.edu

skip.owens-1(@nasa.gov

Yasmeen Roumie
Stuyvesant High School
917-669-3554
yasmeenroumie@gmail.com

Notice for Copyrighted Information

This manuscript is a joint work of employees of the National Aeronautics and Space Administration and independent contractors under Contract
NNX13AJ45A with the National Aeronautics and Space Administration. The United States Government may prepare derivative works, publish or
reproduce this manuscript, and allow others to do so. Any publisher accepting this manuscript for publication acknowledges that the United States
Government retains a nonexclusive, irrevocable, worldwide license to prepare derivative works, publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. Published and used by INCOSE with permission.

Abstract. There is both an art and a science to systems engineering. The science of
systems engineering is effectively captured in processes and procedures, but the art is
much more elusive. We propose that there is six step process that can be applied to any
systems engineering organization to create an environment from which the "art" of that
organization can be captured, be allowed to evolve collaboratively and be shared with
all members of the organization. This paper details this process as it was applied to
NASA Launch Services Program (LSP) Integration Engineering Branch during a pilot
program of Confluence, a Commercial Off The Shelf (COTS) wiki tool.

The Art and Science of Systems Engineering

There is both an art and a science to systems engineering. In the NASA paper “The Art
and Science of Systems Engineering” (Bay et al. 2009), systems management is
described as the science of systems engineering, while technical leadership is identified
as the art of systems engineering. The management of systems is easily captured in the
processes and procedures that an organization accumulates and implements from year
to year and from project to project. These bits of knowledge are immortalized in formal
documents and passed down from systems engineer to systems engineer. The art of
systems engineering is much more elusive. Technical leadership is an art that is not
easily defined, cannot be easily taught and is quite challenging to bound. Organic would
be another way to describe an art. Across all professions, an art is something that is
tailored by the individual and therefore is much more complex and harder to directly
pass down from one individual to the next. What works for one person may not be the
most effective technique for the next. Art also has many different pieces and techniques

from which an individual must evaluate and choose to use in any given situation.
Science is more procedural and it is the art of a discipline in the hands of a master
craftsman that implements that science. So how do we go about training and developing
master craftsman in systems engineering?

One of the main components of systems engineering is the famous “why.” “Why” is used
by the systems engineer as a way to get from what a customer or a stakeholder thinks
they want to what they actually need. But the “why” is also an essential aspect of the art
of the systems engineering. For example, the rationale statement that often goes along
with an individual requirement is the “why” behind the requirement. But what about
the “why” behind a technical leadership tactic or a method for driving the technical
team to consensus? The “why” behind something can’t be captured unless it is within
the context of the “what.” In the example of the requirement rationale statement, the
rationale is side by side with the requirement (the “what”), so the two are linked
together. However, requirements are part of the science of systems engineering and are
much more naturally documented in a formal manner. How do we as systems engineers
go about documenting the “why” behind the art of systems engineering contextually
with the “what?”

A Process for Knowledge-Capturing the Art of Systems
Engineering
We propose that there is a process that can be applied to any organization to create an
environment from which the "art" of that organization can be captured, be allowed to
evolve collaboratively and be shared with all members of the organization. A process for
capturing the art of systems engineering is as follows:

Step 1: Create a Functional Architecture

Step 2: Identify Current Knowledge Capture Methods
Step 3: Map Existing Knowledge Capture Methods
Step 4: Enhance Knowledge Capture Methods

Step 5: Introduce Enhanced Knowledge Capture
Step 6: Evolve the Knowledge Capture

The remainder of this paper will use the Integration Engineering (IE) Branch within
NASA's Launch Services Program (LSP) as an example of how these six steps can be
implemented. Just as with Systems Engineering, there is both an art and a science to
these six steps. Simply following these steps is not a guarantee of success. The process
itself is iterative and each organization will need to tailor this process and its
implementation to best suit the specific environment of the organization. These six
steps have recently been applied to LSP's IE Branch as part of a pilot program carried
out during the summer of 2015. This pilot program was testing the effectiveness of a
collaborative wiki tool called Confluence and was led by two summer interns, Carrie
Sekeres and Yasmeen Roumie, who are both co-authors on this paper.

Why Confluence?

