Autonomy
@ Ames

NASA Ames Research Center
Rational and Deterministic Autonomy

Rationalism and **Determinism** in Autonomy means having the right kind of goals and the ability to select the right goal from an existing set.

Determinism enables easier verification and validation.

The challenge is:

- Definition of rational goals
- Engineer a deterministic autonomous system

Valid Requirements → **Rational Goals**

Good Engineering → **Determinism**
Core Competencies @ Ames

- Air Traffic Management
- Entry Systems
- Advanced Computing & IT Systems
- Intelligent / Adaptive Human & Robotic Systems
- Low-Cost Space Missions
- Aerosciences
- Astrobiology and Life Science
- Space and Earth Sciences
Ames Intelligent / Adaptive Human and Robotic Systems Core Competency

Engineering, computer science, and human factors skills and technologies.

Applied to develop and deploy intelligent systems often operating in complex and varying levels of collaboration with humans to:

- extract knowledge, including state awareness
- support decisions, and
- enable adaptive system operations

Operating in dynamic space and aeronautics mission environments.
Ames Intelligent / Adaptive Human and Robotic Systems Competency Elements

<table>
<thead>
<tr>
<th>KNOWLEDGE & STATE AWARENESS</th>
<th>Collaborative Assistant Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable distributed teaming & knowledge extraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISCOVERY AND SYSTEM HEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>System diagnostics, prognostics, physics models</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTONOMOUS SYSTEMS AND ROBOTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning, scheduling, machine learning, advanced controls, & intelligent robotics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMAN PERFORMANCE & PSYCHOPHYSIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human vision, audition, attention, memory, and cognition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMAN-COMPUTER INTERACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-centered interface design & usability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CROSS-CUTTING METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaborative Autonomy</td>
</tr>
<tr>
<td>Methods to enable effective human-machine and system performance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROBUST SOFTWARE AND SYSTEM ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification & validation of software and system performance</td>
</tr>
</tbody>
</table>
Ames Intelligent / Adaptive Human & Robotic Systems Workforce

- **Extensive Workforce**
 - 134 FTEs
 - 184 WYE
- **Specialized Expertise**
 - 103 FTEs with Advanced Degrees
- **Intellectual Capital**
 - 19 Patents and Licensing Agreements
- **Peer Recognition**
 - 17 Major Awards
- **Intellectual Output**
 - 75+ Publications per year
- **Broad Engagement**
 - 50+ Partners

- **Ames Autonomy Competency Capabilities**
Ames Intelligent / Adaptive Human & Robotic Systems Partnerships

Google
Apple
UC Santa Cruz
Amazon
HP
Carnegie Mellon University
IBM Watson
Stanford University
UC San Diego
Nissan
Boeing
SpaceX
UC Davis
Santa Clara University
U.S. Air Force
Autonomy Technology Development at Ames

TA4: Robotics and Autonomous Systems

4.1 Sensing and Perception
4.1.1 3D Sensing
4.1.2 State Estimation
4.1.3 Onboard Mapping
4.1.4 Object, Event, and Activity Recognition
4.1.5 Force and Tactile Sensing
4.1.6 Onboard Science Data Analysis

4.2 Mobility
4.2.1 Extreme-Terrain Mobility
4.2.2 Below-Surface Mobility
4.2.3 Above-Surface Mobility
4.2.4 Small-Body and Microgravity Mobility
4.2.5 Surface Mobility
4.2.6 Robot Navigation
4.2.7 Collaborative Mobility
4.2.8 Mobility Components

4.3 Manipulation
4.3.1 Manipulator Components
4.3.2 Dexterous Manipulation
4.3.3 Modeling of Dexterous Dynamics
4.3.4 Mobile Manipulation
4.3.5 Collaborative Manipulation
4.3.6 Sample Acquisition and Handling
4.3.7 Manipulator Components

4.4 Human-System Interaction
4.4.1 Multi-Modal Interaction
4.4.2 Supervisory Control
4.4.3 Proximate Interaction
4.4.4 Instant Recognition and Hominization
4.4.5 Distributed Collaboration and Coordination
4.4.6 Sample Acquisition and Handling
4.4.7 Safety, Trust, and Interacting with Robots and Human Proximity Operations
4.4.8 Remote Interaction

4.5 System-Level Autonomy
4.5.1 System Health Management
4.5.2 Activity Planning, Scheduling, and Execution
4.5.3 Autonomous Guidance and Control
4.5.4 Multi-Agent Coordination
4.5.5 Adjustable Automation
4.5.6 Human-System Interface
4.5.7 Path and Motion Planning with Uncertainty
4.5.8 Automated Data Analysis for Decision Making

