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Introduction & Background

Current interaction with a drone requires the operator to understand the specifics of the controller and the 
drone’s dynamic behavior

Not a natural and higher level teaming relationship
– Increased workload

– Decreased situation awareness

– Decreased trust

Natural language may increase collaborative teaming
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Initial Voice Usability Experiment
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Always mouse/keyboard input

Options and commands were either
voice or mouse/keyboard input
• CMU Sphinx4
• Defined dictionary

Measured:
• Input correctness
• Input time
• Workload ratings
• Subjective ratings
• Subject comments



Options Input Times
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Commands Input Times

Command voice input took longer than mouse input
– Longer phrases took more time

Use mouse or touch input for mission critical or
safety related commands
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Workload
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Voice input lower overall workload
Especially for:

– Mental

– Effort

Frustration about equal
– Time for voice command to register

– No indication on screen until something changed that 
system was parsing voice command

 Lacking intent information

NASA-TLX Ratings



Subjective Ratings and Comments
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Slight overall preference for mouse input
– Except for Responsiveness

 “Tedious to move the mouse around”

 Largest differences are for Commands
– Use mouse or touch input for mission critical or

safety related commands



Voice took longer to input information
– Longer phrases took longer

Voice has slightly lower workload

– Frustration about equal with mouse input  No indication that voice system was working

Subjective preferences indicated mouse input preference
– Critical input commands had lowest preference in using voice input

Voice input acceptable to non-critical input

Mouse/keyboard/touchscreen preferred for critical input

Initial Voice Usability Experiment Summary

5/??/2016 - DOD HFE TAG Mtg 70 [anna.c.trujillo;erica.l.meszaros]@nasa.gov 9

Inferring Commander’s Intent by machine 
may further increase teaming



Predicting Commander’s Intent

Most users (of computers, autonomous systems, and technology in general) verbalize while working with 
machines
– Especially true for members of teams with multiple humans

Often verbalizations take the form of imprecise questions
– “What’s it doing now?”

Can we predict the Commander’s Intent and provide desired information on UAV behavior based only on 
such simple verbal questions?
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Latent Semantic Analysis (LSA)

Well-established tool in computational linguistics

Determines the degree of semantic relationship between two pieces of language (documents, verbal 
utterances, etc.)

Methodology:

Create term-document matrix of all words and utterances in the corpus

Decompose using singular value decomposition to produce a similarity matrix

Use multidimensional scaling to plot these similarity values graphically

The closer two documents are, the more closely semantically they are related 



LSA Example

Utterance 1: “One fish two fish red fish blue fish”
Utterance 2: “Black fish blue fish old fish new fish”
Utterance 3: “This one has a little star this one has a little car”
Utterance 4: “Say! What a lot of fish there are”

U1 U2 U3 U4

one 1 0 0 0

fish 4 4 0 1

two 1 0 0 0

red 1 0 0 0

blue 1 1 0 0

black 0 1 0 0

old 0 1 0 0

new 0 1 0 0

this 0 0 2 0

one 0 0 2 0

has 0 0 2 0

a 0 0 2 1

little 0 0 2 0

star 0 0 1 0

car 0 0 1 0

say 0 0 0 1

what 0 0 0 1

lot 0 0 0 1

of 0 0 0 1

there 0 0 0 1

are 0 0 0 1



Generating the Semantic Map

Observed language used by human operators while working with UAVs at NASA Langley’s Autonomy 
Incubator

Analyzed data to produce a semantic map for UAV operation
– A predefined semantic space enables better predictions

– Semantic map can be continually trained

 LSA carried out in R Statistical Programming Language 



Semantic Map of the Autonomy Incubator



Semantic Map of the Autonomy Incubator



Semantic Map of the Autonomy Incubator

K-means Clustering
k = 5

Clusters on semantic map defined by 
different language

New documents/utterances can be 
mapped to an existing semantic map
– Semantic context of new utterance can 

be predicted based on which cluster is 
closest to newly mapped utterance

Ability to predict semantic area of an 
utterance can be applied to 
prediction of the content area of 
questions
– “What’s it doing now?”

 LSA allows for prediction of 
Commander’s Intent for UAV 
operation

Data analysis
(check, data)

Software related
(script, run)

Immediate commands
(right, now)

Hardware related
(work, turn)

Visual observations
(want, see)

Semantic attributes

Most frequent words



Predicting Commander’s Intent – Planned Research

1. User’s verbal interactions with UAV transcribed using CMU Sphinx4

2. System triggered when the user asks a question

3. Question and immediate verbal context mapped to existing semantic map

4. Determine closest cluster to the newly mapped information
– Information associated with this closest cluster provided to user

5. Correctly interpreted utterances added to existing semantic map to further define semantic sphere

Autonomous agent able to answer back appropriately to the question “What are you doing”
Based on:

– Mission context

– Previous utterances


