Flight Test 4 JADEM Preliminary Results: NASA Ames SSI

Doug Isaacson
Chester Gong
Scott Reardon
Confesor Santiago

July 11, 2016
Outline

• System Under Test: JADEM Alerting and Guidance
• NASA Ames SSI Objectives and Scenario Preparation
• Sample Scenario Analysis
• Preliminary Findings
 – FT4 Evaluation Criteria Compliance
 – DAA Alert Timing Analysis
 – Unexpected TCAS RAs
 – Mode C Intruder Guidance Stability
 – Well Clear Recovery Performance
• Lessons Learned & Recommendations
JADEM Alerting and Guidance
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Buffered Well Clear Criteria</th>
<th>Alerting Time Threshold</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
</table>
| ![TCAS RA](image) | TCAS RA | • **Immediate action required**
• Comply with RA sense and vertical rate
• Notify ATC as soon as practicable after taking action | (Driven by TCAS-II) | x | “Climb/Descend” |
| ![DAA Warning Alert](image) | DAA Warning Alert | • ** Immediate action required**
• Notify ATC as soon as practicable after taking action | DMOD = 0.75 nmi
HMD = 0.75 nmi
ZTHR = 450 ft
modTau = 35 sec | 25 sec (TCPA approximate: 60 sec) | “Traffic, Maneuver Now” |
| ![Corrective DAA Alert](image) | Corrective DAA Alert | • On current course, **corrective action required**
• Coordinate with ATC to determine an appropriate maneuver | DMOD = 0.75 nmi
HMD = 0.75 nmi
ZTHR = 450 ft
modTau = 35 sec | 55 sec (TCPA approximate: 90 sec) | “Traffic, Avoid” |
| ![Remaining Traffic](image) | Remaining Traffic | • No action expected | Within surveillance field of regard | x | N/A |

TCAS RA

- **Immediate action required**
- Comply with RA sense and vertical rate
- Notify ATC as soon as practicable after taking action

DAA Warning Alert

- **Immediate action required**
- Notify ATC as soon as practicable after taking action

Corrective DAA Alert

- **On current course, corrective action should not be required**
- Coordinate with ATC to determine an appropriate maneuver

Remaining Traffic

- No action expected

Buffered Well Clear Criteria

- DMOD = 0.75 nmi
- HMD = 0.75 nmi
- ZTHR = 450 ft
- modTau = 35 sec

Alerting Time Threshold

- 25 sec (TCPA approximate: 60 sec)
- 55 sec (TCPA approximate: 90 sec)
- Within surveillance field of regard

Aural Alert Verbiage

- “Climb/Descend”
- “Traffic, Maneuver Now”
- “Traffic, Avoid”
- N/A
Cooperative/Non-cooperative Alerting Structure

<table>
<thead>
<tr>
<th>Cooperative Aircraft</th>
<th>Name</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>TCAS RA</td>
<td>“Climb/Descend”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>DAA Warning Alert</td>
<td>“Traffic, Maneuver Now”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Corrective DAA Alert</td>
<td>“Traffic, Avoid”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Preventive DAA Alert</td>
<td>“Traffic, Monitor”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>None (Target)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Cooperative Aircraft</th>
<th>Name</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>DAA Warning Alert</td>
<td>“Traffic, Maneuver Now”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Corrective DAA Alert</td>
<td>“Traffic, Avoid”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Preventive DAA Alert</td>
<td>“Traffic, Monitor”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>None (Target)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Alerting Hysteresis

- **Section 2.2.4.2.4 Alerting:** Any DAA alert **shall** persist for a minimum of four seconds, unless the intruder is declared a higher priority alert.