Wikis have been around for quite a few years and have proven to be a very effective way
to informally capture large amounts of technical information, with Wikipedia being one
of the most recognized examples of a large-scale wiki. Several NASA Centers, including
The Jet Propulsion Laboratory’s JPL Wired (Rober, 2009) and The Goddard Space Flight
Center (GSFC), have implemented center-wide wikis as a way to capture tribal

knowledge across their organizations. Both JPL and GSFC have evaluated the
commercial wiki software options and found that the collaborative wiki software suite
called Confluence to be the most suitable option. In addition, NASA has also decided to
publish its latest version of the NASA Software Engineering Handbook in form of a wiki
using Confluence (NASA, 2016). The Confluence wiki environment is an example of a
wiki tool that combines the traditional knowledge capture aspects of a wiki with social
networking tools to establish a collaborative environment. Confluence appears to be a
good fit for attempting to collect the organic pieces and parts that make up the art of
systems engineering, and, for this reason, it has been the subject of a small pilot within
NASA’s Launch Services Program (LSP) for the last several months.

Confluence is a web or server-based, centralized team collaboration platform,
structured as a wiki. Each instance of Confluence has separate “spaces” (a Confluence
specific term for a wiki structure) and pages within these spaces. Users can make
customized templates of pages they intend to use often, such as meeting notes, tutorials,
guides, and peer reviews. This collaborative software has a simple user interface, which
helps minimize the learning curve that usually comes with new tools. Email
notifications remind users to use the tool and are sent when the pages they are
watching are edited, when they are mentioned, or when a new question is asked.
Atlassian, the company that created Confluence, has a marketplace with a large variety
of add-ons that can be used to customize a group's experience with the tool. Custom
add-ons can be programmed using Atlassian's Software Development Kit (SDK) and
developer tutorials. There are many macros that are already built into Confluence,
including some that report the usage statistics of a space. Putting up a leaderboard of
contributors makes group members aware of their colleagues' contribution frequency,
which will help to motivate them to contribute on a more regular basis. Most
importantly, Confluence has the ability to integrate with SharePoint, which is LSP’s
current program-wide collaboration tool of choice. All information added into
Confluence will show up in a unified search across both SharePoint and Confluence once
the add-on capability called SharePoint Connector is setup and the two systems are
integrated.

A common question that comes up when discussing tool selection is why other wiki
platforms (free or open source wikis) or SharePoint wasn't used instead. In our case we
were already using SharePoint and chose to use Confluence as a way to supplement
SharePoint, rather than replace it completely. Knowledge capture requires two very
critical components that Confluence does well, contextual information and social
networking. When trying to capture something as challenging as the "art of systems
engineering,"” there isn't a well-defined boundary or set of items that encompass an art.
Context becomes key. Knowledge capture is very ethereal, which makes it extremely
difficult to perfectly capture. In order to capture an "essence" or an "art," the capture
method must be both powerful and flexible. Confluence has a mix of contextual based
tools and social networking options that make it an ideal choice for an effort like this.
The rest of this paper will focus on the major areas of systems engineering knowledge
capture our team utilized during the pilot and highlight the technical aspects of
Confluence that aided in that knowledge capture.

Step 1: Create a Functional Architecture

The first step in the process we have established is to identify the organization’s main
responsibilities or functions by creating a functional architecture. The NASA LSP’s
purpose is to procure and manage commercial launch services for NASA. When NASA

LSP procures a launch service we are not “buying a rocket,” but instead we are
purchasing a service that includes everything (including the use of a rocket) that is
needed to process and launch a spacecraft into space. Most robotic space missions
across NASA come to the LSP to gain access to space through the use of a launch service.
We have identified three main functions of the IE Branch: Support Procurement of
Launch Services, Support Management of Launch Services and Provide Advanced
Mission Support.

LSP Integration
Engineering
Functions

Support SC IRD Support LV ICD Maintain
Deveopment [~ | Development Lessons Learned
Develop LSTO | | Develop ICD Ver Answer SC
IRD Matrix Feasibility Questions
| Manage
Integration Risks

Figure 1. LSP IE Branch Functional Architecture

The first and arguably the most important task is the procurement of the launch service.
The LSP Integration Engineer is responsible for assembling a reduced Interface
Requirements Document (IRD) for the purposes of the launch services procurement.
This document is leveraged heavily from the spacecraft project’s full IRD, but, in order
for the document to be useful during a competitive procurement, it must be non-launch
vehicle specific and the requirements within must be free from specific implementation
direction as to not overly constrain the potential bidders and maintain a competitive
environment. This reduced IRD for the procurement of a launch service is one of two
main systems engineering products that the LSP Integration Engineering group is solely
responsible for creating.