4.6 Autonomous Rendezvous and Docking
4.6.1 Relative Navigation Sensors
4.6.2 GN&C Algorithms
4.6.3 Docking and Capture Mechanisms and Interfaces
4.6.4 Mission and System Managers for Automation and Autonomy

4.7 Systems Engineering
4.7.1 Modularity, Commonality, and Interfaces
4.7.2 Verification and Validation of Complex Adaptive Systems
4.7.3 Robot Modeling and Simulation
4.7.4 Robot Software
4.7.5 Safety and Trust

Autonomy
✓ Major effort
✓ Minor effort
Ames Autonomy for Space Exploration

2003 Mars Exploration Rovers
Mixed-Initiative Activity Planner (MAPGEN)
Collaborative Information Portal (CIP)
MERBoard Collaborative Workspace

2007 Phoenix Lander
Ensemble:
Rover activity planning & scheduling

2016 NODES
Spacecraft swarm relaying ground commands and science data between satellites while autonomously determining order of satellite network communication

1997 Deep Space 1 Remote Agent
The first demonstration of an onboard autonomous spacecraft control system

2005 Earth Observing - 1
Livingston on-board model-based diagnostic

2012 Mars Science Lab
Ensemble:
Rover activity planning & scheduling

2015: AMO
Demonstrate crew autonomy protocols and technology onboard ISS
TA 4.5.1, 4.5.2

The first onboard artificially-intelligent adjustably-autonomous flight system to control a spacecraft – 1999 NASA Software of the Year winner

Capabilities

• Planner expands high-level goals into flexible plans
• Executive decomposes plans into low-level spacecraft commands and monitors that the states commanded to are achieved and maintained
• Logically-Consistent State Estimator and Fail-operational fault recovery
• Identifies faults and suggests recoveries that the Executive uses to continue plan execution
• If necessary, Executive requests the Planner to generate a new plan
Nodes (2016)
EDSN: A Nanosat Swarm

Small Spacecraft Technology Demonstration:

• Novel intra-swarm communications
 • The first true Swarm in space. Configured to allow spacecraft to talk to each other and share data, while taking geographically dispersed payload measurements
 • 1 spacecraft talks to Ground for the whole Swarm.

• Multi-point space physics (radiometers)
 • NASA Ames – PM and S/C bus
 • Montana State University – Instrument
 • Santa Clara University – Ground Station

EDSN spacecraft is a 8x 1.5U nanosat technology mission from NASA’s Space Technology org
Ames Human-Autonomy Teaming for Space Exploration

2007 Phoenix Lander
Activity planning & scheduling by science teams

2003 Mars Exploration Rovers
Constraint Editor for Mission Planning and Long-Term Planning

2012 ISS MCC
Integrated Attitude, Power and Crew Activity Planning for Mission Operations at JSC, MSFC, ESA and JAXA

2012 Mars Science Lab
Virtual collaborative activity planning & scheduling by science teams

2014-15 NEEMO
Mars analog demonstration with simulated time delay

2015 ISS On-Board
The first evaluation of assisted planning & re-planning system on Station
Autonomous crew scheduling

- ISS astronauts can self-schedule mission activities independent of ground control
- Intelligent support system for planning to avoid and de-conflict plan violations and allow for rapid re-planning
- Technology demo on the International Space Station using tablet computers

Future human exploration missions

- Deep space missions (Mars, etc) will require crew to be more autonomous of mission control
- Activity scheduling is critical for mission execution and operations, but is tedious and complex
- Tools that support crew self-scheduling are essential for mission success
Ames Autonomy for Robotics

2002 Single Cycle Instrument Placement
Approach and place an instrument in one command cycle. Method has since been used on Mars with MER.

2007 Robotic Site Survey
Systematic autonomous survey with rovers. Field testing at Haughton Crater.

2014 Planetary Lake Lander
Adaptive science for dynamic phenomena in deep-space missions. Field testing in Chile.

2015 Astrobee Free-Flyer
Autonomous nav, docking and recharge, and mobile sensor IVA work on the ISS.

2005 Autonomous Visual Inspection
Robotic “walk around” inspection for future lunar sortie operations. Universal Executive and PLEXIL.