- **Evaluated** = alert level evaluated by the algorithm based on state at specific time epoch

- **Declared** = alert level declared to pilot based on hysteresis requirement

Time table:

<table>
<thead>
<tr>
<th>Time</th>
<th>Evaluated</th>
<th>Declared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>2</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>3</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>4</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>5</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>6</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>7</td>
<td>corrective</td>
<td>corrective</td>
</tr>
<tr>
<td>8</td>
<td>preventive</td>
<td>corrective</td>
</tr>
<tr>
<td>9</td>
<td>preventive</td>
<td>corrective</td>
</tr>
<tr>
<td>10</td>
<td>preventive</td>
<td>corrective</td>
</tr>
<tr>
<td>11</td>
<td>warning</td>
<td>warning</td>
</tr>
<tr>
<td>12</td>
<td>preventive</td>
<td>warning</td>
</tr>
<tr>
<td>13</td>
<td>preventive</td>
<td>warning</td>
</tr>
<tr>
<td>14</td>
<td>warning</td>
<td>warning</td>
</tr>
<tr>
<td>15</td>
<td>warning</td>
<td>warning</td>
</tr>
<tr>
<td>16</td>
<td>warning</td>
<td>warning</td>
</tr>
<tr>
<td>17</td>
<td>warning</td>
<td>warning</td>
</tr>
<tr>
<td>18</td>
<td>warning</td>
<td>warning</td>
</tr>
<tr>
<td>19</td>
<td>preventive</td>
<td>preventive</td>
</tr>
<tr>
<td>20</td>
<td>preventive</td>
<td>preventive</td>
</tr>
<tr>
<td>21</td>
<td>clear</td>
<td>preventive</td>
</tr>
<tr>
<td>22</td>
<td>clear</td>
<td>preventive</td>
</tr>
<tr>
<td>23</td>
<td>clear</td>
<td>preventive</td>
</tr>
<tr>
<td>24</td>
<td>clear</td>
<td>preventive</td>
</tr>
<tr>
<td>25</td>
<td>clear</td>
<td>preventive</td>
</tr>
</tbody>
</table>

Note: corrective is orange to visualize distinct colors.
Guidance for Multiple Intruders

- Handles guidance for every intruder within field of view; generating individual heading and altitude bands based on alerting criteria for each intruder, then displaying the union of all bands into a single heading and altitude band.
Other Features (Constraints)

- In calculating heading bands, considers a single user-specified turn rate for ownship aircraft (e.g. 3 degrees per second)
- In calculating altitude bands, considers a single user-specified climb and decent rate for ownship aircraft (e.g. 1,000 FPM)
- Limits heading bands by:
 - User-specified discretization: e.g. 1-degree intervals
 - User-specified heading range: e.g. +/- 110 degrees
- Limits altitude bands by:
 - User-specified discretization: e.g. 100 ft intervals
 - User-specified relative altitude range: e.g. +/- 3,000 ft
- Band Colors
 - Green Banding = heading/altitude is not predicted to lead to a loss of well clear
 - Yellow Banding = heading/altitude is predicted to cause a DAA Corrective Alert (i.e. potential loss of well clear in the next 25-55 seconds)
 - Red Banding = heading/altitude is predicted to lead to a DAA Warning Alert (i.e. potential loss of well clear in 25 seconds or less)
Well Clear Recovery Algorithm

- Well-Clear Recovery (WCR) provides guidance to *regain* Well Clear when no maneuvers are found to *remain* well clear (i.e., otherwise all-red OmniBands)
- WCR guidance is based on a general purpose conflict detection and resolution algorithm (GRACE, modified for FT4)
 - Evaluates multiple intruders for conflicts (threats) based on user-defined separation standards
 - Supports guidance provided by JADEM (e.g., for PT4/PT5/PT6, IHITL, OmniBands, WCR)
 - Generates a conflict avoidance maneuver of left, right (no vertical for FT4)
 - Selects the lowest cost conflict-free solution if one is found
 - Selects the lowest cost (conflicting) solution otherwise

![Maneuver types]

- Turn Left
- Turn Right
- Climb
- Descent

10
Method: Well Clear Recovery Cost Function

- **Near mid-air collision (NMAC) cost**
 - Penalizes all maneuvers too close to NMAC violation for any intruder, i.e. maximizes normalized separation at new, predicted closest point of approach
 - This cost naturally dominates when close to collision, which is the case in WCR

