Evaluation of Synthetic Vision Display Concepts for Improved Awareness in Unusual Attitude Recovery Scenarios

Stephanie Nicholas
NASA Langley Research Center

DoD HFE TAG
May 9-13, 2016
Outline

1. Background
2. Experiment Design
3. Evaluation Tasks and Procedures
4. Data Analysis
5. Q&A
CAST – Commercial Aviation Safety Team

• Aircraft State Awareness (ASA)

 • In August 2010, CAST chartered the Airplane State Awareness Joint Safety Analysis Team (ASA JSAT) as a follow-on activity to previous CAST work done by the Loss of Control Joint Safety Analysis Team (LOC JSAT) in 2002

 • Specific ASA Focus:
 • Loss-of-Attitude Awareness (Spatial Disorientation – SD)
 • Loss-of-Energy State Awareness (LESA)
The ASA JSAT studied 18 events that occurred no more than 10 years prior to the JSAT kick-off. The ASA JSAT identified 12 major themes that appeared across a multitude of the accidents/incidents which were representative of common issues.

The ASA Joint Safety Implementation Team (ASA JSIT) subsequently recommended 5 research safety enhancements (SEs)

The JSIT also developed one SE wherein successful completion of research is in the critical path of a design SE (SE-200).
Mitigate the problems and Contributing Factors that lead to flight crew loss of airplane state awareness

GOAL: “Develop data, systems, models, training methods and technologies for transition to the aviation community (Original Equipment Manufactures, Regulators, Training Organizations, and Operators) which can reduce the flight crew’s loss of airplane state awareness as a causal factor in commercial aviation accidents and incidents.

CAST SE focus for Augmented Flight Deck Countermeasures (AFDC) experiments:

- **211 – ASA-Research:** Training for Attention Management
- **200 – ASA-Design:** Virtual Day-Visual Meteorological Conditions (VMC) Displays
Objective: Study the Effectiveness and Publish Minimum Aviation System Performance Standards for the design of virtual day-VMC displays to improve flight crew awareness of airplane attitude as a function of various system characteristics

Display Characteristics:
- Presented full time in the primary field-of-view
- Presented to both flight crew members
- Include display of energy state cues, including flight path, acceleration, and speed deviation, in a manner similar to modern head-up displays

Design Criteria:
- Field of View
- Presentation/Removal of concept while in unusual attitude
- Image Minification
- Optical Flow Cues:
 - Display elements over water or featureless terrain
 - Use of color and texture
- Potential unintended consequences (i.e., attentional issues)
Simulation Facility

- Experiment conducted in the NASA LaRC Visual Imaging Simulation for Transport Aircraft Systems (VISTAS) lab
 - Rapid-prototype flight simulator
 - Fully functioning Sterling side-stick controllers
 - 144-degree out-the-window visuals
 - Four, 15 inch head-down display panels
 - General Aviation trainer throttle quadrant
Experiment Design

- 12 pilot participants
- 2-part experiment series:
 - Part 1: Unusual Attitude Recovery (UAR) Scenarios
 - 25 trials
 - Part 2: Attitude Memory Recall (ADMR) Tasks
 - 50 trials
- Training block allotted for UAR and ADMR
 - Familiarization of simulation flight deck and experimental tasks
 - Briefed on Boeing Airplane Upset Recovery Training Operations
 - Pilots asked to maintain safe flight operations
 - fly as if he/she were carrying passengers in Part 121 operations.
Part 1: UAR

Primary Flight Display (PFD) Concepts (3)

Baseline

Synthetic Vision (SV) with Color Gradient Sky

SV with Water Texture

Background Attitude Indicator (BAI) Concepts (2)

Off

On
Initial aircraft configuration:
- IAS: 300 kts
- ALT: FL180
- CONFIG:
 - Flaps Retracted
 - Spoilers Retracted
 - Gear Retracted

Initial UA Conditions:
- The following five initial UA conditions were presented to pilots:
 - Identifier 501:
 - Nose-down (30 degrees), left bank angle (10 degrees)
 - Identifier 502:
 - Nose-up (25 degrees), left bank angle (60 degrees)
 - Identifier 504:
 - Nose-up (25 degrees), right bank angle (60 degrees)
 - Identifier 505:
 - Nose-down (30 degrees), right bank angle (100 degrees)
 - Identifier 506:
 - Nose-down (30 degrees), left bank angle (100 degrees)
Post-Run Questionnaires

NASA Task-Load Index (TLX):

- A 0-100 subjective rating scale used to evaluate six categories of mental and physical demand, as well as personal performance.

