Invited Plenary Talk
Spring Conference of the Korean Space Science Society (KSSS)
Gangneung-si, Gangwon-do, Republic of Korea

SPACE RADIATION RESEARCH AT NASA

John Norbury

NASA Langley Research Center, Hampton, Virginia, USA

Friday April 29, 2016
SPE = Solar Particle Event
GCR = Galactic Cosmic Rays
Geo = Geomagnetically trapped particles
GCR Composition, Spectrum, Origin

3 regions
- High Energy < PeV
- Very High Energy (knee) PeV - EeV
- Ultra High Energy (ankle) > EeV

keV = 10^3 eV MeV = 10^6 eV
GeV = 10^9 eV TeV = 10^{12} eV
PeV = 10^{15} eV EeV = 10^{18} eV
ZeV = 10^{21} eV

Large Hadron Collider
14 TeV cm ⇒ 400 PeV lab

Fluxes of Cosmic Rays

Volk, ICRC, 2001:3
Space radiation problem

GCR (primary) composition
- 98% nuclei, 2% $e^+ e^-$
- Nuclear component:
 - 87% Hydrogen
 - 12% Helium
 - 1% heavy nuclei

GCR origin
- Emitted in stellar wind & flares & accelerated by supernova shock waves (within our Galaxy)

GCR High Energy < PeV

Solar System Abundances

GCR Abundances

Relative contribution in fluence, dose and dose equivalent of different elements in the GCR spectrum. Calculation is an average over 1 year in solar minimum behind 5 g/cm² Al shielding.

Solar Particles

- e, p & some heavy nuclei < 1 GeV/N \((v \sim 0.9c) \)

A. Galactic Cosmic Rays

The free space GCR environment is made up of heavy and light charged ions originating outside the solar system. This ever-present environment is modulated by the solar wind and, therefore, varies with distance from the sun and to a larger extent, the solar cycle. Maximum GCR intensity is at solar minimum, when the sun is least active while minimum GCR intensity occurs at solar maximum, when the sun is most active. Short duration exposure to GCR provides little health risk, but longer duration exposure may result in late term effects such as cataracts and cancers.

The sample calculations described in this document utilize the 1992 Badhwar-O'Neill model which defines a solar maximum GCR environment and a solar minimum GCR environment at 1 AU as shown in Fig. 1. Here the ions are grouped by charge, Z. The GCR environment for a given day is calculated by interpolating between solar maximum and solar minimum. One method for doing this interpolation utilizes the neutron count measured by the Deep River Neutron Monitor (DRNM). The charged ions making up the free-space GCR environment interact with the atoms making up the Earth's atmosphere in two ways. When an atomic interaction occurs, the charged ion strips an electron from an atom and loses energy in the process. When a nuclear interaction occurs, the charged ion collides with or comes very close to an atom's nucleus. Nuclear collisions often result in the destruction of the original ion and the production of a number of smaller ions and neutrons. The neutron count measured on the Earth's surface, in this case at the Deep River station in Canada, is therefore a good predictor of free space GCR intensity, because the number of neutrons produced in the Earth's atmosphere increases when the number of charged ions impinging on this atmosphere increases. Predicted DRNM numbers have been used since the monitor was turned off in 1995. Figure 2 demonstrates the inverse relationship between solar activity and GCR intensity by showing measured and predicted DRNM neutron count numbers on the same plot with measured and predicted sun spot numbers.

Figure 1. Freespace GCR environment.

Figure 2. Sun spot number (blue) and DRNM neutron count (red), measured (before 1995) and projected (after 1995).

B. Large Solar Particle Events

Unlike the GCR environment, solar particle events are isolated events with durations usually measured in hours. Solar particle events occur when a large number of particles, mostly protons, move through the solar system. These events happen during periods of increased solar activity and appear to correspond to large coronal mass ejections.