- **Maneuver change cost**
 - Penalizes frequent changes of maneuver types
 - Can improve guidance stability in the presence of noise

- **Maneuver type (rank) cost**
 - Favors “right-of-way-like” compliant maneuvers

- **Specific maneuver type costs (preferences)**
 - Can selectively enforce or suppress specific maneuver types (e.g. NO CLIMBS)

- **Maneuver strength cost**
 - Penalizes too aggressive maneuvers (magnitude of heading or vertical speed change)

- **Maneuver duration cost**
 - Penalizes long deviations from flight plan
DAA/TCAS RA interoperability

• Any intruder with an active corrective RA should be removed from all DAA guidance calculations
 – Horizontal DAA guidance will be shown for non-RA aircraft
 – All DAA vertical guidance should be *suppressed* during a corrective RA to prevent showing conflicting guidance to the pilot

• During a preventive RA, TCAS guidance should be an input to the DAA vertical guidance so that it is consistent (e.g. DO NOT CLIMB)

• Well clear recovery is limited to horizontal only
 – Prevents pilots from making maneuvers near the collision avoidance boundary which may degrade TCAS II performance
 – For both ‘cooperative’ and ‘non-cooperative’ intruders

• Any time ownship’s compliance with a corrective RA leads to a secondary DAA Warning alert (maneuver now), DAA guidance shall revert to well clear recovery in order to be more direct with guidance, e.g.:
 – Compliance with TCAS ‘DESCEND’ RA leads to a secondary DAA Warning
 – Rather than show pilot full OmniBands suggestive guidance, limited suggestive guidance is displayed (e.g. maneuver left)
NASA Ames SSI FT4 Test Objectives and Scenario Preparation
NASA Ames SSI FT4 Objectives

1. Validate DAA requirements in stressing cases that drive MOPS requirements, including: High-speed cooperative intruder, Low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode C/S-only intruder (i.e. without ADS-B).

2. Validate TCAS/DAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders.

3. Validate ‘Well Clear Recovery’ guidance in the presence of realistic sensor, tracking and navigational errors.

4. Validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors.

5. *Collect data to support development and validation of trajectories specified in the DAA MOPS for DAA system acceptance testing.*
Sample Scenario Template: 041-Am-S2M

FT4 TEST OBJECTIVES – SSIWest.2.g (FT4 encounter: 041)

Objective 2: Validate TCAS/DAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors: (g) level-level TCAS RA encounters (mitigated, <10kft).

<table>
<thead>
<tr>
<th>Configuration</th>
<th>System Under Test: Omnibands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display: VSCS</td>
<td>Contributing Sensors:</td>
</tr>
<tr>
<td>TCAS</td>
<td>ADS-B</td>
</tr>
<tr>
<td>YES (S)</td>
<td>YES</td>
</tr>
</tbody>
</table>

Test Objectives (TO)

1. Validate DAA alert timing allows pilot sufficient time to assess options and maneuver to remain well clear.
2. Validate DAA guidance to UAS pilot is appropriate (reasonable, timely & responsive).
3. Validate DAA alerting and guidance do not interfere with UAS pilot’s ability to assess and follow TCAS RA guidance.

Success Criteria (retest if criteria not met)

1. A timely (corrective initially) DAA alert is provided to the UAS pilot.
2. A corrective TCAS RA is generated for the primary intruder and the UAS pilot complies with TCAS RA guidance.

Test Method

- MANEUVER: Pilot disregards DAA guidance and follows TCAS guidance if consistent with test constraints.
- Aircraft speeds (non-accelerating): Ownship 150 KGS, Intruder 180 KGS
- Encounter Length: 1 min (IP to CPA)
- Stable Conditions: stable at the IP (1 minutes prior to CPA)
- Test Termination Criteria: targets diverging, range > 0.75 nmi., no DAA alerts displayed.
- Climb/Roll/Pitch Rates: Ownship 0/0/0, Intruder -2500 FPM/0/0
- Tolerance: ± 8 sec, ± 5 kts at IP crossing.