Situation Awareness Rating Technique (SART):

- A 0-100 subjective rating scale that evaluated demand on attentional resources, supply of attentional resources, and understanding of a given task.
At the conclusion of the Part I experiment set, pilots were asked to complete a paired-comparison questionnaire.

- Evaluated preference of displays when compared to one another.

| If not equal, how much more or how much less? |
|-------------|----|----|----|
| Barely | Substantially |

<table>
<thead>
<tr>
<th>Baseline + NO BAI</th>
<th>results in (more)(equal)(less) situation awareness than</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV = NO BAI</td>
<td></td>
</tr>
<tr>
<td>Baseline + NO BAI</td>
<td>results in (more)(equal)(less) situation awareness than</td>
</tr>
<tr>
<td>SV w/texture + NO BAI</td>
<td></td>
</tr>
<tr>
<td>Baseline + NO BAI</td>
<td>results in (more)(equal)(less) situation awareness than</td>
</tr>
<tr>
<td>SV = BAI</td>
<td></td>
</tr>
<tr>
<td>Baseline + NO BAI</td>
<td>results in (more)(equal)(less) situation awareness than</td>
</tr>
<tr>
<td>SV w/texture + BAI</td>
<td></td>
</tr>
<tr>
<td>SV = NO BAI</td>
<td>results in (more)(equal)(less) situation awareness than</td>
</tr>
<tr>
<td>SV w/texture + NO BAI</td>
<td></td>
</tr>
<tr>
<td>SV = BAI</td>
<td>results in (more)(equal)(less) situation awareness than</td>
</tr>
<tr>
<td>SV w/texture + BAI</td>
<td></td>
</tr>
</tbody>
</table>
Quick Static Display Evaluation

- Displays were blank between runs
- Pilot sat in seat waiting for display to activate
- Display concept presented for a short duration and then removed
- Pilot asked to recall attitude (Pitch & Roll)
- NASA TLX administered after each run
- Paired-Comparison administered after Part 2 experiment set
Unusual Attitude Recovery:
 - ANOVA conducted:
 - No significant effects for initial conditions $F(4,321) = 1.69, p = 0.152$
 - Overall, pilots performed faster recoveries after entering into a nose-high unusual attitude
 - 31.75 sec vs 42.43 sec (Nose-down)
• Unusual Attitude Recovery:
 – ANOVA conducted:
 • No significant effects for display type, $F(4,321) = 2.21$, $p = 0.068$
 • Faster recovery using baseline display (33.27 sec) as opposed to all SV display types (39.63 sec).
• SV comparisons:
 – Faster mean recovery times when flying the SV with texture display
 • 34.17 sec vs 45.09 sec with color gradient display
 – Faster recovery times with BAI on for textured display
 • 33.65 sec vs 34.69 sec with BAI off
 – Slower recovery times with BAI on for color gradient display:
 • 48.89 sec vs 41.29 sec with BAI on
• ANOVAS Conducted:
 – Significant effect on time of initial pilot pitch input based on display concepts $F(4, 321) = 2.67, p = 0.032$.
 – Faster initial pitch change times for SV with texture display, no BAI
 – No significant effect of display type on correct pitch input $F(4, 321) = 1.20, p = 0.309$.
 – Faster pitch input in correct direction for SV with texture, no BAI
ANOVAS Conducted:
- **No significant effect** on first roll input based on the displays types, $F(4, 321) = 1.18, p = 0.319$
 - Faster initial pitch change times for SV with texture display, no BAI
- **No significant effect** on first correct roll input based on display type, $F(4, 321) = 2.67, p = 0.497$
 - Faster roll input in correct direction for SV with texture display, no BAI
Correct Pitch Degree and Direction:

