NASA Electric Propulsion System Studies

James L. Felder, Systems Analysis & Integration
Advanced Air Transport Technology Project
NASA Glenn Research Center
Cleveland, OH
Outline

• Why Electric Propulsion
• Overview of Electric Propulsion architectures.
• Example Implementations.
 – Boeing SUGAR Volt
 – ECO-150
 – STARC-ABL
 – N3-X
Why Electric Propulsion

• Allows the use of non-CO2 emitting terrestrial power sources in aviation

• High flexibility in moving power around the vehicle is a key enabler for several different ways to integrate propulsion into the aircraft in ways to further reduce the energy intensity of the vehicle
 – Boundary Layer Ingestion
 – Wingtip Propulsors
 – Highly distributed embedded propulsor arrays
But Wait, There's More!

Series/Parallel Partial Hybrid

- Turbofan
- Fan
- Fuel
- Electric Bus
- Generator
- Battery
- Motor
- 1 to Many Fans
Boeing SUGAR Volt (Parallel Hybrid)

- 150 passenger
- 3500 nm range
- 750 Wh/kg battery energy density
- 1.3 MW motor meets NASA N+3 fuel reduction goal at the same energy consumption as SUGAR High
- 5.3 MW motor reduces fuel consumption further at the price of increased energy consumption compared to SUGAR High

Boeing Research & Technology, Boeing N+3 Subsonic Ultra Green Aircraft Research (SUGAR) Final Report
SUGAR Volt Hybrid Electric technologies provide additional benefits only if a renewable energy source is used to charge aircraft batteries.
Flow around an aircraft tailcone

- Diffusion into the base region of the aircraft means the velocity profiles represent more than just the viscous boundary layer of the fuselage
- Velocity profile nearly uniform circumferentially, so distortion is nearly all radial

![Graphs showing total pressure and velocity vs height](image-url)
STARC-ABL* (Partial Turboelectric/Fuselage BLI Fan)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passengers</td>
<td>150</td>
</tr>
<tr>
<td>Range</td>
<td>3500 nm</td>
</tr>
<tr>
<td>Cruise Speed</td>
<td>Mach 0.7</td>
</tr>
<tr>
<td>Tailcone Thruster Motor</td>
<td>2.6 MW (3500 hp)</td>
</tr>
<tr>
<td>Turbofan Generator</td>
<td>1.44 MW (1940 hp)</td>
</tr>
<tr>
<td>Turbofan Fan</td>
<td>1.95 MW (2615 hp)</td>
</tr>
<tr>
<td>Fuel Burn Reduction (vs same tech turbofan)</td>
<td>~10%</td>
</tr>
</tbody>
</table>

STARC-ABL: Single-aisle Turboelectric AirCRAFT – Aft Boundary Layer
ESAero ECO-150
(Fully Turboelectric/Distributed)

- 150 Passenger/35k lbs Payload
- 3500 nm range
- Mach 0.8 Cruise
- 2 8-MW turbine driven generators
- 16 1-MW motor driven fans
- Fuel reduction from 737-700
 - 44% Non-cryo
 - 59% Cryo (with LH2 cooling)

NASA N3-X
(Fully Turboelectric/Distributed/BLI)

Baseline: B777-200LR/GE90-115B
Passengers: 300
Range: 7500 nm
Payload: 118,000 lbs
Cruise Speed: Mach 0.84
Fuel: 279,800 lbs

N3-X Superconducting
Passengers: 300
Range: 7500 nm
Payload: 118,000 lbs
Cruise Speed: Mach 0.84
Fuel: 76,000 lbs
(-72%)
Generators: 30 MW
Motors: 4.3 MW

NASA N3-X Propulsion System Weight

<table>
<thead>
<tr>
<th></th>
<th>GE90-like</th>
<th>UHB</th>
<th>TeDP/Cryo</th>
<th>TeDP/LH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust – RTO</td>
<td>180,400</td>
<td>139,000</td>
<td>94,200</td>
<td>85,800</td>
</tr>
<tr>
<td>Non-electrical System - lbs</td>
<td>58,600</td>
<td>30,500</td>
<td>28,100</td>
<td></td>
</tr>
<tr>
<td>Electrical System/Gearbox - lbs</td>
<td>1800</td>
<td>21,300</td>
<td>16,300</td>
<td></td>
</tr>
<tr>
<td>Total Weight - lbs</td>
<td>47,300</td>
<td>60,400</td>
<td>51,800</td>
<td>44,400</td>
</tr>
</tbody>
</table>
For the power range bar for each aircraft class

- The left side is the smallest electrical machine in a partially electrified system
- The right side is the size of the generator in a twin engine fully electrified system