Evaluation Criteria (Post-test analysis to determine if test objectives are met)

1. UAS pilot receives DAA corrective alert with associated guidance.
2. Vertical DAA guidance indicates no viable vertical maneuvers in temporal proximity to TCAS RA.
3. DAA alerting and guidance for the primary intruder are removed while a TCAS RA is present for the primary intruder.
4. DAA alerting and guidance is generated once RA expires (if appropriate).
5. DAA alert(s) and guidance are removed once ownship is clear of threat.

MOPS Sections 2.2.4.2.4 Alerting 2.2.4.3 Determine Processing, 2.2.4.4 Collision Avoidance Interoperability

![Diagram showing TCAS alerting boundary and vertical offset](image_url)
Sample Scenario Card: 041-Am-S2M

Card:

041-Am-S2M

1. TC announces COMEX time.
2. Announce "<Callsign>, IP Inbound, altitude & special procedure review" crossing IP.
3. On condition at IP.
4. TC calls "terminate" when run complete.
5. TC announces next Card Number.

ADS-B IN: OFF IFF TCAS
DISPLAY: JADEM DADA CPDS
MANEUVER: OFF Advisory AUTO
SENSOR SELECT: Tracker Radar ADS-B TCAS

OWNSHIP

COMEX TIME:

<table>
<thead>
<tr>
<th>WPT</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ALT V/V</th>
<th>DIST MC</th>
<th>KGS</th>
<th>LEG TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP9</td>
<td>N34° 57.09'</td>
<td>W117° 24.57'</td>
<td>9000</td>
<td>2.5</td>
<td>150</td>
<td>1+00</td>
</tr>
<tr>
<td>CPA7</td>
<td>N34° 57' 05.4"</td>
<td>W117° 27.62"</td>
<td>9000</td>
<td>0.0</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>N34° 57' 05.4"</td>
<td>W117° 27.32"</td>
<td>9000</td>
<td>0</td>
<td>258</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Ownership maneuver. Follow JADEM TCAS RA Guidance.

TOLERANCE: ± 8 sec ± 5 kts

DECONFLICTION ALT: 9000

16

Card:

041-Am-S2M

1. TC announces COMEX time.
2. Announce "<Callsign>, IP Inbound, altitude & special procedure review" crossing IP.
3. On condition at IP.
4. TC calls "terminate" when run complete.
5. TC announces next Card Number.

ADS-B IN: OFF IFF TCAS
DISPLAY: JADEM DADA CPDS
MANEUVER: OFF Advisory AUTO
SENSOR SELECT: Tracker Radar ADS-B TCAS

INTRUDER 1

COMEX TIME:

<table>
<thead>
<tr>
<th>WPT</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ALT V/V</th>
<th>DIST MC</th>
<th>KGS</th>
<th>LEG TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP65</td>
<td>N34° 56.69'</td>
<td>W117° 31.28'</td>
<td>8800</td>
<td>3.0</td>
<td>180</td>
<td>1+00</td>
</tr>
<tr>
<td>CPA12</td>
<td>N34° 56' 41.4"</td>
<td>W117° 31.68"</td>
<td>8800</td>
<td>0</td>
<td>078</td>
<td></td>
</tr>
<tr>
<td>N34° 56' 41.4"</td>
<td>W117° 31.72"</td>
<td>8800</td>
<td>0</td>
<td>078</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Expect Ownership maneuver.

