“I need more power, Scotty!”

The Potential Impact of High Power Propulsion on the Human Exploration of Space

John H. Scott
EP/Propulsion and Power Division
NASA Lyndon B. Johnson Space Center
Evolvable Mars Campaign
(ca. 2015)

First Crewed Mission to Mars Surface

Mars Surface Prodeploy (5 landers)

Lunar Gravity Assist (LGA), Solar Electric Propulsion (SEP), Chemical Propulsion (CP)

Crew on board (●●●), HPS 1 (○), HPS 2 (●), HPS 3 (●●), HPS 4 (●●●), HPS 5 (●●●), HPS 6 (●●●)

Evolvable Mars Campaign

SEP/Chemical “Hybrid” Stage

- 318 kW_e to EP thrusters @ 2-3000 sec I_sp
- MMH/N_2O_4 chemical thrusters @ 890 N

Design Reference Architecture 5.0
(ca. 2009)

Crewed Mission to Mars Surface

~500 Days at Mars

High Mars Orbit
(250 x 33,813 km)

Aerocapture/EDL

EDL/Descent Maneuvers

Ascent Maneuvers

Trans-Earth Injection

Earth Slow-Down Maneuver
(as required)

Direct Earth Entry

Note: Earth days

TBD SLS Launches
Ref. Assembly Orbit

TBD SLS Launches
(TBD days between launches)

SLS-Cargo

SLS-Cargo

SLS-Crew

Pre-Deploy Cargo

Crew to Mars

TBD SLS Launches
1 SLS-80 Crew Launch
(TBD days between launches)

SLS-Cargo

SLS-Cargo

SLS-Crew

Ref. Assembly
(Crew)

SLS-Cargo

SLS-Cargo

SLS-Crew

Note: Earth days

NASA/SP–2009-566

AIAA Power & Energy Conference
Salt Lake City UT
25-7 July 2016

8 July 2016
Design Reference Architecture 5.0

In-Space Power/Propulsion Options

<table>
<thead>
<tr>
<th>Design</th>
<th>Cargo Missions</th>
<th>Crew Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037 Conjunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class "long stay"</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>mission</td>
<td>Chemical</td>
<td>Nuclear</td>
</tr>
<tr>
<td>Electric Power</td>
<td>N/A</td>
<td>Thermal</td>
</tr>
<tr>
<td>level</td>
<td>2.5 MW crew/</td>
<td>Nuclear</td>
</tr>
<tr>
<td></td>
<td>1 MW cargo</td>
<td>Electric</td>
</tr>
<tr>
<td>Total Mass</td>
<td>~1250 t</td>
<td>~770 t</td>
</tr>
<tr>
<td># Heavy Lift</td>
<td>~12</td>
<td>~7</td>
</tr>
<tr>
<td>(SLS) Launches</td>
<td>9 (7)</td>
<td></td>
</tr>
<tr>
<td>SLS Delivery to LEO</td>
<td>105 and 130</td>
<td>105 and 130</td>
</tr>
<tr>
<td>LEO (t)</td>
<td>105 (130)</td>
<td>105 and 130</td>
</tr>
<tr>
<td>SLS Shroud Dia.</td>
<td>10 / 22</td>
<td>10 / 25</td>
</tr>
<tr>
<td>or Barrel Length</td>
<td>10 / 25</td>
<td>10 / 15</td>
</tr>
<tr>
<td>Trip Duration</td>
<td>180 / 500 / 200</td>
<td>309 / 400 / 224</td>
</tr>
<tr>
<td>(days to Mars,</td>
<td>174 / 539 / 201</td>
<td>439 / 300 / 224</td>
</tr>
<tr>
<td>on Mars, back</td>
<td>914 days total trip</td>
<td>1065 days total trip</td>
</tr>
<tr>
<td>home)</td>
<td>980 days total trip</td>
<td>1-2 ATV launches required to provide consumables to E-M L2</td>
</tr>
<tr>
<td>Comments</td>
<td>Requires propellant depot</td>
<td>Number of launches reduced to 7 with 130 mt SLS</td>
</tr>
</tbody>
</table>