Large SPE have occurred only rarely, one or two per eleven year solar cycle in the past sixty years, but exposure to a large SPE could be lethal if...
Solar Particles 11 Year Cycle - 2016 near maximum!
Geomagnetically Trapped Particles

Inner belt: $0 - 3 \, R_E = 18,000 \, \text{km} - \text{mainly p}$
- Starts about 3,000 km
- But SAA dips down to 400 km

Outer belt: $3 - 12 \, R_E = 36,000 \, \text{km} (e,p) - \text{mainly e}$
(LEO: 200 - 500 km GEO: 22,000 miles = 35,000 km)

Wikipedia, 2014
Unit of absorbed dose:
1 Gray == 1 J/kg

Radiation quality factor Q
Sievert = Gray $\times Q$

ICRP estimate: 5% per Gy
1 in 20,000 risk of fatal cancer per 1 mSv dose (lifetime)
Dose Equiv. (mSv)

<table>
<thead>
<tr>
<th>Description</th>
<th>Dose Equiv. (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest x-ray</td>
<td>0.1</td>
</tr>
<tr>
<td>USA annual background</td>
<td>4</td>
</tr>
<tr>
<td>Public annual limit (above background)</td>
<td>1</td>
</tr>
<tr>
<td>International Airline crews</td>
<td>4</td>
</tr>
<tr>
<td>Radiation worker annual limit</td>
<td>50</td>
</tr>
<tr>
<td>No observed effects (Abomb, instant)</td>
<td>200</td>
</tr>
<tr>
<td>Death (instantaneous dose)</td>
<td>3,000</td>
</tr>
<tr>
<td>ISS (with shield) annual</td>
<td>150</td>
</tr>
<tr>
<td>Astronaut career limit effective dose*</td>
<td>470</td>
</tr>
<tr>
<td>Mars (3 year, incl. surface) annual</td>
<td>1,000</td>
</tr>
<tr>
<td>Large solar flare (free space)</td>
<td>10,000</td>
</tr>
</tbody>
</table>

ICRP cancer risk estimate: 5% per Gy ~ 5% per Sv (for Q=1)

1 in 20,000 risk of fatal cancer per 1mSv dose (lifetime)

* 30 year old female, 1 year mission (50 yr m/f ~ 1,000 mSv)
An investigation into the nature of high altitude cosmic radiation in the stratosphere

Figure 7. The Pfotzer curve. Adapted from [3].

\[
\begin{align*}
0.003388579 	imes 17 &= 0.05760585 \
227 + 0.05760585 &= 227.0576059 \
0.025370588 &= 0.05760585 	imes 100 \
\end{align*}
\]

As only 0.25% of the counts are lost at the maximum count rate, we can safely assume that there was no significant effect on our readings due to an influence by dead time.

Conclusion

We concluded that the peaks in the graphs are to be attributed to the maximum flux of the components of cosmic rays that are of secondary origin. In other words, at an approximate altitude of 20 km, there is a peak amount of ionizing material produced from air shower cascades that are propagating downwards to the surface. This peak can be understood by identifying two competing effects. Firstly, cosmic ray intensity will decrease as altitude decreases, because there have already been collisions higher up. Secondly, atmospheric density will increase as altitude decreases, increasing the likelihood of collisions. The product of these two competing effects produces a maximum in cosmic ray flux at \(\sim 20 \) km. As we did not use multiple coincidence arrays to isolate our cosmic radiation measurements solely to the vertical direction, we are unable to ascertain the impact that ionizing particles interacting with the Geiger–Müller tube from the side had. We can only assume, based on previous research, that the majority of the radiation detected was in the vertical plane. Looking at previous investigations, we discovered an article produced by cosmic ray physicist Pfotzer in the 1930s [3], based on his work with Regener. Their published graph (see figure 7) has remarkable similarities with our own results. It should be noted that the count rate on the Pfotzer curve (see figure 7) was measured in counts per 4 min, and our count rates were measured per every approximate 17 s. The two graphs seem to be supporting each other. Our Geiger–Müller tube recorded omnidirectionally, whereas their apparatus consisted of threefold coincidences which isolated their recordings to the vertical plane. This does not seem to have caused a major difference between our graphed results. This suggests that the majority of cosmic radiation is propagating downwards in a vertical direction.
An investigation into the nature of high altitude cosmic radiation in the stratosphere

Figure 7. The Pfotzer curve. Adapted from [3].

\[
0.003388579 \times 17 = 0.05760585
\]

expected number of lost counts per 17 s (package) due to dead time.

\[
227 + 0.05760585 = 227.0576059
\]

expected number of counts if lost counts are included.

\[
0.05760585 	imes 100 = 0.025370588
\]

percentage of counts lost.

As only 0.25% of the counts are lost at the maximum count rate, we can safely assume that there was no significant effect on our readings due to an influence by dead time.