- **ANOVA conducted:**
 - No significant effects for correct recall of pitch degree for SVS or BAI, $F(2,599) = 1.13, p = 0.323$, and $F(1,599) = 2.69, p = 0.102$, respectively
 - No significant effects for correct recall of pitch direction for SVS or BAI, $F(2,597) = 0.75, p = 0.473$, and $F(1,598) = 0.67, p = 0.415$, respectively
• Correct Roll Degree and Direction:

 – ANOVAs conducted:
 - No significant effects for correct recall of roll degree for SVS or BAI, \(F(2, 597) = 1.35, p = 0.259 \), and \(F(1, 598) = 0.08, p = 0.773 \), respectively.

 – ANOVAs conducted:
 - No significant effects for correct recall of roll degree for SVS or BAI, \(F(2, 597) = 0.97, p = 0.381 \), and \(F(1, 598) = 0.13, p = 0.723 \), respectively.
NASA TLX:

- Based on display concepts, no significant effects were found on overall EP workload, \(F(4,321) = 1.10, \ p = 0.372 \).
 - Pilots reported overall less workload when attempting UAR scenarios using a SV with color display (30.1 percent) as opposed to the baseline display (32.8 percent).

SART:

- No significant effects on UA recovery time based on display concepts \(F(4,321) = 1.18, \ p = 0.507 \),
 - Pilots identified a higher sense of situation awareness (84.9 percent) when flying with a SV display with texture as opposed to the baseline display (79.9 percent).
Pilots evaluated the display concepts in the following combinations:

- Baseline, No BAI vs SV with color gradient, No BAI
- Baseline, No BAI vs SV with texture, No BAI
- Baseline, No BAI vs SV with color gradient, BAI On
- Baseline, No BAI vs SV with texture, BAI On
- SV with color gradient, No BAI vs SV with texture, No BAI
- SV with color gradient, BAI On vs SV with texture, BAI On

- Overall, pilots identified the SV displays (color, texture) with BAI On as most preferred for both UA recognition and recovery when compared with the baseline display.
- Pilots showed equal preference between the SV with color gradient and SV with texture when BAI was off.
- If using the BAI, pilots preferred the SV with color gradient over the SV with texture.
Conclusions

- Quantitative results showed that there were no significant statistical effects on UA recovery times when utilizing SV with or without the presence of a BAI.
- Qualitative results show the SV displays (color, texture) with BAI On are most preferred for both UA recognition and recovery when compared with the baseline display.
- When only comparing SV display concepts, pilots performed better when using the SV with texture, BAI On, than any other display configuration.
 - Pilots, however, noted their preference towards the SV with color gradient when the BAI was on.
Future Work

- Data collected from this experiment will be used to improve SV and BAI displays for featureless terrain in possible follow-on study
 - Larger data pool may be required to determine significant trends for performance standards development in support of SE-200 objectives
- Additional work currently on-going in NASA LaRC’s Research Flight Deck, Full-Motion Simulator
 - Improved SV and BAI concepts over featured-terrain
References

Back-Ups

Baseline + NO BAI

SV + NO BAI

Baseline + NO BAI

SV w/ texture + NO BAI
Baseline + NO BAI
SV + BAI

Baseline + NO BAI
SV w/ texture + BAI
SV + NO BAI

SV w/ texture + NO BAI

SV + BAI

SV w/ texture + BAI
VISTAS Systems Integration

1. Background
2. Experiment Matrix
3. Task and Procedures
4. Data Collection & Analysis
5. Q&A

Body Motion - Microsoft Kinect

EEG – ABM x24

Eye Tracking - SmartEye

Physio - Nexus 10

EKG (BPM/HRV)
Respiration Rate
Skin Temperature
Galvanic Skin Response

Pilot and Aircraft State
Data Streams

Data Synchronization and Analysis - MAPPS