Managing the launch services is the largest function we have within the [E Branch. Most
of the work we do within the branch is covered by this function. The first sub-function
under managing launch services is supporting the development of the Launch Vehicle
(LV) Interface Control Document (ICD). The LV ICD is where all of the interface
requirements for a specific mission’s launch service are documented. While the LV ICD
is not a product that LSP produces, we are involved heavily in the development of the
requirements and are the technical authority for its approval, along with the spacecraft
(SC) project.

The second sub-function or product that the IE Branch is responsible for is an
independent verification matrix. Once a launch service is put on contract, the Launch

Vehicle Contractor (LVC) is responsible for developing and maintaining the ICD (the
first sub-function). This ICD is then used to define all the interfaces and common
environments between the spacecraft and the launch vehicle and is the basis for almost
everything that takes place in the years leading up to the launch. This approximate time
frame, which starts shortly after the launch service is awarded and extends through
launch, is called the mission integration cycle. Even though the IE Branch does not write
and maintain the ICD, we are responsible for creating and maintaining our own
independent set of verifications against all the requirements in the ICD.

The final sub-function is to manage integration risks. In addition to providing NASA a
launch service, the LSP also serves as the mission’s insurance policy against launch
failure. The way we protect against failure is by managing the risk that is associated
with launching a spacecraft into space on a launch vehicle. Risk mitigation is a key
component to managing risk and a large portion of mitigation is accomplished by
performing both insight and oversight of our LVCs. The IE Branch is the primary path
for our spacecraft customer to interface with our LVC as the mission progresses through
the mission integration cycle. Oversight is mostly a program management function,
consisting of review and approval of the LVC products and deliverables. Insight,
independent analysis, and verification are where we start getting into more traditional
systems engineering functions. The LSP insight role includes maintaining an in-depth
knowledge of the contractor’s engineering review and approval practices, as well as
their engineering analysis capabilities. LSP engineers will also perform independent
analysis throughout the mission integration cycle.

The final function of the IE Branch is to provide advanced mission support. Advanced
mission support is defined as any engineering or programmatic activities that take place
before a spacecraft mission is taken through the launch service procurement process
(i.e. before development of the spacecraft IRD and the Launch Services Task Order
(LTSO) IRD are started). Two sub-functions under advanced mission support are
maintaining and communicating lessons learned and answering SC feasibility questions.
Since LSP manages most of NASA’s unmanned commercial launch services, we have a
wealth of experience concerning spacecraft integration. The best time to apply
spacecraft development lessons learned is as early in the mission integration process as
possible. In this case, we try to communicate lessons learned before we even begin
supporting spacecraft IRD development. Early in the mission development and mission
feasibility phase, questions come up concerning compatibility with various launch
vehicles. The LSP IE Branch supports is then responsible for answering these technical
feasibility questions from spacecraft projects.

The final item depicted in the LSP IE Functional Architecture is an underlying function
that every technical organization has, whether it is formally recognized or not. That
function is a combination of mentoring, cross training and knowledge capture. This
function is all about maintaining and growing a technical capability, the technical
capability that is required to carry out all the other functions that the IE Branch
provides. This “knowledge” function is shown as detached from the main architecture
because it permeates everything and does not fit in one specific place in the hierarchy.

Step 2: Identify Current Knowledge Capture Methods

This second step is very important and is a step that many will be tempted to skip

altogether because it is believed the organization already has all the methods and tools
required to create an environment suitable to capture the art of systems engineering. It
is critical to understand the current state of knowledge capture and knowledge sharing

even it is known to be insufficient. As we will discuss more in step 5, any changes made
to the existing knowledge map must be made methodically, else a reduction in
capability could jeopardize the main goal of building upon and expanding knowledge
capture capabilities that are already in place.
Within the IE Branch, we already had the following knowledge capture and knowledge
sharing mechanisms in place:
* SharePoint Site
o Lessons Learned Database (Database within SharePoint)
o Branch Meeting Minutes (Microsoft Word Documents)
o IE Training Resources (Microsoft Word Documents)
o Peer Review Meeting Invites & Documents (Microsoft Word Documents)
o Processes & Guides (Microsoft Word Documents)
e Verification Matrix Template in FileMaker Pro (FileMaker Pro Template File)

Step 3: Map Existing Knowledge Capture Methods

The next step in the process is to map the organization's existing knowledge capture
methods against the functional architecture. We choose to use our existing functional
architecture diagram and overlay the elements identified in Step 2 as red circle
elements with a legend.