Conclusion

We concluded that the peaks in the graphs are to be attributed to the maximum flux of the components of cosmic rays that are of secondary origin. In other words, at an approximate altitude of 20 km, there is a peak amount of ionizing material produced from air shower cascades that are propagating downwards to the surface. This peak can be understood by identifying two competing effects. Firstly, cosmic ray intensity will decrease as altitude decreases, because there have already been collisions higher up. Secondly, atmospheric density will increase as altitude decreases, increasing the likelihood of collisions. The product of these two competing effects produces a maximum in cosmic ray flux at \(\sim 20 \) km. As we did not use multiple coincidence arrays to isolate our cosmic radiation measurements solely to the vertical direction, we are unable to ascertain the impact that ionizing particles interacting with the Geiger–Müller tube from the side had. We can only assume, based on previous research, that the majority of the radiation detected was in the vertical plane. Looking at previous investigations, we discovered an article produced by cosmic ray physicist Pfotzer in the 1930s [3], based on his work with Regener. Their published graph (see figure 7) has remarkable similarities with our own results. It should be noted that the count rate on the Pfotzer curve (see figure 7) was measured in counts per 4 min, and our count rates were measured per every approximate 17 s. The two graphs seem to be supporting each other. Our Geiger–Müller tube recorded omnidirectionally, whereas their apparatus consisted of threefold coincidences which isolated their recordings to the vertical plane. This does not seem to have caused a major difference between our graphed results. This suggests that the majority of cosmic radiation is propagating downwards in a vertical direction.

http://www.scienceinschool.org/2010/issue14/cloud/maltese
AIRCRAFT

- Domestic crews 1 - 2 mSv /yr

- International crews < 4 mSv / yr

- Pregnant woman < 5 mSv (to fetus per pregnancy)
AIRCRAFT - WHY ALL THE CONCERN NOW?

- NCRP & ICRP have lowered radiation worker exposure - 50 mSv / yr to 20 mSv / yr
- Air crews most highly exposed of any occupation group
- FAA criticized for not paying enough attention
- Many more polar flights
- Future High Speed Civil Transport (HSCT) radiation levels - 3 times higher than for crews of subsonic transport
- Only solution available now: - reduce flight hours
- NAIRAS - Mertens (Langley)
ELECTRONICS

Computers

- Junction density increasing
- Switching energy decreasing

Need for predicting Single Event Upsets (SEU)

- satellite electronics
- aircraft electronics (civilian & military)

Shuttle - several hundred SEU / mission

http://holbert.faculty.asu.edu/eee560/see.html
Electronics on Spirit, Opportunity, Curiosity etc. are radiation hardened

Shielding very important for Jupiter, Saturn

http://mars.jpl.nasa.gov/msl/multimedia/images/?imageid=3504

Credit: NASA/JPL/Space Science Institute
http://photojournal.jpl.nasa.gov/catalog/PIA04866
These are the doses received

- How were results obtained?
- How to design spacecraft & aircraft shields so dose is minimal?

Need

- Accurate atomic, nuclear, particle physics theory
- Accurate transport theory
- Biological models
Solve Boltzmann transport eqn (HZETRN)

Deterministic, not Monte Carlo

- Want quick answers
- Real time dose as function of position & time
- Both transport & nuclear physics must run fast

→ Applied nuclear physics

Wilson et al., NASA-RP 1257, 1991

not examined in this paper. The effects on the radiation environment of localized magnetic fields on the Martian surface are also not evaluated.

The proton spectra for three of the largest historical events are shown in Fig. 3. Figure 4. Martian surface environment due to GCR.

Large Solar Particle Events

The free space GCR environment is made up of heavy charged ions and neutrons. These charged ions and neutrons also interact with atoms making up the Martian surface material, primarily CO$_2$ gas. Nuclear collisions often result in the destruction of the original ion and the production of a number of smaller particles. The neutron count measured on the Martian surface are also not evaluated.

Since the lunar atmosphere is negligible, the free space environment is only affected by the lunar regolith. The free space radiation environment is altered by the Martian atmosphere through interactions between the solar wind and, therefore, varies with distance from the surface point, and on the atomic make-up of the material below the surface point (regolith, mantling, and/or surface regolith).

The atmospheric GCR environment for a given day is calculated by interpolating between solar maximum and solar minimum, when the sun is most active. Short duration exposure may result in late term effects such as cataracts and cancers. The sample calculations demonstrate the inverse relationship between solar activity and GCR intensity by showing measured and predicted sun spot numbers.

GCR intensity is at solar minimum, when the sun is least active. Large SPE have occurred only rarely, one or two per eleven year solar cycle in the past. This plot shows how much these events vary. The September 1989 event had a very large number of low energy neutrons, but the August 1972 event had a larger number of the more penetrating neutrons in the 20 to 200 MeV range. It should be noted that the September 1989 event also included a heavy ion contribution.