TOLERANCE: ± 8 sec ± 5 kts

DECONFLICTION ALT: 8000

123
1. Validate DAA requirements in stressing cases that drive MOPS requirements, including: High-speed cooperative intruder, Low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode C/S-only intruder (i.e. without ADS-B). (18 encounters)

2. Validate TCAS/DAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders. (29 encounters)

3. Validate ‘Well Clear Recovery’ guidance in the presence of realistic sensor, tracking and navigational errors. (9 encounters)

4. Validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. (16 encounters)

5. Collect data to support development and validation of trajectories specified in the DAA MOPS for DAA system acceptance testing. (72 total encounters)
Sample Scenario Analysis
041-Am-S2M
Objective 2: Validate TCAS/DAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors: (g) level-level TCAS RA encounters (mitigated, <10kft).

Test Objectives (TO)

1. Validate DAA alert timing allows pilot sufficient time to assess options and maneuver to remain well clear.
2. Validate DAA guidance to UAS pilot is appropriate (reasonable, timely & responsive).
3. Validate DAA alerting and guidance do not interfere with UAS pilot’s ability to assess and follow TCAS RA guidance.

Success Criteria (retest if criteria not met)

- A timely (corrective initially) DAA alert is provided to the UAS pilot.
- A corrective TCAS RA is generated for the primary intruder and the UAS pilot complies with TCAS RA guidance.
- Data collected: LVC log file, SAAProc log files, TCAS log files for ownship and intruder, SAAP file (‘raw’ surveillance data).

Test Method

- MANEUVER: Pilot disregards DAA guidance and follows TCAS guidance if consistent with test constraints.
- Aircraft speeds (non-accelerating): Ownship 150 KGS, Intruder 180 KGS
- Encounter Length: 1 min (IP to CPA)
- Stable Conditions: stable at the IP (1 minutes prior to CPA)
- Test Termination Criteria: targets diverging, range > 0.75 nmi., no DAA alerts displayed.
- Climb/Roll/Pitch Rates: Ownship 0/0/0, Intruder -2500 FPM/0/0
- Tolerance: ± 8 sec, ± 5 kts at IP crossing.

Evaluation Criteria (Post-test analysis to determine if test objectives are met)

1. UAS pilot receives DAA corrective alert with associated guidance.
2. Vertical DAA guidance indicates no viable vertical maneuvers in temporal proximity to TCAS RA.
3. DAA alerting and guidance for the primary intruder are removed while a TCAS RA is present for the primary intruder.
4. DAA alerting and guidance is generated once RA expires (if appropriate).
5. DAA alert(s) and guidance are removed once ownship is clear of threat.
Scenario 041-Am-S2M: Event Data

<table>
<thead>
<tr>
<th>Cycle Count</th>
<th>Intruder</th>
<th>Time</th>
<th>Clock Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>N3GC</td>
<td>1461942437.39</td>
<td>15:07:17</td>
<td>FIRST_TRACK</td>
</tr>
<tr>
<td>198</td>
<td>N3GC</td>
<td>1461942445.37</td>
<td>15:07:25</td>
<td>DAA_PREVENTATIVE</td>
</tr>
<tr>
<td>203</td>
<td>N3GC</td>
<td>1461942450.38</td>
<td>15:07:30</td>
<td>DAA_CORRECTIVE</td>
</tr>
<tr>
<td>208</td>
<td>N3GC</td>
<td>1461942455.41</td>
<td>15:07:35</td>
<td>DAA_PREVENTATIVE</td>
</tr>
<tr>
<td>215</td>
<td>N3GC</td>
<td>1461942462.35</td>
<td>15:07:42</td>
<td>DAA_CORRECTIVE</td>
</tr>
<tr>
<td>233</td>
<td>N3GC</td>
<td>1461942480.40</td>
<td>15:08:00</td>
<td>DAA_WARNING</td>
</tr>
<tr>
<td>257</td>
<td>n/a</td>
<td>1461942504.39</td>
<td>15:08:24</td>
<td>WCR_TURN_RIGHT</td>
</tr>
<tr>
<td>258</td>
<td>N3GC</td>
<td>1461942505.38</td>
<td>15:08:25</td>
<td>LOWC</td>
</tr>
<tr>
<td>270</td>
<td>N3GC</td>
<td>1461942518.39</td>
<td>15:08:38</td>
<td>TCAS_CLIMB</td>
</tr>
<tr>
<td>291</td>
<td>N3GC</td>
<td>1461942539.39</td>
<td>15:08:59</td>
<td>CPA</td>
</tr>
<tr>
<td>291</td>
<td>N3GC</td>
<td>1461942545.39</td>
<td>15:09:05</td>
<td>TCAS_LEVEL_OFF</td>
</tr>
<tr>
<td>296</td>
<td>N3GC</td>
<td>1461942544.36</td>
<td>15:09:04</td>
<td>TCAS_AA_CLEAR</td>
</tr>
<tr>
<td>297</td>
<td>N3GC</td>
<td>1461942545.39</td>
<td>15:09:05</td>
<td>DAA_PREVENTATIVE</td>
</tr>
<tr>
<td>297</td>
<td>N3GC</td>
<td>1461942548.40</td>
<td>15:09:08</td>
<td>REGAIN_WC</td>
</tr>
<tr>
<td>300</td>
<td>N3GC</td>
<td>1461942556.36</td>
<td>15:09:16</td>
<td>FINAL_ALERT</td>
</tr>
<tr>
<td>308</td>
<td>N3GC</td>
<td>1461942556.36</td>
<td>15:09:16</td>
<td>LAST_TRACK</td>
</tr>
</tbody>
</table>
Scenario 041-Am-S2M: State Data