LSP Integration .
Engineering . SP Peer Review

. SP Processes & Guides

Functions

. FileMaker Pro Ver Template
. SP Lessons Learned DB

. SP Meeting Minutes

. SP IE Training Resources
Support SC IRD Support LV ICD Maintain
Deveopment | Development Lessons Learned
Develop LSTO Develop ICD Ver Answer SC
mpn B Matrix Feasibility Questions
| aﬂmwe
Integration Risks

SP = SharePoint

Figure 2. LSP IE Branch Original Knowledge Capture Map

The most prevalent items in our IE Branch original knowledge capture map are the use of our
peer reviews and our processes and guides. Peer reviews are the most important technical
meetings we have as a team. A peer review is required before we are able to complete and
publish several of the major systems engineering products we are responsible for creating as
LSP Integration Engineers.

Below is a list of the most common types of peer reviews we conduct:

* ICD

¢ IRD (Interface Requirement Document)

* Our LSP Independent Verification Matrix

* Reduced IRD for LSTO

* Program Risk Generation

* Engineering Review Board (ERB) Presentations

* Launch Vehicle Readiness Review (LVRR) Presentations
Before we introduced Confluence as a new way to capture knowledge, we were capturing
peer review artifacts in a meeting minutes style Microsoft Word document. SharePoint was
used to collect all of these Word documents into one main library and the notes within that
document were mostly taken by our group's engineering assistant and sometimes the notes
would be updated after the meeting by the engineer actually going through the peer review.
The other commonly used knowledge capture elements were the IE processes and guides.
These were also formal Word documents that were written primarily by just a few individuals
within our group and most of the guide documents had not been updated for several years or
more. Despite not having been updated in a while, these processes and guides were still very
much the centerpiece of our workflows and were used by every engineer in the group as a
way to generate consistent products.
Perhaps what is most telling about this mapping of our existing knowledge capture system is
what is missing. Our mission feasibility support function did not have a direct link to any of
our captured knowledge products. We were also not efficiently tying in our meeting minutes
and training resources into our primary functions, they only existed as stand alone documents
within SharePoint.

Step 4: Enhance Knowledge Capture Methods

As we discussed earlier, there are two very critical components that Confluence does
well, contextual information and social networking. Capturing the "art" within a systems
engineering organization requires that the "why" be captured contextually with the
"what." That is where the contextual information and social networking features of
Confluence become so crucial. While there are certainly other ways to enhance an
organization's knowledge capture methods, Confluence was an obvious choice for the IE
Branch because of its ability to integrate into the existing LSP program-wide
collaboration tool SharePoint. The enhanced method of knowledge capture chosen
should be minimally disruptive to current workflows and have a user interface that
does not impede user input and engagement. If the enhanced knowledge capture
method is non-intuitive or adds any type of a “barrier” between the user and the
content, then it is less likely to be used. In our case, we could have simply enhanced how
we were using SharePoint instead of shifting much of our knowledge capture over to
Confluence, but SharePoint was missing some of the contextual and social features that
we knew Confluence contained. We also had the advantage of having two other NASA
Centers (GSFC and JPL) with established instanced of Confluence from which to
leverage. There is no single solution for enhancing knowledge capture, but keep in mind
that small details like ease of use, social networking and commenting can make or break
an initiative like this. Shown below in Figure 3 is our IE Branch's updated knowledge
capture map.