The free space GCR environment is made up of heavy charged ions or originating outside the solar system. These particles, mostly protons, move through the solar atmosphere. The neutron count measured on the Earth's surface, in this case at the Deep River station in Canada, demonstrates the inverse relationship between solar activity and GCR intensity. The neutron count (red), measured (before 1995) and utilized the neutron count measured by the Deep River Neutron Monitor (DRNM). The charged ions making up the free space environment and the atoms making up the atmosphere, primarily CO$_2$, contribute to the surface environment, labeled Z=0 in Fig. 4, which is not present in the free space environment and a solar minimum GCR environment at the same location.

The proton spectra for three of the largest historical events are shown in Fig. 3. The solar minimum GCR intensity, because the number of neutrons produced as a result of nuclear collisions move in the same direction or close to the same direction as the charged ions making up the free space environment and the atoms making up the atmosphere, primarily CO$_2$. The neutron count measured on the Earth's surface, in this case at the Deep River station in Canada, demonstrates the inverse relationship between solar activity and GCR intensity. The neutron count (red), measured (before 1995) and utilized the neutron count measured by the Deep River Neutron Monitor (DRNM). The charged ions making up the free space environment and the atoms making up the atmosphere, primarily CO$_2$, contribute to the surface environment, labeled Z=0 in Fig. 4, which is not present in the free space environment and a solar minimum GCR environment at the same location.

The proton spectra for three of the largest historical events are shown in Fig. 3. The solar minimum GCR intensity, because the number of neutrons produced as a result of nuclear collisions move in the same direction or close to the same direction as the charged ions making up the free space environment and the atoms making up the atmosphere, primarily CO$_2$. The neutron count measured on the Earth's surface, in this case at the Deep River station in Canada, demonstrates the inverse relationship between solar activity and GCR intensity. The neutron count (red), measured (before 1995) and utilized the neutron count measured by the Deep River Neutron Monitor (DRNM). The charged ions making up the free space environment and the atoms making up the atmosphere, primarily CO$_2$, contribute to the surface environment, labeled Z=0 in Fig. 4, which is not present in the free space environment and a solar minimum GCR environment at the same location.
Figure 1. Primary galactic cosmic ray spectra for 1977 solar minimum. Kim et al., NASA TP 208724, 1998

Left: Primary GCR spectra at Mars for 1977 solar minimum Kim et al., NASA TP 208724, 1998

Right: Martian surface environment due to GCR Clowdsley et al., AIAA, 2006
Transport - Materials compared to Aluminum

Dose Equivalent as a function of depth for various materials

From radiation point of view, safest place is inside liquid hydrogen fuel tank!

Major result
- Low Z materials required for weight reduction necessary for future High Speed Civil Transport (HSCT) and for future spacecraft are also the best radiation protection materials
- Thank goodness!
Short duration
- Solar particle events

Long duration
- Solar particle events
- Galactic cosmic rays
Lunar regolith composition

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>52.6%</td>
</tr>
<tr>
<td>FeO</td>
<td>19.8%</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>17.6%</td>
</tr>
<tr>
<td>MgO</td>
<td>10.0%</td>
</tr>
</tbody>
</table>
The Surface of the Moon is Slightly Richer in Fe, Ca, and Mg Compared to the Earth's Crust

- **O**: 45% (Lunar Soil), 30% (Earth Crust)
- **Si**: 25% (Lunar Soil), 20% (Earth Crust)
- **Fe**: 20% (Lunar Soil), 15% (Earth Crust)
- **Ca**: 10% (Lunar Soil), 5% (Earth Crust)
- **Al**: 5% (Lunar Soil), 3% (Earth Crust)
- **Mg**: 5% (Lunar Soil), 2% (Earth Crust)
- **Other**: 0% (Lunar Soil), 0% (Earth Crust)

http://fti.neep.wisc.edu/neep602/lecture12.html
Figure 12. Calculated fluence of projectile fragments after traversal of 18 g/cm² thick polyetherimide shield irradiated with 33.88 GeV 56 Fe ions.

Figure 13. Attenuation of dose equivalent due to 1977 solar minimum GCR fluence behind regolith and regolith-epoxy shield as a function of areal density [27].