NASA/SP–2009-566-ADD2
Integrated Manned Interplanetary Spacecraft Concept Definition (ca. 1968)

Crewed Mission to Mars Surface

Figure 4-14
Crewed Missions to Mars Surface

Conjunction “Long Stay” Class
Synthesis Group “America at the Threshold” 1991

Opposition “Short Stay” Class
“90-Day Study on the Human Exploration of the Moon and Mars” 1989

Not including surface stay time
Total crewed duration: ~900 days

Including 25 day surface stay time

“SOA” Nuclear Electric Propulsion (NEP)

Solid Core Fission Reactor
Brayton conversion
\[I_{\text{sp}} \approx 5000 \text{ sec} \]
\[T_{\text{top}} = 1500 \text{ K} \]
\[T_{\text{rad}} = 500 \text{ K avg.} \]
\[\alpha_{\text{pwr}} = \approx 11 \text{ kg/kW}_e \]
\[\alpha_{\text{prop}} = \approx 2 \text{ kg/kW}_e \]
Parametric Mars Architecture Studies
(ca. 1989)

Crewed Missions to Mars Surface with “SOA” NEP ($\alpha = \sim 13 \text{ kg/kW}_e$)

Conjunction “Long Stay”
Synthesis Group “America at the Threshold”

Opposition “Short Stay” Class
“90-Day Study on the Human Exploration of the Moon and Mars” 1989

- Total IMLEO = ~500 mT
- Piloted In-space time = 360 days

- Total IMLEO = ~480 mT
- Piloted time = 510 days
“Advanced” Nuclear Electric Propulsion (NEP)

5 MW\textsubscript{e} to EP

2.5 MW\textsubscript{e} to EP

Crewed Missions to Mars Surface with “Advanced” NEP ($\alpha \approx 5 \text{ kg/kW}_e$)

- **Conjunction “Long Stay” Class**
 - Synthesis Group “America at the Threshold” 1991
 - Opposition “Short Stay” Class
 - “90-Day Study on the Human Exploration of the Moon and Mars” 1989

- Not including surface stay time
- Total crewed duration: ~900 days
- Total IMLEO = ~400 mT
- Piloted in-space time = 260 days

- Including 25 day surface stay time
- Total IMLEO = ~360 mT
- Piloted time = 400 days

Parametric Mars Architecture Studies (ca. 1989)

[Diagram showing various mission scenarios and technologies]
Aneutronic Fusion Power NEP

Fusion Fuel Pairs (Product Energy)

D + T = n⁰ (14.07 MeV) + ⁴He (3.52 MeV)

D + D = n⁰ (2.45 MeV) + ³He (0.82 MeV) (50%)
D + D = p (3.02 MeV) + T (1.01 MeV) (50%)

D + ³He = p (14.68 MeV) + ⁴He (3.67 MeV)

p + ¹¹B = ³He (8.7 MeV)

Fusion Reaction Cross-Sections

Figure 5 — Typical Fusion Reaction Cross Sections

- P⁺¹¹B Fusion Reactor
- Direct conversion to power
- Advanced PMAD
- Advanced Plasma Thruster
 - \(I_{sp} \approx 10000 \) sec
 - \(\alpha_{pwr} = \sim 2 \text{ kg/kW}_e \)
 - \(\alpha_{prop} = \sim 1 \text{ kg/kW}_e \)
Crewed Missions to Mars Surface with Aneutronic Fusion ($\alpha = \sim 3 \text{ kg/kW}_e$)

- Total IMLEO = $\sim 400 \text{ mT}$
- Piloted In-space time = 220 days

- Total IMLEO = $\sim 350 \text{ mT}$
- Piloted time = 350 days

Conjunction “Long Stay” Class
Synthesis Group “America at the Threshold” 1991

Opposition “Short Stay” Class
Human Exploration of the Moon and Mars” 1989
150 kW_e max power.
- 1600 mT launched to assembly orbit
- 220 mT to Mars surface
- ~300 day surface stay
- ~1000 day mission duration
- Evolutionary PV technology

15 MW_e max power.
- 360 mT launched to assembly orbit
- 125 mT to Mars surface
- ~25 day surface stay
- ~350 day mission duration
- Advanced fusion technology