2010 ATHLETE Footfall Planner
Safe, energy-efficient walking with the ATHLETE robot on rough terrain.

2014 Advanced Navigation
Autonomous map and feature-based localization for future planetary rover missions.

2015 Self Driving Car
Adapt space robotics technology to “fleet management” use.
Single Cycle Instrument Placement
TA 4.5.2, 4.5.7, 4.5.8

Overview

- Remote designation of targets for contact instrument measurement
- Autonomous navigation, arm deployment, and data collection
- Increased productivity, lower workload for ground operators

On-board Autonomy

- Robust, precision visual feature detection and tracking
- Autonomous vision-based navigation for terminal guidance
- Autonomous safe trajectory planning for robotic arm and contact instrument placement
Overview

• Enabling technology for increased planetary rover autonomy
• Real-time surface positioning (“GPS without satellites”) via on-board processing
• Infusion to Mars Science Lab (Curiosity) and Resource Prospector missions

Approach

• Stereo vision + 3D terrain model derived from orbital imagery
• Determine position by comparing the horizon / terrain to 3D terrain model
NASA-Nissan Partnership (2015-)

R&D agreement (5 year term)
- Autonomous vehicle systems
- Human-machine interface
- Network-enabled applications
- Software V & V
- Vehicle testing at NASA Ames

Current activities
- Adapt NASA telerobotic technology originally developed for planetary exploration
- Conduct joint development, testing, and assessment at Ames (urban scenario with dynamic hazards)
- Jan 2016 demo for Nissan CEO: Fleet management of multiple autonomous vehicles
Overview

• Free flying robot for inside the ISS
• Astrobee will be used by flight controllers for mobile IVA sensing
• Astrobee will be used as a robotic testbed (like SPHERES)

Safe autonomous operations

• Task execution / notification
• Perching & station keeping
• Docking & resupply

Concept of operations

• Mission control uploads plans to robot for autonomous execution
• Astrobee has on-board fault recovery (stop, terminate, return)
• Mission control can remotely intervene if needed
Ames Autonomy for Aeronautics

2004 Autonomous Rotorcraft
Automated reasoning in the context of autonomous rotorcraft operations.

2006-10 Intelligent Flight Control
Improved stability/control, adapts to uncertainties, reduced costs for FCS development

2010 Emergency Landing Planner
Decision support to the pilot of a damaged commercial transport aircraft

2011 Real-Time Prognostics
Predict remaining useful battery life

2012 Function Allocation
Automated ground-based separation assurance across increasing levels of autonomy

2013 Prediction Uncertainty
Operators compensating for imperfect autonomy

2015 sUAS Autonomy
Fully Autonomous urban deployment of sUAS—Vehicle Technologies and Airspace Management
Payload Directed Flight

Overview

• The Payload Directed Flight project investigated autonomy and advanced GN&C allowing vehicles to operate relative to complex, large-scale, dynamic, and dangerous phenomena by “closing the loop” around payload sensors.

• Trajectory planning and optimization, trajectory-based control, real-time large-scale probabilistic estimation.

Applications and Flight Testing

• Autonomous Wildfire Identification and Tracking

• Autonomous Subsurface Earthquake Mapping Project in Surprise Valley, CA

• Distributed Collaborative UAS Swarm for Volcanic Plume Sensing in Turrialba, Costa Rica
The UTM architecture addresses mission planning and execution strategies for Small UAS (sUAS) operations to encompass:

>> Non-autonomous sUAS operations – for spontaneous launching of one or more sUAS by operator(s) to address an urgent need (e.g., for law enforcement and first responder scenarios)

>> Autonomous sUAS operations – for deliberate planned autonomous sUAS flights (e.g., search & rescue, cargo delivery, surveillance).

Research Focus:
1. Beyond visual line-of-sight
2. Reservation of airspace volume
3. Urban environments, higher density
 >> Wind Accommodation
 >> Sense and Avoid
 >> On-board Autonomy
Function Allocation (2012)
TA 15.5.1

Overview
• Systematic investigation of automation and autonomy for air traffic control to increase capacity and efficiency
• Evaluation at different potential future stages of NextGen

Key Results
• The “Maximum NextGen” condition, in which controllers team up with autonomous separation assurance functions outperformed all others by far
• Increased decision support automation without paradigm shift caused additional complexities
Autonomy @Ames Summary

Heritage:
• Ames has a 25+ years heritage of conducting autonomy R&D and deploying autonomy in support of NASA’s aeronautics and space missions

Currently:
• Ames has a robust and engaged autonomy activity:
 o Workforce: Over 300 staff members
 o Partnerships: Over 50 active partnerships with industry, academia, and government
 o Work: Applying autonomy to support NASA’s aeronautics and human and robotic space missions, and actively engaged with industry partners in exploring additional application domains

Future Commitment:
• Autonomy is one of Ames’ 8 core competencies and Ames intends to apply Center level priority to NASA’s needs in this domain
• During this demonstration, a model-based fault diagnostics component to the Autonomous Sciencecraft Experiment (ASE), led by Jet Propulsion Laboratory (JPL) and Interface and Control Systems (ICS), which flew on Earth Observing 1 satellite.

• EO-1 was the first flight deployment of this improved fault diagnosis technique.