Attenuation of dose equivalent due to 1977 solar minimum GCR

Simonsen et al., NASA Conference Publication 3360, 1997
<table>
<thead>
<tr>
<th></th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric thickness (g/cm²)</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td>Magnetic field (Gauss)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

http://www-k12.atmos.washington.edu/k12/resources/
Chemical composition of Martian atmosphere

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>95.32</td>
</tr>
<tr>
<td>N₂</td>
<td>02.70</td>
</tr>
<tr>
<td>Ar</td>
<td>01.60</td>
</tr>
<tr>
<td>O₂</td>
<td>00.13</td>
</tr>
<tr>
<td>CO</td>
<td>00.08</td>
</tr>
</tbody>
</table>

De Angelis et al., Rad. Meas. vol.41, p.1097, 2006
Mars

Chemical composition of Martian surface

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>44.2</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>16.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>08.8</td>
</tr>
<tr>
<td>CaO</td>
<td>06.6</td>
</tr>
<tr>
<td>MgO</td>
<td>06.2</td>
</tr>
<tr>
<td>SO₃</td>
<td>05.5</td>
</tr>
<tr>
<td>Na₂O</td>
<td>02.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>01.0</td>
</tr>
</tbody>
</table>

De Angelis et al., Rad. Meas. vol.41, p.1097, 2006
Mars

GCR Environment

20 cSv/year = 200 mSv/year

Dose Equivalent Values (cSv/yr)

Model prediction of dose equivalent from GCR. Calculations are shown at average skin depth near solar maximum. Cucinotta, Rad. Res. vol.43, p.S35, 2002
Mars transit inside vehicle: 1.84 ± 0.33 mSv / day

⇒ MSL (one way) 253 days gives 466 mSv

⇒ 331 mSv for 180 day cruise DRM

⇒ 662 mSv return trip

• Plus surface exposure 200 mSv ?

• Approaching and exceeding limits
Comparative Radiation Exposures

- U.S. Annual Average All Sources: 3.6 millisieverts
- Abdominal CT Scan: 8 millisieverts
- DOE Radiation Worker Annual Limit: 20 millisieverts
- 6 Months on ISS (Average): 75 millisieverts
- MSL-RAD Transit to Mars: 466 millisieverts

MSL-RAD = Mars Science Laboratory Radiation Assessment Detector

Intense radiation

- On Jupiter moon Io humans could not survive for more than a few hours
- Callisto
In addition to applications to Mars science, the models will allow the use of these models to assess the impact on human exposure and allow design considerations for all components in either surface operations, in lava tubes, or in Mars orbit.

3.3. Jupiter neighborhood

The solar wind generated convective currents produce less effects on the GCR near Jupiter relative to Earth. In addition, the jovian magnetic field traps particles with electron intensities to large distances from Jupiter ($70 \, \text{R}_J$). The electron flux spectrum near Callisto is shown in Fig. 9. Near a jovian moon, the intensities of all components are reduced except the induced neutron fields.

We are developing an Anytime/Anywhere software package for use in mission analysis and an example of a mission from the Earth/Lunar L1 to Callisto and return is shown in Fig. 10 for a fixed mass of four shield materials. The mission starts near an assumed solar maximum (2045 AD) using the same projection model as in Fig. 1. The large exposure rates mid-mission are due to the jovian electron belts until arrival on the Callisto surface where there is shielding below the horizon. The continued increase of the environment on the return to L1 is due to decreasing solar activity. This software will soon include the Mars models presented in the previous section.

4. Conclusions

The deep space environments developed for mission analysis use physical models to extrapolate the limited environmental data in both space and time. Induced fields are evaluated using high-speed transport models. Interesting dependence of local induced fields on atmosphere and ground composition are found which may be validated using Mars orbital data. The broader software being prepared will allow radiation exposure evaluation for arbitrary spectra in the future but limited to near Earth, near Jupiter, and interplanetary space for now. The near Mars environment will be added in the near future.

References

Clowdsley, M.S., Heinbockel, J.H., Kaneko, H., Wilson, J.W., Singleterry, R.C., Shinn, J.L. A comparison of the multigroup and...
Saturn

Saturn’s Intense Main Radiation Belt

http://www.universetoday.com/15381/radiation-on-saturn/

Health effects on Human Body

- **Carcinogenesis**
 - Earlier appearance and more aggressive tumors not seen with controls, gamma-rays or proton induced tumors
 - Persistent oxidative damage and inflammatory pathway responses
 - New genomics data showing distinct gene expression profiles in HZE versus γ-ray or x-ray irradiated cell models