- Vertical Speed (m/min)
- Ground Speed (kt)
- Altitude (ft)
- True Course (deg)

- Ownership
- Intruder
- IP: Desired
- CPA: Desired
- CPA: Calculated
- Preventive
- Corrective
- Warning
Scenario 041-Am-S2M: Threat Data

![Graph 1: First Loss HMD (nm) vs. Elapsed Time (sec)]

- **Scenario 041 (15:07:15-15:09:15): N3GC**

- **Graph 2: First Loss Vert Sep (ft) vs. Elapsed Time (sec)**
 - Symbols: Preventive, Corrective, Warning

- **Graph 3: Predicted Time to First Loss (sec) vs. Elapsed Time (sec)**

- **Graph 4: First Loss Mod Tau (sec) vs. Elapsed Time (sec)**
Scenario 041-Am-S2M: Encounter Data
Scenario 041-Am-S2M: Guidance Data
Scenario 041-Am-S2M: VSCS Recording
Preliminary Results
<table>
<thead>
<tr>
<th>Scenario number</th>
<th>Generated Corrective Alert</th>
<th>Remained Well Clear</th>
<th>DAA Alerts Removed</th>
<th>DAA Alerts After RA</th>
<th>No DAA Alert or Guidance During TCAS RA</th>
<th>Generated WCR Guidance</th>
<th>Regain Well Clear</th>
<th>Timely TCAS Maneuver</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>9</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>10</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>12</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>13</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>14</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>15</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>16</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>17</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>18</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>19</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>20</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>21</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>22</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>23</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>24</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>25</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>26</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>27</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>28</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>29</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>30</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>31</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>32</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>33</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>34</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>35</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>36</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>37</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>38</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>39</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>40</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>41</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>42</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>43</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>44</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>45</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>46</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>47</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>48</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>49</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>50</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>51</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>52</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>53</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>54</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>55</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>56</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>57</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>58</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>59</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>60</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>61</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>62</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>63</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>64</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>65</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>66</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>67</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>68</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>69</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>70</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
<tr>
<td>71</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>TRUE</td>
</tr>
</tbody>
</table>
DAA Alert Lead Time (unmitigated)

DAA Warning to 1st LoWC (mean 22.3s)

DAA Corrective to 1st LoWC (47.4s)
DAA Alert Transition Time (unmitigated)

- WCR to TCAS RA (9.8s mean)
- DAA Warning to WCR (18.3s)
- DAA Corrective to DAA Warning (24.5s)
- DAA Preventive to DAA Corrective (3.6s)
Unexpected TCAS RAs