LSP Integration

Engineering . SP Peer Review
Functions ' SP Processes & Guides

. FileMaker Pro Ver Template
. SP Lessons Learned DB
. SP Meeting Minutes

. SP IE Training Resources

Support SCIRD | | | Support LvicD “
Development Lessons Learned CON Peer Review
0 oo o @ CON Processes & Guides

6

Develop LSTO || Develop ICD Ver Answer SC @ CON Ver Baseline Effort
Matrix Feasibility Questions
Ws CON Meeting Minutes
. ’ <‘5> CON IE Training Space
ehage @ CON Questions

- Integratlon Risks

! Mentoring, Cross Training & Knowledge Capture]

ARV A0 4 |

SP = SharePoint
CON = Confluence

Figure 3. LSP IE Branch Enhanced Knowledge Capture Map

In most cases there was an element in Confluence that was a direct replacement for the old
knowledge capture method, but some methods were replaced with multiple methods. For
example, before enhancing our knowledge capture methods with Confluence; we did not
have a good way of capturing information related to spacecraft feasibility questions. With the
addition of Confluence we are now using Confluence Questions to capture that knowledge.
Mentoring and cross training is another good example, because every new method we
introduced with Confluence is now supporting our mentoring and training. What follows are
summaries of how these enhanced knowledge capture techniques were implemented as part
of our pilot and why they were found to be effective. Step 4 of the process we are presenting
here is the most difficult and variable step in the process. It is not feasible to define a process
for enhancing knowledge capture and expect that process to be effective in every type of
systems engineering organization. So instead, we are presenting methods that have proven
effective during our pilot in the hope that it provides a foundation from which to start. Use
the following examples as a guide when starting to develop a strategy for this step in the
process.

Confluence Questions. One of the very first features in Confluence we started using
was the Confluence Questions add-on module. Confluence Questions is a way to
crowd-source a question with answers from multiple people within the organization,
similar to other popular online systems today like Yahoo Answers and Stack Overflow.
We chose to start using this feature first because it was the most simple and least
disruptive change we could make, but, at the same time, it was the most effective. Before
using Confluence Questions, our method of polling the group concerning a particular
technical question or situation was either email or walking around and talking with
people one-on-one. While both of these methods were effective at getting answers, they
were not effective at capturing the results for use by others in the future. Answers that
would be sent back to the individual asking the question would then be captured only in
that individual's email inbox and would not be accessible to the rest of the group. The

same thing would happen with individual discussions unless the results of those
conversations were documented. The IE Branch did not have an effective method to
capture the knowledge from these really useful conversations. Now, instead of relying
on individual email inboxes to capture these kinds of group technical questions, we
shifted those interactions over to Confluence Questions.

Enhancing our knowledge capture in this area with Confluence Questions did two things
for our IE Branch very quickly, it gave everyone in the group a reason to start using
Confluence and it immediately put a stop to the loss of organizational knowledge that
was occurring. Now, when someone has a question we still email the entire group with
that question but the email now links to the question within Confluence Questions
instead of relying on email responses. Confluence Questions is a prime example of how
the "art" of systems engineering can be captured. In systems engineering, there is
almost always more than one to treat a problem or situation. Each of those individual
approaches is a valid way to solve the problem and each answer is an example of the
"art" that was applied by each person to solve that particular issue or situation. By
crowdsourcing our group's technical questions, we are assured that the person seeking
an answer will have multiple approaches to consider as part of the solution. Now that
individual can evaluate all of the potential approaches and choose a method that best
suits how they most naturally practice the art of systems engineering. Notice that
Confluence Questions is now a knowledge capture mechanism for each and every one of
our [E Branch functions, as shown in Figure 3.

Branch Meeting Notes. Like any other group in the work environment, we have weekly
group (Branch) meetings. The purpose of these meetings is for our Branch Chief to
share information from higher level LSP management meetings with the group and for
the individuals within the Branch to share information about the spacecraft missions we
are all assigned. Most of the Integration Engineers are assigned multiple missions
(between two and four missions) and we are typically the only Integration Engineer
working those missions (unless we are assigned a backup Integration Engineer for
training purposes). Because of this “one Integration Engineer to a mission” assignment
strategy, it is imperative that as a group we share important information regarding our
mission work with others, so the experience we gain working that individual mission
(the "art") can be applied by other Integration Engineers to their assigned missions.
Before using Confluence, our Branch Chief would bring in a combination of handwritten
and typed notes taken from his weekly management meetings and use these notes as an
agenda for our weekly Branch meetings. The meeting would take place and our group’s
engineering assistant would take meeting minutes (typically handwritten notes) and
would later type these notes into a Word Document and upload the meeting minutes
into our Branch'’s SharePoint site. After our group started using Confluence, we
transitioned not only the notes and agenda content going into the meeting, but also the
meeting minutes themselves into a single page within Confluence. A template with
placeholders for individual updates from each engineer, the Branch Chief's updates,
notes from the meeting, and action items to be completed was developed. Each set of
minutes was also labeled with relevant tags to associate these minutes with the
missions and documents being discussed. The Branch meeting minutes template was
created with the tag "meeting-notes," so the entire collection of meeting minutes could
be displayed automatically using the "Content Report Table Macro" within Confluence.
This macro will automatically display all content with user-specified labels on a page,
similar to a table of contents can be automatically generated in Microsoft Word simply
by using the correct "Style" of text for each section and figure within the document.

