Plant Habitat (PH)

Presented by:
Bryan Onate
NASA Plant Habitat Project Manager

July 28, 2016
General Overview

- Plant Habitat (PH) is a large enclosed environmentally controlled chamber that will support research on larger plant species.
 - Designed for longer duration generational genetic studies
 - Tracking and controlling environmental parameters: Temperature, Relative Humidity, CO$_2$ Levels, Light Intensity, Spectral Quality

- PH was designed to maximize science.
 - Quad-Locker size Payload
 - Planned to be installed in EXPRESS Rack #5 (Locker locations 3, 4, 7, and 8)
 - Will utilize a powered ISIS location
 - The APH utilizes a distributed architecture allowing ease of replacement of Orbital Replaceable Units (ORU’s) as well as the potential for future updates for custom applications.
 - Science Growth Area: 1,708 cm2 (Shoot Height 45 cm; Root Height 5 cm)
 - Science Growth Volume: 112,500 cm3

- PH Facility is manifested on OA-7 (Dec 2016)
- PH-01 (first science experiment) is manifested on SpaceX-13 (Sept 2017)
General Overview

APH Flight Unit #1 in GSE Cart

APH in EXPRESS Rack #5
General Overview

- APH to launch within 7-8 soft stowage bags - images to the right show each separately launched item
 1. M03 size bag for the SMA and ORU Component Drawer
 - ORU Component Drawer includes all ORUs installed inside
 2. M01 size bag for the Growth Chamber
 3. Science Carrier will launch within a separate bag (size TBD) along with any experiment unique equipment (EUE)
 4. Growth Light Assembly
 5. ISIS Drawer
 6. AFA Drawer
 7. Two ECS Units, plus a 3rd spare
 8. Bottom Pan
 - Can launch upside-down inside the SMA to conserve up-mass

External cables/hoses and sample kits will be stowed within the Growth Chamber, otherwise another bag will be used
General Overview

- EXPRESS Rack Resources Requirements:
 - Four 28 VDC power feeds with maximum 1500 W total power
 - Avionics Air Assembly (AAA) Fans
 - Moderate Temperature Loop (MTL) with 140 lbs./hr. flow
 - Rack Interface Controller (RIC) Ethernet
 - Gaseous Nitrogen
 - EXPRESS Laptop Computer (ELC)
APH provides accurate control and/or monitoring of:

- Temperature
- Relative Humidity
- CO\textsubscript{2} Concentration
- Ethylene Scrubbing
- Light Level, Quality, and Photoperiod
- Water Delivery
- O\textsubscript{2} Concentration
- Chamber Pressure
- Ventilation Flow Rate (.3 to 1.5 m/s)

APH also provides:

- Data Acquisition
- Imaging
Environmental Control System
Temperature and Humidity

- Temperature:
 - Provides Control of temperature from 18 °C to 30 °C.
 - Control of temperature is to within +/- 1 °C.

- Humidity:
 - Provides Relative Humidity control over the range from 50% to 90%.
 - RH control accuracy of +/- 5%.
• Carbon Dioxide:
 - 400 ppm -> 5,000 ppm (50 ppm or 3%).

• Ethylene:
 - < 25 ppb
Environmental Control System
Carbon Dioxide and Ethylene

- Powered ISIS Drawer:
 - Provides structure and access to the two CO$_2$ Bottles for the ECS subsystem

- Air Filtration Assembly (AFA):
 - AFA Drawer contains CO$_2$ and C$_2$H$_4$ scrubbing system
Growth Light Assembly

- Provides light required for plant growth via an array of high-power light-emitting diodes (LEDs)
 - Blue: 0-400 µmol m-2s-1 +/- 5%
 - Green: 0-100 µmol m-2s-1 +/- 5%
 - White: 0-600 µmol m-2s-1 +/- 5%
 - Far red: 0-50 µmol m-2s-1 +/- 5%
 - Infrared: Fixed value between 80 and 150 µmol m-2s-1
 - Maximum integrated level: 1000 µmol m-2s-1
Water Recovery and Distribution System

- Capable of providing up to 2.6 Liters/Day of fluid while controlling to a pressure setpoint (for plants this would be delivered to a Science Carrier).
- Control can be distributed to up to 4 independent lines (for plants this allows for four independent control zones).
- Flow can be up to ~1.6 Liters/min, for a limited time (1-20 seconds).
- Pressure control range: -5 kPa to +2 kPa.
- Two reservoirs:
 - Distribution Reservoir volume: 2 Liters.
 - Recovery Reservoir volume: 1 Liter.
 - Ability to transfer fluid between reservoirs.
- Front panel fill, drain/sampling of reservoirs.
- Compatible with water/nutrient solutions and select biocides.
Growth Chamber

- **Oxygen control** - Maintains the growth chamber atmospheric oxygen concentration between 18% and 24%. (utilizes Nitrogen injection for reduction of O2 levels)
- **Chamber internal pressure** - Maintains the growth chamber pressure to within ± 3.4 kPa of ISS cabin pressure.
- **Air speed** - 0.3 to 1.5 m/s +/- 0.1 m/s
 - Chamber Air Exchanges (5-26 per min)
Growth Chamber Imaging

- 3 Independent Cameras:
 - 1 Overhead View (Color – limited Infrared)
 - 2 Side View (Color and Infrared)
- Imaging provides investigators with ability to gather visual information on experiment.
- Visual indicators within chamber.

Overhead View Color

Side View Color

Side View Infrared
Science Carrier

- Baseline Configuration includes:
 - Temperature sensing
 - Moisture sensing
 - O_2 concentration sensing
- Science Carriers are Experiment Unique, due to modular architecture.
- Custom experiment configurations are possible (including non plant based).

Flight Science Carrier

Prototype Science Carrier
Dwarf Wheat
Summary

- Plant Habitat will be the largest plant growth chamber on ISS responding to the NRC Decadal Survey & SLPS strategic plan.
- Plant Habitat will conduct fundamental plant biology testing which could include plant based life support development.
- Plant Habitat can be utilized to support other science investigation requiring precise and accurate control of environmental parameters:
 - Microbial and other biological organism research
 - Biotechnology research
 - Materials experiments