- **Acute Radiation Syndrome due to Solar Particle Events**
 - Research addresses dose threshold, dose-rate effects with countermeasure evaluation
 - Future work to understand impact of possible high skin dose and microgravity on immune system and blood forming organs
Health effects on Human Body

- **Acute or Late Central Nervous System (CNS) Effects**
 - Concern for CNS risks originated with the prediction of the light flash phenomenon from single high-Z high-energy nuclei traversals of the retina; this phenomenon was confirmed by the Apollo astronauts
 - Major uncertainty how to extrapolate results from animals to humans

- **Degenerative Tissue or other health effects**
 - Occupational radiation exposure from the space environment may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, & cataracts
 - Mechanisms & magnitude of influence of radiation leading to these diseases are not well characterized
NASA Space Radiation Laboratory

- Brookhaven National Lab on Long Island
- protons: 4 GeV
- protons - Fe: 50 MeV/n - 1.5 GeV/n
- up to Au: 165 MeV/n

NEW DEVELOPMENTS - PION CONTRIBUTION TO DOSE

Pions can contribute almost 50% to dose

NEW DEVELOPMENTS - NEUTRONS & LIGHT IONS

Percent contribution to BFO dose equivalent by charge group

Neutrons and light ions (H, He) can dominate Dose Equivalent

Two approaches to Galactic Cosmic Ray (GCR) simulation:

External field approach

Beams selected to represent external, free space field before shielding

Local tissue field approach

Beams selected to directly represent shielded tissue field
New Developments - Minimum Dose Equivalent vs. Depth

Benchmark Description

- Geometry: Slab with equal thickness of aluminum shielding in front and behind a thin (0.03 mm) water target
 - Considered a range of aluminum thicknesses from 0 g/cm² to 100 g/cm²
- Boundary conditions: 1977 solar minimum GCR environment
 - Considered each ion individually with greater emphasis on more abundant ions
 - Connects with ions considered in measurement piece
- Computed flux, dose, dose equivalent, and LET spectra in all codes
 - Carefully went through Monte Carlo options to ensure output quantities are defined consistently

External GCR boundary condition spectrum

Front shield

Back shield

Water target

Infinite lateral dimensions

X g/cm² Al ≡ X g/cm² Al front + 0.03 mm water + X g/cm² Al back

Recent High Impact Discoveries

- Minimum Dose Equivalent vs. Depth
 - Blattnig, Slaba, Bahadori, Norman, Clowdsley, Space Radiation Investigators’ Workshop, Galveston, TX, 2014
 - New design paradigm
 - If forward/backward (FB) neutron transport and pions turned ON
 - Minimum in dose equivalent response near 40 g/cm²
 - Increased shielding (mass) changes/amplifies exposure
 - Design implication: material optimization may be more important than previously thought

Contribution to dose rate for particle groups at different locations on the ISS

<table>
<thead>
<tr>
<th>MDU</th>
<th>Pions + Muons + EM</th>
<th>41%</th>
<th>49%</th>
<th>47%</th>
<th>26%</th>
<th>48%</th>
<th>53%</th>
<th>59%</th>
<th>74%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDU 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDU 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDU 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDU 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEPC</td>
<td></td>
<td>50%</td>
<td>50%</td>
<td>74%</td>
<td>52%</td>
<td>51%</td>
<td>26%</td>
<td>48%</td>
<td>53%</td>
</tr>
</tbody>
</table>

- Important discovery in space radiation

Blattnig, Slaba, Bahadori, Norman, Clowdsley, Space Radiation Investigators’ Workshop, Galveston, TX, 2014

Walker, Townsend, Norbury, Advances in Space Research 51, 1792, 2013

Slaba, Mertens, Blattnig, NASA TP-2013-217983

Norman, Blattnig, De Angelis, Badavi, Norbury: Advances Space Research 50, 146, 2012

Slaba, Blattnig, Reddell, Bahadori, Norman, Badavi: Advances Space Research 52, 62, 2013

Korea Contributions

- Human presence throughout solar system in 21 century
 - International endeavour
 - New frontier - many economic rewards - reaped by participants

- Korea Institute of Radiological and Medical Sciences (KIRAMS)
 - Expertise in proton and heavy ion therapy and radiological sciences
 - Highly relevant to space radiation

- Space Radiation
 - Major uncertainties associated with low dose rate
 - KIRAMS contribution?
CONCLUSIONS

- Human exploration of solar system
- Radiation protection is a major issue
- Fundamental studies in physics and radiobiology still needed
- Republic of Korea could make major contributions
THE END

john.w.norbury@nasa.gov