There are numerous macros similar to the content report table macro, which make it
easy to display information to the user within the context of the portion of the
Confluence site they are currently working.

[t was important to start capturing our Branch meeting minutes in a more collaborative
and accessible format because this meeting is our primary methods of formally sharing
knowledge with our group in a face-to-face setting outside of our peer reviews. The rest
of the time we are individually leading our engineering teams in the integration of one
of our assigned missions. By shifting our meeting documentation to Confluence, we
were able to time shift our meetings. Our Branch Chief makes his talking point available
before the meeting, which lets the group skim the notes and get up to speed on what is
going to be discussed. Our group is now more prepared coming into our meetings so our
discussions are more focused and efficient. Some of our peer review meetings have even
had success in taking meeting minutes live within Confluence, which ensures a more
accurately and timely capture. After the meeting ends we can each go into Confluence
and add points our engineering assistant may have missed or link to content on
Confluence that pertains to points covered in the meeting. [have personally stopped
taking notes at our group meetings since we started using Confluence because I know
that we have a centralized record of knowledge that I can go in and add to after the
meeting, just like having my own personal notes. Confluence has converted our weekly
Branch meeting notes from a document that used to be stored in SharePoint into a
central reference point of collaboration for our team.

Peer Reviews. Prior to using Confluence, peer reviews were done in multiple meetings
lasting a few hours each until we had made our way through the complete review of a
document or product. Comments were emailed to product owner after the meeting by
our group's engineering assistant, and it was up to the product owner to decide what to
do with those peer review minutes and actions. Within LSP we follow an engineering
process that directs us to document important engineering decisions, including all of the
artifacts such as meeting minutes, individual engineer comments and supporting
documentation. The discussion that takes place in our peer review, the formal
comments made and the disposition of those comments are all very important aspects
of documenting the engineering decisions that lead to the completion of the product.
Before we started using Confluence, the documentation that came out of our peer
reviews was inconsistent. The product owner in the peer review would always
summarize the results of the peer review, but the capture and documentation
mechanisms were far from perfect. With Confluence, we have set up the structure of the
peer review page within Confluence to be compatible with an export out to PDF, so that
with a single press of a button we can export all the content documented in the
Confluence peer review page out to a single PDF. Now, in addition to the high-level
summary we used to write we also have a detailed PDF product that exports out of
Confluence. This results in a much more professional result and is now consistent
across our engineers and even across the types of peer reviews we conduct.

Peer Reviews in Confluence are labeled with several different tags, which help users to
sort and search through these pages. Each document is tagged with a status (open or
closed), as well as with a label specifying the type of peer review (ERB, ICD, IRD, LVRR
Risk, Verification Matrix or Other). A separate page holds expanding sections that sort
peer reviews by status, type, and date added to aid in discoverability. Templates were
created for each type of peer review to ensure uniform labeling, but also so each peer
review generally follows the same structure. The product being reviewed is attached at
the top of the page, while comments, before and after the in-person review, are located

in tables further down the page. The tables are used to capture the names of the
reviewers, comments made during the review, and the section of document each
comment is referring to. This document is formatted to enable the author to export to
pdf, allowing all the comments, discussion, and dispositions to be easily captured and
stored externally (which is required by our engineering process).

Verification Baseline Collection of Wiki Pages. Before using Confluence, our primary
method of knowledge capture with respect to our independent ICD verification matrix
was the FileMaker Pro template. This template contained the standard verification plan
language we would use to start the verification matrix for a new mission once we had
established an ICD. However, we would often run into the same question when we
finished the verification matrix and took it through our peer review...”"Why are we doing
the verification this way?”

