Attitude and Pointing Concepts for ISS Payload Operations

NASA/JSC
Maggie Michalczyk
Attitude & Pointing Office
July 2016
Topics

• What Can Pointing Do for Payloads
• Typical Questions for Payload Customers
• Variables that Affect Target Viewing
 – Time
 – Blockage
• Examples of Pointing Support for Payloads
 – SCaN
 – OPALS
 – SOLAR
Attitude and Pointing Office

- The Pointing Officer is responsible for flight control support of communications predictions, unique target lines-of-sight (LOS) computations, and optimization of ISS attitude to support payload, onboard systems, or user pointing requirements, as requested.
- Pointing can integrate multiple planning products into a single output:
 - TOPO’s trajectory predictions
 - ADCO’s attitude timeline
 - PRO’s solar array plan
 - SPARTAN’s radiator plan
 - ROBO’s robotic plan
What Can Pointing Do For Payloads?

- Line-of-Sight Capabilities
 - Determine instrument (e.g., sensor, aperture, etc.) operation times based on orbital constraints
 - Compute acquisition times for targets
 - Integrate operational constraints (like sun avoidance) into analysis
 - Compute ISS (and any other orbiting object) overflight information for given ground sites
 - Incorporate any sensor Field of View (FOV) limits/constraints
 - Compute look angles to target, within any reference frame (ISS, payload, etc.)
 - Filter target computations based on S and Ku comm. availability (if required)
What Can Pointing Do For Payloads?

• Attitude Capabilities
 – Compute ISS / Robotics / payload attitude combinations to satisfy requirements for payload release, to acquire science, and to accomplish payload objectives
 – Verify operational constraints are not violated during robotic motion for installation

• Blockage Capabilities
 – Create blockage diagrams for antennas/instrument FOVs, from a specific point on ISS or payload structure
 – Model movement of ISS appendages (SSRMS, radiators, etc.)

• Integration Capabilities
 – Incorporate payload-specific information into analysis
 – Provide information to payload in their language
Typical Questions for Payload Customers

- Does your payload have certain sensor requirements?
 - Can the Sun/Moon get in its field-of-view?
 - Do constraints matter if the sensor is on or off?
 - Time limit for how long it can look at the Sun?
 - Is there an additional buffer that needs to be protected?

- Does your payload need concurrent ISS communication with the ground?
 - S-band for telemetry?
 - Ku-band for video?

- Can ISS elements block your sensor field-of-view?
 - Solar arrays?
 - Thermal radiators?
 - Robotic elements?
Variables that Affect Target Viewing

• Trajectory
 – Weekly trajectory updates realize an average of 10 – 30 seconds of acquisition error

• Attitude
 – The ISS attitude fluctuates during the course of an orbit

• Time

• Structural Blockage
Variables that Affect Target Viewing: Time

• The ISS is moving at ~7 kilometers per second
• A significant factor in line-of-sight predictions for high resolution instruments is knowledge of exact time
• Depending on sensor resolution, being off by half a second may mean completely missing a small target
• GPS time is official time source for ISS
 – Currently GMT and GPS differ by 17 seconds
Variables that Affect Target Viewing: Structural Blockage

- ISS structure is big and frequently in the way
- Solar arrays
 - When in autotrack, arrays are moving at 4 deg/min
 - Predictive data received from Power Resource Officer (PRO)
- Radiators
 - Can cause significant amount of blockage
 - Positioning is typically static, but usually repositioned for high beta periods and visiting vehicles
 - Positioning plan for the future received from SPARTAN console
- Robotics
 - Robotic elements – MBS, SSRMS and SPDM – can cause significant blockage
 - Positioning plan for future received from Robotics Officer (ROBO)
Examples of Pointing Support for Payloads

- SCaN Testbed
- OPALS
- SOLAR
SCaN Testbed

• LOS Operations
 – Line of sight calculations to TDRS
 – Requires scheduled events during times ISS has S-band and Ku-band services available
 – It is also common for SCaN to request LOS analysis of non-TDRS targets such as the Sun and ground sites

• Analysis Provided by ISS Pointing
 – SCaN provides a TDRS Communication Request weekly to Pointing
 – Pointing determines available times SCaN will have events with TDRS satellites three weeks ahead
 – The week prior to SCaN activities, Pointing updates line-of-sight calculations with latest inputs and relays significant changes to scheduled passes
SCaN Testbed FOV

- SCAN Antenna FOV
- Solar array in FOV
OPALS

- LOS Operations
 - Communication with ground sites via a laser
 - Need considerable accuracy
 - Acquire ground beacon
 - Closed loop

- Analysis Provided by ISS Pointing
 - Provide ISS flyover times of ground sites for next three weeks
 - Determine viable passes when ground site and Sun are not concurrently within OPALS FOV
SOLAR

• LOS Operations
 – Observing Sun
 – Pointed out ISS -Z axis

• Analysis Provided by ISS Pointing
 – ROBO notifies Pointing and SOLAR if planned robotic operations will cause any robotic elements to enter SOLAR FOV
 – Pointing analyzes if Sun’s track will pass behind robotic elements and notifies SOLAR of any violations
 – SOLAR uses this information to note potential interruptions to their data
SOLAR FOV

Sun traces through the FOV

SSRMS in FOV

SOLAR FOV
Questions?
Further Information

• If you have any questions, please contact:
 – Maggie Michalczyk (Pointing Payloa ds Lead)
 • Email: magdalen.i.michalczyk@nasa.gov
 • Phone: 281-483-9237
 – Sadie Holbert (Pointing Payloa ds Backup)
 • Email: sadie.m.holbert@nasa.gov
 • Phone: 281-244-8263