• The diagnosis engine returned correct diagnosis in all on-board test scenarios.
PROBLEM: Testing may miss bugs that occur only under specific/rare circumstances.

ACHIEVEMENTS: The JavaPathfinder model checker automatically checks all possible executions of a program against its requirements, including concurrency. When a requirement does not hold, it provides a program trace that violates it.

IMPACT: JavaPathfinder is open source and has thousands of users worldwide. In autonomy, it was applied to the Remote Agent and K9 Rover Executive and found concurrency bugs in early design verification not found by testing. Recipient of *Outstanding Technology Development Award by Federal Laboratory Consortium Far West Region Awards*, and *most influential paper award in Software Engineering by the Automated Software Engineering conference*.

```java
void add(Object o) {
    buffer[head] = o;
    head = (head+1)%size;
}

Object take() {
    ...
    tail=(tail+1)%size;
    return buffer[tail];
}
```
"It was great, thank you! Overall, the software was really good, better than I expected…we played with it once it was onboard and was really impressed with the capability, really amazing program."

ISS Crew debrief (Increment 40)

"Situational Awareness was great BECAUSE of the AMO Software. I loved the AMO Software."

ISS Crew debrief (Increment 41-42)
Planetary Lake Lander (2011-2014)
TA 4.1.4, 4.1.6, 4.3.6, 4.5.2, 4.5.8

Overview
• Analog for future probes to the methane seas of Titan (Titan Mare Explorer mission)
• Autonomously learns about dynamic environment
• On-board focusing of limited resources to improve science

Adaptive science
• Adaptive sampling (water column profiling)
• Dynamic event monitoring (storm detection / measurement)
• Adaptive shore approach
• Adaptive telemetry uplink (dynamic data triage)
Demonstrate novel Advanced Caution and Warning (ACAWS) technology during Exploration Flight Test 1 (EFT-1).

ACAWS monitored EFT-1 telemetry data to detect and isolate faults, and automatically determine loss of capability. ACAWS was designed using NASA developed and COTS software tools. ACAWS used novel system engineering processes to rapidly develop fault models. The ACAWS system was favorably evaluated by JSC flight controllers. ACAWS algorithms are now being migrated onboard for potential future use in Exploration spacecraft.
Emergency Landing Planner

Task: Provide decision support to the pilot of a damaged commercial transport aircraft, or decision support for air traffic controllers for medical emergencies.

Challenges: 100s of airports/runways, Dynamics, Path quality, ‘Soft’ obstacles

Impact: Evaluated in different weather and damage conditions. Pilot feedback overwhelmingly positive.
Improved Crew Operations

Increasingly Autonomous Systems
- Automated Procedures and Checklist Interactions
- Aircraft Monitoring & Assessment
- Predictive a/c state and clearance compliance monitoring
- Detecting, diagnosing and responding to non-normal conditions
- Autonomous Flight Planning

Human/Autonomy Teaming (HAT)
- Function Allocation (FA) and Crew Resource Management
 - Adjustable, adaptive, and/or mixed initiative autonomy
- Collaboration tablet (shared documents, text & video chat, voice interface)
- Human-Machine Interfaces (HMI)
 - Transparent and collaborative autonomy; Multi-modal interaction
- Futuristic Flight Deck and/or Ground Station Technologies
 - Flight, Automation, and Information Management (FAIM) system
 - Simplified Autoflight Testbed (SAT)
V&V of Uncertainty

ACAS X:
the next generation
onboard collision
avoidance system, to
replace TCAS

PROBLEM: Software for autonomy is designed to deal with uncertainty and is hard to verify. For example, ACAS X is based on models that capture pilot or intruder behavior and state estimation probabilistically.

ACHIEVEMENTS: 1) VeriCA – tool for design and verification of probabilistic systems. 2) RLES – tool for automatic generation of high probability aircraft scenarios that trigger undesirable behavior in ACAS X.

IMPACT: Both tools applied to ACAS X, and transferred to the FAA. VeriCA identified a design problem of an early ACAS X prototype. RLES is used by ACAS X team to generate scenarios leading to Near Mid Air Collision. NASA Honor and conference best paper awards.
PROBLEM: FAA’s safety case requirement for ‘non-standard’ UAS operations presents very high bar for entry to the NAS.

ACHIEVEMENTS: AdvoCATE tool facilitates development of safety cases through semi-automated generation, reducing barrier to autonomous missions and supporting eventual certification.

IMPACT: Ames used AdvoCATE to create the first operational safety case accepted by the FAA for a Ground-based Sense and Avoid (GBSAA) mission. This was also the first safety case for civilian UAS in the NAS. NASA Honor and conference best paper awards.