The FileMaker Pro template was very good at capturing the verification plan wording,
but there was not an easy way to efficiently and completely capture all the rationale
behind the “why” (e.g. the number and type of verifications for a given requirement).
With the addition of Confluence we were able to capture the “why” behind these
verifications so when we encounter a mission unique situation we can adapt the
verification plan to address the unique nature while still maintaining the original intent
behind the verification. A collection of wiki pages within Confluence was created and a
separate wiki page was then established for each discipline, mission type and launch
vehicle. For each of these disciplines, mission type and launch vehicle wiki pages we
started to conduct peer reviews and slowly began populating a rationale statement
behind each of our verification plans. Once the group had agreed upon the number of
verifications, the verification plan wording and the rationale statements, that particular
set of verifications was considered “baselined.” This verification baseline effort is still in
its very early stages of development, but we feel this is an excellent example of how an
existing knowledge capture method can be slightly modified to better capture the “art”
in parallel with the science.

Process and Guides. Our enhancement to our existing processes and guides, which up
until the point of the Confluence pilot were Microsoft Word documents, was quite
simple. Processes and guides were transitioned from Microsoft Word into the
collaborative wiki environment as separate wiki pages. Now, instead of being static
documents, our processes and guides are living wiki sites that can take full advantage of
social and contextual features of Confluence. Shifting this content over to Confluence
also enabled it to be searchable with all the rest of our Confluence content. Now, when a
process or a guide is mentioned during a staff meeting, peer review or as part of a
Confluence Question, everything is both hyperlinked and connected (greatly enhancing
the usefulness of search results). These IE Branch processes and guides are essential to
the science of what we do as LSP IEs and now we are able to link them together with all
of our other knowledge capture material, enabling us to link the “what” (processes and
guides) with the “why” (the “art”).

IE Training Resources. Out of all the areas where our group enhanced knowledge
capture for the purpose of capturing more of the art, the area of mentoring and training
has the most potential art to be captured. The purpose of the mentoring and training
space (both the original collection of Microsoft Word Documents in SharePoint and the
new collection of wiki pages in Confluence) is to establish a set of training resources and
both formal and informal guidance for mentors and mentees. Our group felt it was
important to try and establish a common set of ground rules for everyone involved in
the training process and then provide additional informal guidance to further

strengthen the formal guidance. Training an individual person is not something that can
be done with a “one size fits all” approach. Both the mentor and mentee are individuals,
each with unique ways of learning and teaching. Therefore, each case of mentor/mentee
requires customization. That customization is up to the mentor to decide, which is why
we have included the informal guidance as part of the IE Training Resources. When
common guidance is combined with multiple approaches from individual IEs, the
mentor is given a variety of approaches from which to choose. This allows the
mentoring IE to follow the common formal guidance, while at the same time customize
the mentoring approach to best fit both the individual characteristics of the mentor and
the mentee.

Step 5: Introduce Enhanced Knowledge Capture

This is a very important step in the process to approach in a way that is both effective
and least disruptive to the group’s current workflows. Change, even when this change is
a large improvement compared to the baseline, can have unintentional negative
consequences. When introducing the enhanced knowledge capture methods identified
in Step 4, it is extremely important that these enhancements are carefully phased into
the organization’s workflows over time. Start with the least disruptive enhancement
and slowly introduce additional enhancements. We chose to start with items that were
very similar to how we were already conducting business, like branch meeting notes
and peer reviews. Confluence Questions was also a good early adoption feature to roll
out because it rapidly showed the group the value of using this new feature. Knowledge
capture value is only realized later when the information is searched for and the
knowledge can be easily accessed. This delayed value proposition makes it a hard sell
up front where all of the knowledge capture is being performed. Branch meeting notes,
peer reviews and Confluence Questions all gave the users who were adding content into
the system an immediate benefit. With branch meeting notes our group was able to
come into branch meetings better prepared and then, after the meeting, add to the notes
instead of having to take their own notes. The peer review enhancements made our
face-to-face peer review meetings more effective and reduced the time spent in the
physical meetings. Confluence questions gave our group a centralized way to capture
knowledge that we were not formally capturing in the past, which gave us some relief
from having to rely on email as the capture mechanism. The other recommendation for
introducing the enhancements from Step 4 is to start with tasks that must be performed
by the group. If it is a required task then it ensures a very quick and wide adoption of
the new techniques.