• Definition: a corrective RA is generated while DAA guidance and alerting indicates no maneuver is necessary to remain Well Clear

• Two observed unexpected TCAS RAs
 – Scenario 063 (maneuvering intruder to 45° intercept)
 – Scenario 047 (multi-intruder TCAS/WCR, primary intruder)
 – Both cases predicted HMD > 0.9nm at time of TCAS RA
 – Presumed TCAS bearing error led to TCAS RA while not meeting corrective or warning DAA HMD criteria (to be verified)
Sample Unexpected TCAS RA

Scenario 063 (TCAS RA @ 112s elapsed time)
Some guidance instability was expected due to Mode C bearing error.

Only 3 encounters included Mode C w/o ADS-B surveillance.

Stable OmniBands guidance was observed in all 3 encounters.

Bearing errors in integrated track are reduced within radar range.

Intruder was within radar range for duration of encounter
Well Clear Recovery (WCR) guidance was observed to be of limited utility

- Frequent changes to turn direction (left vs. right) of WCR guidance were observed for non ADS-B equipped intruders

- Short duration (<10s) between WCR onset and TCAS RA was observed in >50% of cases

- Large-turn WCR guidance aft of ownship was observed in some encounters.
Sample WCR Instability: Short Duration
Sample WCR Instability: Direction Swap
Lessons Learned and Recommendations

• A wide array of encounters were successfully executed to evaluate the performance of prototype DAA alerting and guidance logic in a realistic environment... big thanks to entire FT4 team. Test criteria were largely met.

• Alert timing was largely acceptable, providing ample time for pilot to evaluate guidance and maneuver aircraft in most encounters -> acceptable alerting thresholds
Lessons Learned and Recommendations (cont.)

- WCR guidance was of limited utility for intruders lacking ADS-B.
 - WCR guidance should select a direction and maintain guidance except in cases of overwhelming evidence to the contrary
 - WCR guidance should include reasonable turn limits (e.g., no >90° turns)
 - Lead time from WCR to TCAS RA observed <10s in more than half of cases
 - WCR performance improved with ADS-B surveillance
 - May need to revisit TCAS interoperability concept regarding differences between ADS-B equipped and non-equipped intruders for WCR

- Stability of guidance for Mode C intruders appears adequate, but further investigation is warranted due to the limited sample size, particularly for high-speed, Mode C intruders.

- Unexpected TCAS RAs are possible due to differences in predicted HMD for DAA and TCAS... mitigations to prevent unexpected RAs may be required.
Next Steps

• Analyze trajectory prediction performance for each intruder sensor combination (i.e. Horizontal & Vertical CPA errors vs. time-to-CPA)

• Validate Mode C (non ADS-B) intruder guidance stability

• Develop and assess enhanced WCR guidance logic
 – Enhanced directional guidance stability
 – Turn angle limitation
 – Different logic for intruders with/without ADS-B

• Analyze scenarios from last 2 flights (17 scenarios)

• Investigate ‘TCAS RA dropouts’ to determine if new WCR guidance requirement(s) are necessary

• Further investigate ‘unexpected TCAS RAs’... are increased thresholds or buffers warranted?
Backup Slides
TCAS-II Display Integration

- **Auditory Alert**
 - RA sense presented aurally
 (source: TCAS II v7.1)

- **Text Based**
 - RA sense shown in text box next to Baseball Card

- **TCAS Vertical Rate Guidance**
 - Presented within VVI
 - Green = desired vertical speed
 - Red = vertical speed to avoid

- **Inhibit DAA Altitude Guidance**
No Corrective Alert Prior to Warning Alert

ScenarioC65(17:42:44-17:43:50):FUSN1160

First Loss HMD (nm)2

Elapsed Time (sec)

Predicted Time to First Loss (sec)

Elapsed Time (sec)
Objective 1: Validate DAA requirements in stressing cases that drive MOPS requirements:
(e) low speed intruder (mitigated, <10kft MSL)

ACES Simulation Results – Common non-cooperative encounters

Configuration

<table>
<thead>
<tr>
<th>Contribution Sensors</th>
<th>TCAS</th>
<th>ADS-B</th>
<th>Radar</th>
<th>Tracker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Test Objectives (TO)

1. Validate DAA alert timing allows pilot sufficient time to assess options and maneuver to remain well clear.
2. Validate DAA guidance to UAS pilot is appropriate (reasonable, timely & responsive).
3. Validate selected DAA maneuver results in remaining well clear, and removal of the alert once clear of threat.

