Intro & Recent Advances

Remote Data Access via OPeNDAP Web Services

For the ESIP Summer-2016 OPeNDAP Workshop
Wednesday, July 20th, 2016, 13:00-17:00

Excerpted from a 2015 presentation to the
CEOS Working Group on Information Systems & Services (WGISS)

Dave Fulker, President of OPeNDAP, Inc.
subcontractor to Raytheon for NASA/ESDIS

Presentation supported by NASA/GSFC under
Raytheon Co. contract number NNG15HZ39C
Part I

Introduction to OPeNDAP* Web Services

*OPeNDAP is an organization and an acronym: “Open-source Project for a Network Data Access Protocol”
OPeNDAP Concepts
originally from Distributed Ocean Data System (DODS) circa 1994

- **URL** \(\approx\) **dataset***
- **Retrieve**
- Retrieval protocol built in to multiple libraries
- flexible data typing
- many, diverse clients

URL with constraint \(\approx\) **subset**

dataset descriptions *(metadata)*

dataset content *(typed/structured)*

- arrays *(~coverages)*
- tables *(~features)*

dataset \(\approx\) **granule**

Image: EOSDIS - NASA's Earth Observing System Data & Information System
URL ≈ Granule*
per OPeNDAP’s Data Access Protocol (DAP)

http://laboratory.edu/device/experiment/granule.dmr

<table>
<thead>
<tr>
<th>Domain name often is an organization’s web server.</th>
<th>Servers often have hierarchical collections.</th>
<th>Each URL references a distinct DAP “dataset.”</th>
<th>Suffixes specify return types.</th>
</tr>
</thead>
</table>

Depending on suffix, DAP returns metadata or content, with options for human- or machine-readable forms (XML, NetCDF4…). Suffix “dmr” → metadata only.

*dataset ≈ granule
Datatype Philosophy

- **Internal data model has few data types**
 - For simplicity…

- **Types are domain-neutral but flexible**
 - Structures & attributes ➔ rich syntax & semantics

- **These types support many domain-specific needs**
 - A recent crawl* (23,000 domains in .gov, .edu, .org) found >1400 collections with DAP servers

* By the National Snow & Ice Data Center (for NSF/EarthCube)
OPeNDAP services

Function as Middleware

- Data ingest via encoding-specific adapters
 - Handlers for a growing set of source-data types
- Multiple response encodings
 - Native DAP—useful in Python, Java, C++, Fortran...
 - netCDF (also GeoTIFF where possible)
 - XML (⇒ HTTP via style sheets)
 - Recently added: WMS, W10n (JSON), WCS (beta)
Architectural Overview of Hyrax

a widely-used DAP server

- Data-User App (python, java, netCDF Libraries)
- Data-User App (other standard) OGC-Compliant
- Data User, Browser-Only XML or JSON
- DAP Extending Services
- Core DAP Services (Hyrax Front-End)
- Other Web Services

Apache Server Framework

Hyrax Back-End Server with Encoding-Specific Handlers

- HDF files
- netCDF files
- text files
- SQL database
- extensible…
URL + Query ➔ Subset
& (future) results from other server functions

http://…/granule.nc4?dap4.ce=constraints&dap4.func=functions

<table>
<thead>
<tr>
<th>Dataset identifier as above, except return-type is NetCDF4 (= HDF)</th>
<th>DAP “constraint expressions” yield sub-arrays & other proper subsets</th>
<th>DAP4 “function expressions” enable extensions</th>
</tr>
</thead>
</table>

Constraints specify subsets by variable names, by array indices & (for tables) by content. Likely extensions include statistics, UGRID subsetting, feature extraction…

The query form &dap4.func=… enables DAP extensions ⇒ new server functions
DAP-based

Subset Selection (from arrays | tables)

- Select variables by name
 - For tabular data, this means selecting columns
- Select rows of a table via column-specific value constraints
 - Allows both domain-based & range-based subsetting
- Select sub-arrays by constraining their indices
Index-Constrained Subsetting

Source Array ➤ Sub-Array (response)
caveat —

Index-Based Subsetting

- Excellent if desired subset is a bounding box parallel to source array (indices ↔ coordinates)