Step 6: Evolve the Knowledge Capture

The final step in the process is to continue to evolve the enhanced knowledge capture
techniques. Successfully capturing the “art” of the organization is going to drive
innovation. As the organization continues to improve, knowledge capture techniques
must also improve. This entire 6-step process is iterative and must be re-assessed on a
regular basis to ensure it remains effective. For example, if the organization takes on
new functions or changes some of the functions it is responsible for, then those changes
must be reflected in the knowledge capture methods. Go back to step 1 and update the
organization’s functional architecture and re-evaluate from that point forward. The
continuous evolution of knowledge capture methods will take significantly less effort
than the original enhancement and each evolution will give the organization another

opportunity to build upon the benefits of the knowledge that has been captured up to
that point.

Conclusions

Systems engineering is a challenging field due to its multi-disciplinary nature. It is
impossible to capture all the bits of technical knowledge needed to carry out the job of a
systems engineer, much less all of the “art” and rationale behind all of the technical
knowledge. The process for capturing the “art” of systems engineering presented here is
a starting point for any systems engineering organization that wants to enhance their
existing knowledge capture techniques in order to grow beyond just the science and to
start capturing the “art” of systems engineering as well. Knowledge capture is just the
beginning. The next step is to ensure that it is available for everyone in the organization
to find and use as they perform their jobs on a daily basis. It is in this area of
discoverability and reapplication of knowledge that we are finding the contextual and
social networking features of Confluence to be most valuable. What we have presented
in this paper is a high-level six-step process, using the example of our LSP [E Branch
Confluence pilot program to aid in the instruction of how to carry out this process. Just
like the “art” of systems engineering, the execution of this process is more “art-like”
than it is science. Each organization will need to tailor this process to the unique culture
and functions of their organization, as well as the tool or tools they choose to use, to
enhance their knowledge capture.

References

Bay, Michael, Bill Gerstenmaier, Mike Griffin, Jack Knight, Wiley Larson, Ken Ledbetter,
Gentry Lee, Michael Menzel, Brian Muirhead, John Muratore, Bob Ryan, Mike
Ryschkewitsch, Dawn Schaible, Chris Scolese, and Chris Williams. "The Art and
Science of Systems Engineering." NASA.gov. January 18, 2009. Accessed October
3, 2015.
http://www.nasa.gov/pdf/311199main_Art and_Sci_of SE SHORT 1 20_09.pdf.

NASA Software Engineering Handbook. NASA.gov. Web. 16 Mar. 2016.
<http://swehb.nasa.gov/display/7150/Book A. Introduction>.

Rober, Mark. "Wired Overview." Vimeo. 20 Dec. 2009. Web. 16 Mar. 2016.
<https://vimeo.com/8303614>.

Biography

“Skip” Clark V. Owens Ill is a systems engineer in the Integration
Engineering Branch of the Launch Services Program at NASA
Kennedy Space Center. Mr. Owens graduated from Wichita State
University with a B.S. in Aerospace Engineering and has worked as
both a spacecraft and launch vehicle trajectory/mission design
engineer. Mr. Owens is currently pursuing his M.S. in Space Systems
Engineering from the Stevens Institute of Technology.

Carrie Sekeres is currently pursuing her B.S. in Aerospace
Engineering, with a concentration in Astronautics, at Embry-Riddle
Aeronautical University, where she also works analyzing engineering
education practices for the Engineering Fundamentals Department.
Ms. Sekeres interned in the Integration Engineering branch of the
Launch Services Program Directorate working to develop and
implement a working online collaboration space for several of the
branches at Kennedy Space Center. She plans to pursue her M.S. in
Systems Engineering after her graduation from ERAU.

Yasmeen Roumie is a senior at Stuyvesant High School in New York
City. She was an intern for the Integration Engineering branch of the
Launch Services Program at the Kennedy Space Center during the
summer of 2015. For the past decade, she has been engineering and
programming robots and has traveled around the world to attend
robotics competitions. On the weekends, Ms. Roumie likes to build
websites at hackathons and teach young girls how to build and
program robots as well. Ms. Roumie plans on going to college soon to
study engineering and/or computer science.