Success Criteria (retest if criteria not met)

1. A timely (corrective initially) DAA alert is provided to the UAS pilot.
2. UAS pilot maneuvers in response to DAA alert.

Test Method

- **MANUEVER:** Pilot to manually select and execute 'minimum' maneuver at edge of band.
- Aircraft speeds (non-accelerating): Ownship 120 KGS, Intruder 100 KGS
- Encounter Length: 2 min (IP to CPA)
- Stable Conditions: stable at the IP (2 minutes prior to CPA)
- **Test Termination Criteria:** targets diverging, range > 0.75 nmi., no DAA alerts displayed.
- Climb/Roll/Pitch Rates: 0/0/0
- Tolerance: ± 8 sec, ± 5 kts at IP crossing.

Evaluation Criteria

1. UAS pilot receives DAA corrective alert with associated guidance
2. UAS pilot maneuvers in response to DAA alert and remains well clear of intruder.
3. DAA alert(s) and guidance are removed once ownship is clear of threat.

Additional Information

<table>
<thead>
<tr>
<th>TCAS</th>
<th>ADS-B</th>
<th>Radar</th>
<th>Tracker</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Omnibands

- **Lateral Offset = 0 NM**
- **SS Alerting Boundary = 0.75 NM**
- Minimum Altitude Offset ≥ 500 ft

Relative 0°

- Ownship

Relative 90°

- Intruder

Relative 45°

- Intruder
Mitigated LoWC: Non-Procedural

Scenario 014 (mitigated, low-speed, 45°, LoWC @ 78s elapsed time)
Mitigated LoWC: Non-Procedural

Scenario 014 (mitigated, low-speed, 45°, LoWC @ 78s elapsed time)
Mitigated LoWC: Non-Procedural

Scenario 014 (mitigated, low-speed, 45°, LoWC @ 78s elapsed time)

- Moderate ground speed and heading variance following ownship maneuver.
- LoWC for 2s @ >0.5nm HMD and with WCR guidance
Mitigated LoWC: FT4 Procedural
Guidance Buffering

- In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 - E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

- Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

- In example to the right, time window is 4

 - Pro: “stable” guidance

 - Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient

Instantaneous guidance

Buffered guidance displayed to pilot

Head of queue is displayed to pilot
Guidance Buffering

- In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 - E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

- Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

- In example to the right, time window is 4

- Pro: “stable” guidance

- Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient
Guidance Buffering

- In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 - E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

- Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

- In example to the right, time window is 4

- Pro: “stable” guidance

- Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient
Guidance Buffering

• In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 – E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

• Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

• In example to the right, time window is 4

• Pro: “stable” guidance

• Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient
Guidance Buffering

• In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 – E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

• Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

• In example to the right, time window is 4

• Pro: “stable” guidance

• Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient
Guidance Buffering

- In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 - E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

- Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

- In example to the right, time window is 4

- Pro: “stable” guidance

- Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient
Guidance Buffering

- In the presence of noisy sensors, the sizes and alert level within the bands may “jitter”
 - E.g. Yellows bands jumping from 30 degrees to 50 degrees back to 30 degrees in a matter of seconds

- Implemented buffering algorithm to keep the more conservative DAA guidance persistent over some user-specified time

- In example to the right, time window is 4

- Pro: “stable” guidance

- Con: over conservative in maneuver guidance, e.g. showing +/- 15 degree turn as necessary but +/- 5 degrees would be sufficient