- Less useful when
 - Subset selection not based on domain coordinates
 - Source is not organized as coordinate-mapped arrays
 - Desired subset is polygonal or is skewed (relative to source-array orientation)
Part II
Recent Enhancements of OPeNDAP Web Services
With Demonstrations
This part of the presentation is drawn primarily from a project report on:
NASA Data Interoperability

An EOSDIS Presentation & Demo
Originally given March 27, 2015

Original Presenters: James Gallagher & Nathan Potter (OpenDAP)
main NASA motivations for
OPeNDAP Enhancements

- Easier software builds & better documentation
- Authentication of data users
- More response encodings
 - Open Geospatial Consortium (OGC) Web Services (WMS, WCS…)
 - JavaScript Object Notation (JSON) for Webification (w10n)
- Requesting DAP ops on many granules at once
 - Response = concatenated CSV (arrays ➔ tables) or
 - Response = zipped files
progress on simplifying

OPeNDAP Server Installation

Context
- Hyrax-install complexity was once a barrier to use

Key Accomplishments
- Adding modules does not increase the package count
- Source build: now just 3 distinct packages
 - Previously 18 packages
- Binary install: now just 2 RPMs + 1 WAR
 - Previously 15 RPMs + 1 WAR
progress enhancing OPeNDAP’s Website & Documentation

Key Accomplishments

- Various Website repairs
- 760 fixed links (from automated before/after crawls)
- Five documents added
 - Client configuration for authorization
 - Server configuration for authorization
 - Source-code build how-to
 - Summary of Winter-2015 ESI-P-panel on Web-services performance
 - Server configuration for WMS provision
progress on
User Authentication
(via EarthData Login at NASA EOSDIS)

Context/Things to Notice
- Fine-grained access control for individual directories
- Demo is Web-only, but cURL tests work as well
 - cURL—like most client applications—is built around libcurl, thus serving as a lowest common denominator
 - EarthData credentials are simply stored in a user’s .netrc file

Live Demo…
prior context for enhancing

Multi-Granule Aggregation

Many servers have allowed DAP providers to form (virtual) aggregations of (similar) granules. But until now, end users could not choose:

- Granules to be aggregated
- Forms of aggregation

Furthermore, array- & table-style subsetting could not be mixed (with or without aggregation).
Multi-Granule Aggregation

Context/Things to Notice

- Request data from 1,000s of files with one operation

 N.B. Necessitates use of HTTP POST (to avoid huge URLs)

- Two forms of aggregation response
 - Zipped netCDF files
 - Concatenated tables (CSV)

 N.B. Arrays may be aggregated as concatenated tables!

Live Demo...
DAP Output-Encoding Extensions

Core DAP Services (Hyrax Front-End)

DAP(2|4), netCDF, XML, GeoTIFF…

Other Web Services

Hyrax Back-End Server with Encoding-Specific Handlers

Apache Server Framework

Core DAP Services (Hyrax Front-End)

DAP-Extending Services

HDF files

netCDF files

text files

SQL database

extensible…

Data User, Browser-Only
XML or JSON

Data-User App (other Standard)

OGC-Compliant

Data-User App (python, java, Native-DAP Libraries)

Data-User App (netCDF-based)
OGC Protocol: WMS Web Mapping Service

- WMS (Web Mapping Service)
 - Great for 2-dim geospatial data on ‘maps’ (but not for higher-dimensional data types)
 - A bridge to display tools, notably, Google Earth
- Live Demo…
DAP Interoperability Leverage

- Data-User App (netCDF-based)
 - netCDF Libraries
- Data-User App (python, java, Native-DAP Libraries
- Data-User App (other standard)
 - OGC-Compliant
- Data User, Browser-Only
 - XML or JSON

Apache Server Framework

- Core DAP Services (Hyrax Front-End)
- DAP-Extending Services

Hyrax Back-End Server with Encoding-Specific Handlers

- HDF files
- netCDF files
- text files
- SQL database
- extensible...
We demonstrated

NASA (HDF5) files ➔ OpenDAP ➔ WMS ➔ Google Earth

Notably, it seems unlikely that either

Google Earth engineers anticipated reading HDF5 or
NASA engineers planned to display data on Google Earth!

This suggests* a definition for interoperability:
“supporting unanticipated uses”

*Paraphrasing John Orcutt
This presentation, and the recent work described, were supported by NASA/GSFC under Raytheon Co. contract number NNG15HZ39C